
62  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

For Good Measure
Security Debt

D A N G E E R A N D C H R I S W Y S O P A L

Dan Geer is the CISO for In-Q-
Tel and a security researcher
with a quantitative bent. He has
a long history with the USENIX
Association, including officer

positions, program committees, etc.
dan@geer.org

Chris Wysopal, Veracode’s CTO
and co-founder, is responsible
for the company’s software
security analysis capabilities.
In 2008 he was named one of

InfoWorld’s Top 25 CTOs and one of the 100
most influential people in IT by eWeek. One
of the original vulnerability researchers and a
member of L0pht Heavy Industries, he is an
author of L0phtCrack and Netcat for Windows,
and is the lead author of The Art of Software
Security Testing published by Addison-Wesley.
cwysopal@gmail.com

Blessed are the young for they shall inherit the national debt.

 — Herbert Hoover

W hen you start a company, you take on financial debt so that you
can reach your market in time. When you release a product, you
take on technical debt, and for the same reason. Ward Cunning-

ham talked about this in 1992 [1]:

[I]mmature code may work fine and be completely acceptable to the customer,
excess quantities will make a program unmasterable, leading to extreme
specialization of programmers and finally an inflexible product. Shipping first
time code is like going into debt. A little debt speeds development so long as it is
paid back promptly with a rewrite…The danger occurs when the debt is not repaid.
Every minute spent on not-quite-right code counts as interest on that debt. Entire
engineering organizations can be brought to a stand-still under the debt load of an
unconsolidated implementation.

One of the present authors proposed [2] that cyberinsecurity is the critical form of techni-
cal debt, if for no other reason that a bug is exercised by an accident but a vulnerability is
exercised by an enemy. Consider your security vulnerabilities to be a debt note that has been
purchased by someone who is out to get you—not only are you in debt, but the debt can be
called at the most inconvenient time calculable.

Every software release is debt issuance, and vulnerabilities are common in fresh code [3], but
as Clark et al. point out [4], you can roll your code often enough that the attackers can’t keep
up. (Google appears to roll Chrome every 3–5 days.) Rolling over a financial debt cheaply
means life is good, unless and until there is a rate shock.

The problem with rolling over your security debt, however, is that you can soon have no idea
what is going on. If you are a supplier, then you may choose to buy outside testing, that is to
say you may choose to get your debt rated, but with sub-week release cycles it is not possible
to test within cycle—test results are always for a now previous version. If you are a consumer,
your test might be the most trivial of all tests, viz., whitelisting the hash taken from the sup-
plier’s golden master, but propagation time for the whitelist may well not keep up with the
rate of issuance, just like a rating agency that can’t even rubber stamp what the mortgage
lender is issuing as fast as they are issuing it.

Let’s say you’ve been rolling over your cyberinsecurity debt for long enough that you have
a considerable debt overhang built into your products, or into your enterprise deployment
of everything from Aardvarks to Zebras. Well, you can pay it down. Microsoft showed us
how when it declared cyberinsecurity debt bankruptcy and built IIS 6.0 from scratch. That
rewrite brought an untenably rising incidence of reported vulns down to a dull roar [5], as
seen in Figure 1.

Of course, there are substantial security debts building elsewhere; here, in Figure 2 we dem-
onstrate this buildup with some obvious choices, all on the same timeline as Figure 1, and
their sum, which is a lower bound on net security debt buildup.

www.usenix.org AU G U S T 20 13 VO L . 3 8 N O. 4 63

COLUMNS
For Good Measure

Financial bankruptcy is especially easy in the US, which is why
the US economy rebounds from boneheaded financial mistakes
faster than elsewhere—you just throw out the trash . . . unless the
thing “you” need to bankrupt is too big to fail (TBTF). Now you
can’t shuck the debt. TBTF in finance is a bank whose failure
would kill other firms. TBTF in cyber is an installed base too
big to overwrite. As with Marsh Ray’s TLS renegotiation attack
[6], an installed base that is TBTF means that all that can be
done is to add mitigating software on top of it. Adding software
increases the attack surface. Happy New Day.

In the previous installment of this column [7], we proposed a
market approach to dealing with cyberinsecurity risk by sepa-
rating out severity from frequency of cyberinsecurity events.
Severity is context dependent and a matter of taste. Frequency
is an objective, mensurable fact, thus it can be the basis for a
market. In synopsis, a futures market in the frequency of cyber-
insecurity events (a trendline based on a counting function)
dodges the question of severity (the maximum excursion of some
unhappy cost curve). Trendlines are ordinal-scale statistics, i.e.,
good enough for decision support. Trendlines do not require the
precision of definitions (what is “severity?”) that frustrate the
appearance of a hard science of cybersecurity. The key to the
proposed market in cyberinsecurity event futures is an underly-
ing debt pool from which the security events come, an underlying
debt pool for which the security events provide an estimate. That
underlying debt pool is, obviously, accumulated cyberinsecurity
debt. A street cop cannot know how much heroin is for sale, but
he can follow the price and adjust his policing based on which
strategies raise the price of heroin. A cybersecurity cop cannot
know how many vulnerabilities are present in the code on which
he depends, but he can follow the price of cyberinsecurity event
futures (and not the price of zero-days).

If cyberinsecurity insurance is written as a fixed dollar amount
per cyberinsecurity event, then the predicted exposure of the
insurer is simply the predicted frequency of cyberinsecurity
events. And if cyberinsecurity events are, in turn, a linear func-
tion of cyberinsecurity debt load, then we have a third alterna-
tive (hedging in cyberinsecurity event futures) to what had been

a choice of two less attractive alternatives: continuing to roll
over the cyberinsecurity debt (of unknown size) or paying that
debt down through codebase bankruptcy.

We consider Adobe’s recent conversion to Software as a Service
[8] to be an unacknowledged cyberinsecurity debt bankruptcy
with Adobe remaining as a debtor in possession. Perhaps
cyberinsecurity debt avoidance explains part of why the market
capitalization of the top three SaaS vendors is growing five times
as fast as the top three (product) sales vendors [9], as shown in
Figure 3.

The collectivization of risk can be voluntary (you buy insurance)
or involuntary (you are taxed to bail out TBTF). Insurance at
industrial scale requires reinsurers—entities that sell insurance
to insurers such as for linked-losses, viz., catastrophes where
a single event (hurricane) causes large numbers of losses. The

Figure 1: Rising incidence of reported vulnerabilities down

Figure 2: Security debts building

Figure 3: The market capitalization of the top three SaaS vendors is grow-
ing five times as fast as the top three sales vendors.

64  AU G U S T 20 13 VO L . 3 8 N O. 4 www.usenix.org

COLUMNS
For Good Measure

chance of catastrophes in cyberinsecurity is proportional to
deployed interdependence, meaning that installed base is a strict
lower bound indicator for what is TBTF in cyberinsecurity, i.e.,
the likelihood of a successful attack on one component of that
interdependence may be a consequence of a successful attack on
some different component.

Excepting TBTF, there always comes a point where risk transfer
(like insurance) is a better investment than continued risk reduc-
tion, particularly when risk reduction is proven difficult even for
firms that want to do it. Veracode’s SoSS 5 report [10] shows two
examples where among committed firms and repeated interven-
tions, their cyberinsecurity score is all but constant. Over six
quarters, analyzed software in the aggregate had a ±1.7% score

and Web applications subject to SQL injection had a ±4.7% score

Yes, those are flat lines.

Although it is true that the number of cyberinsecurity insurers
is rising, so far as we know there is not yet a reinsurance market
for cyberinsecurity insurance. Because reinsurance is a neces-
sary condition for a robust market among primary insurers, and
because the optimal number of reinsurers is the square root of
the number of primary insurers [11], if the number of primary
cyberinsecurity insurance issuers is to grow, so will grow the
need for market makers in insurance futures. Despite being
inconsistent with a free people, when a jurisdiction requires that
its citizens buy insurance, capital must be sequestered to cover
probable losses. A market that capitalizes the reserves needed
for cyberinsecurity insurance is thus essential by observation:
the risk is already collectivized even if merely ignored through
the rolling over of cyberinsecurity debt society-wide.

One can argue about what is the “interest” on the cyberinsecu-
rity debt, but it is unclear which of several models is relevant to
the fundamental decisions—unless the interest rate is near zero,
which it can only be by fiat rather than being market derived.
The supply side makes exactly that assertion: the high-order bit
on every page of every EULA is “It is not our fault,” and courts
have tended to agree that if the end user accepted such license
terms, then they do govern. We do not think that cheaply rolling
over cyberinsecurity debt can indefinitely continue, and therefore
there needs to be a way to do risk transfer—one where objective
measures of cyberinsecurity debt help price the transfer of risk.
It would be wise to have that pricing in place before the rate
shock hits.

References
[1] Ward Cunningham, “The WyCash Portfolio Management
System,” March 26, 1992: c2.com/doc/oopsla92.html.

[2] Chris Wysopal, “Application Security Debt and Applica-
tion Interest Rates”: http://www.veracode.com/blog/2011/02/
application-security-debt-and-application-interest-rates.

[3] Elizabeth Nichols, “State of Software Security”: http://
www.veracode.com/blog/2013/05/soss-one-figure-at-a-time/.

[4] “Familiarity Breeds Contempt: The Honeymoon Effect
and the Role of Legacy Code in Zero-Day Vulnerabilities”:
http://www.acsac.org/2010/openconf/modules/request.php
?module=oc_program&action=view.php&a=&id=69&type=2.

[5] Data courtesy of osvdb.org.

[6] “Vulnerable Compliance”: https://www.usenix.org/
system/files/login/articles/geer.pdf.

[7] Dan Geer and Dan Conway, “The Price of Anything Is the
Foregone Alternative,”;login:, vol. 38, no. 3, June 2013:
geer.tinho.net/login/geer.login.1306.pdf.

[8] “Adobe Kills Creative Suite—All Future Features
Online Only”: http://www.theregister.co.uk/2013/05/06/
adobe_kills_creative_suite_for_cloud.

[9] Data courtesy of Yahoo Finance.

[10] “State of Software Security Volume 5,” https://www.
veracode.com/images/pdf/soss/state-of-software-security
-report-volume5.pdf.

[11] Michael Powers and Martin Shubik, “A ‘Square-Root
Rule’ for Reinsurance,” Revista de Contabilidade e Finan-
ças (Review of Accounting and Finance), vol. 17, no. 5, pp.
101-107.

