
64    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

COLUMNS

iVoyeur
Hearsay Among Monitoring Systems

D A V E J O S E P H S E N

This may be a little premature to talk about, but lately I’ve been con­
sumed by an idea that is conceptually rooted in the complexity
involved in making monitoring systems talk to each other. For

someone who writes articles about making monitoring systems talk to
each other, this is perhaps natural, but I know I’m not the only one who has
noticed that adding a new monitoring system to an existing infrastructure
does not linearly increase its complexity.

For example, say you have Nagios and want to add Splunk, and you want them to talk to each
other, feeding passive check results from Splunk to Nagios and also round-trip times for
an HTTP service in Nagios into Splunk. Then you add Ganglia and Collectd to the mix in a
similar fashion. This scenario, depicted in Figure 1, begets four custom configurations for
Nagios alone, one for Nagios itself, one for Nagios to talk to Splunk, another for Nagios to talk
to Collectd, and yet another for Nagios to talk to Ganglia. Some of these systems will need to
be configured in kind to talk back to Nagios.

I/O Hooks Aren’t Enough Anymore
So inter-system configuration complexity is something like (n-x)2+(nx), where x is the number
of send or receive-only, Graphite/Collectd-style tools you plug in to your monitoring archi­
tecture. If we were talking algorithms, we’d reduce this to 0(n2) and be done. Effective systems
monitoring requires a toolbox, but every tool you add to the box means reconfiguring all tools.

This complexity is obviously a hassle, but worse, it has a tendency to make snowflakes of
your monitoring systems, eventually resulting in highly customized, fragile infrastructure.
The alternative is to limit our visibility by forgoing the use of good tools to avoid the configu­
ration burden (or installing them as stand-alone). A nearly exponential increase in configu­
ration complexity makes this a hard limit for everyone, which is to say every shop WILL have
to pick and choose a few tools from an increasingly huge list of amazingly great monitoring
systems if they want them to work together.

At the risk of sounding melodramatic, I am saddened by this. I want all of these great monitor­
ing tools to work like Legos. I want to plug them in to each other and build things with them. I
want them to play to each other’s strengths and become more than the sum of their parts.

There’s No I in “Common Data Model”
Imagine for a moment that instead of each system having its own unique I/O hooks, they
all supported a common data interchange format. If they all just woke up one morning and
agreed to send and receive the same format messages. As depicted in Figure 2, they would
no longer need to be configured specifically to communicate to each other, and could instead
each be configured simply to enable import and/or export of the common format. Each

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice
Hall PTR, 2007) and is

senior systems engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  65

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

monitoring system could share data out in a system-agnostic
way, and other systems could pick and choose the state and
metric data that was relevant to them regardless of the source.

This would greatly reduce the cost of adding new monitoring
infrastructure, and would make everyone’s life easier. But is it
even possible to translate the output of every monitoring system
to a common format that works as the input of every other?

Although it seems unlikely, practically speaking, all monitoring
systems deal with similar data. The Riemann Project’s event
type, described at [1], characterizes a system-agnostic blob of
monitoring data pretty perfectly. Copied directly from that site,
the structure looks like this:

host 	 A hostname, e.g., “api1”, “foo.com”
service 	 e.g., “API port 8000 reqs/sec”
state 	 Any string less than 255 bytes, e.g., “ok”,
	 “warning”, “critical”
time 	 The time of the event, in UNIX epoch seconds
description 	 Freeform text
tags 	 Freeform list of strings, e.g.,
	 [“rate”, “fooproduct”, “transient”]
metric 	 A number associated with this event, e.g., the
	 number of reqs/sec.
ttl 	 A floating-point time, in seconds the event
	 is valid for

Every monitoring system I’ve worked with generates data that
fits pretty well into this struct, and most fit with room to spare.
Formalizing this, changing the “state” field to a Nagios-style int,
and adding a UID field to make it possible to sign the messages
and/or provide a unique hash so that they can be more easily
de-duplicated/commuted etc. produces my own definitions:

string 	 Host //hostname, e.g., “foo.com”,
string 	 Service //e.g., “HTTP reqs/sec”
uint8 	 State //Nagios style 0 ok, 1 warn, 2 crit,
	 3 unk 4-10 reserved
time_t	 Time //the time the event occurred
string 	 Description //non-numeric state, event, or service
	 description
string[] 	 Tags //list of tags, e.g., [“sentby:alice”,”src:nagios”]
float64 	 Metric //a metric, e.g., the number of reqs/sec.
uint32 	 TTL //valid time-to-live (in seconds) for this message
string 	 UID //unique hash or signature from host+service+
	 time+State+Metric

Okay, Let’s Kick This Pig
In a perfect world, I could at this point assemble the minions,
kidnap the maintainer of every monitoring system, and demand
that they import and export this structure for all the relevant
events their systems generate. But despite my lack of minions,
other problems need solving first, beginning with who pushes
and who pulls, and continuing on through wire encoding (proto­
buf? JSON? XML? etc.), and the litany of details associated with
actually putting the messages on the wire, routing them to where
they need to go, and figuring out what to do when they get there.
So I think, before I can push for native adoption, that there will
need to be a fairly well developed model for how data exchange
should operate in practice. We need to see what it looks like
before we can decide whether it’s worth doing.

To that end, libhearsay is a library that implements this common
data format and comes with a couple of tools to simplify the pro­
tocol and data exchange details. Written in Golang [2] over the
past few weeks when I should have been washing the dishes, lib­
hearsay tools employ JSON and Zeromq [3] (sometimes written
as 0MQ) to distribute “scraps” of hearsay between monitoring

Figure 1: Each system must be custom configured for interoperability with
the others.

Figure 2: Each system merely enables support for a common data model.

66    O C TO B ER 20 13  VO L . 3 8 N O. 5 	 www.usenix.org

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

systems (spewers and listeners), enabling your monitoring sys­
tems to gossip to each other.

Any monitoring system with something to share can be made
into a hearsay spewer with the “spewer” utility. Spewer reads
JSON-formatted scraps of hearsay from STDIN or a FIFO,
verifies that they are valid (requiring either a host or service
name, and a metric or state value), and puts them on the wire
via Zeromq push or pub. In push mode, Zeromq will fan out the
scraps by fairly distributing them among the connected listen­
ers. In pub(lish) mode, Zeromq will broadcast each scrap to
every subscriber.

The generic listener listens to a comma-separated list of spewer
socket addresses, and outputs JSON-encoded scraps to STD­
OUT or appends them to a file of your choosing. The generic lis­
tener also has a “Nagios” mode that injects passive check results
directly into your Nagios CMD file. Inter-system compatibility
will be achieved through the creation of many task-specific
listeners that are designed to work with specific tools such as
Munin, Reimann, Zabbix, Zenoss, Reconnoiter, Graphite, etc.
Each of these listeners will “just work,” meaning that given the
address of a spewer or several spewers, they’ll take scraps off the
wire, validate them, and inject them into their parent monitoring
system in the way that system expects to receive them.

For now, the generic_listener and some shell scripts can help
us get by, and hopefully prove the model, but step 2 certainly
centers around the creation of a litany of purpose-specific
listeners (some of which should be written by the time you read
this). At that point, the cost of entry will be low enough that “nor­
mal users” will be able to play. Step 3 will be to push for native
support. If you’re a project maintainer, expect to see me at your
con next year.

Patterns
Zeromq subscribers provide a filter when they subscribe to a pub
socket, which enables them to discard the messages they aren’t
interested in. This should work handily with the “Tag” field in
our scrap struct. The model I have in mind for my shop looks
pretty much like Figure 2, where all spewers and listeners con­
nect to a central set of redundant message brokers and use filters
to extract the scraps from the systems they’re interested in.

These brokers are nothing more than a set of systems that have
both a listener (to accept scraps from every monitoring server)
and a spewer (to copy every scrap back to the interested listen­
ers). Something like a Brooklyn barber shop, all systems know
to go to these hosts to both share and receive new hearsay. I
imagine that each spewer will use the spewer utilities’ “-t”
switch to add a tag to each scrap they send, identifying it as, for
example: “src:nagios”, and each listener will filter for tags of this
or that type.

Interestingly, given just the generic spewer and listener tools,
any sort of distributed message-passing architecture could
be built, and although I’m excited about the possibility of
my “smorgasbord of monitoring data” model, I’m even more
intrigued to see what other admins might design.

Wait, how does this work exactly?

Let’s take a look at the spewer tool in practice by launching it
with “-d” to trigger debug mode and sending it a partial scrap
like so:

[dave@vlasov]--> echo ‘{“Host”:”foo.com”,”Service”:”HTTP”,

”State”:0}’ | spewer -d

Starting Server

got message: {“Host”:”foo.com”,”Service”:”HTTP”,”State”:0}

Sending:

{“Host”:”foo.com”,”Service”:”HTTP”,”State”:

0,”Time”:”2013-07-26T13:51:47.277299512-05:00”,”Description”:””

,”Tags”:[“Spewed-by:

vlasov.dbg.com”], “Metric”:-42,”TTL”:60,”UID”:””}

As you can see, given only a hostname, service name, and state
value, spewer created a full scrap by populating default values
for Time, Metric, and TTL, and adding a “Spewed-by:” tag,
which should help us avoid message loops in the future. If I’d
given spewer a “-u” switch, it would have generated an MD5
hash-sum of the message and assigned it to UID.

Spewer also created a 0MQ push socket and placed the scrap on
the wire for any connected listeners. If we had a generic listener
connected to localhost port 5000, spewer would have read the
message and printed it back to STDOUT. If five listeners had
been listening, 0MQ would have (round-robin) distributed the
message to one of them. If I’d specified “-m pub”, spewer would
have opened a pub socket and every one of the connected five
listeners would have gotten its own copy of the message.

There are myriad ways to get data out of Nagios and into the
spewer, but I haven’t made a final decision on what interim
Nagios support looks like exactly. Because Nagios provides
handy macros for things such as hostname, service name, and
state, I’m tempted to write a little tool that is intended to be
called from a notification command that could inject a scrap
into spewer, or modify spewer to accept incoming scraps on a
TCP socket locally.

Spewer cannot itself be called via a Nagios command because it
needs to persist the publisher socket, and therefore must run as
a daemon-like entity. Other options are a Nagios Event Broker
module that could inject scraps into spewer, or something as
simple as a shell script that could tail a performance log file from
Nagios, translating and providing scraps to spewer via STDIN.
Each approach has pros and cons.

www.usenix.org	   O C TO B ER 20 13  VO L . 3 8 N O. 5  67

COLUMNS
iVoyeur: Hearsay Among Monitoring Systems

I also anticipate the need for an indexing service of some sort to
enable listeners to find spewers securely. I’ll cross that bridge
when I come to it.

This may be a long road to a dead-end, but at the moment I’m
optimistic and by the next issue expect to have some real sys­
tems talking to each other. If you’d like to hack along, feel free to
grab libhearsay from GitHub [4] or my blog [5]. Any help would be
vastly appreciated and is 100% guaranteed to be repaid in beer at
the first convenient conference we both attend.

Take it easy.

References
[1] http://riemann.io/concepts.html.

[2] http://golang.org/.

[3] http://www.zeromq.org.

[4] https://github.com/djosephsen/Hearsay.

[5] http://www.skeptech.org/hearsay.

APRIL 2–4, 2014 • SEATTLE, WA

11th USENIX Symposium on Networked Systems
Design and Implementation

Join us in Seattle, WA, April 2-4, 2014, for the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI ’14). NSDI focuses on the design principles, implementation,
and practical evaluation of networked and distributed systems. Our goal is to bring together
researchers from across the networking and systems community to foster a broad approach to
addressing overlapping research challenges.

Program Co-Chairs: Ratul Mahajan, Microsoft Research, and Ion Stoica, University of California,
Berkeley

www.usenix.org/conference/nsdi14

SAVE THE DATE!

