
60    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

Columns

iVoyeur
Go, in Real Life

D a v e J o s e p h s e n

Through a combination of unfortunate timing, unexpected workload,
and laziness, I’m writing this column in the midst of a rare vacation,
as I look out on the eastern front of the Rocky Mountains in late fall.

I’m using a borrowed laptop (thanks Chris) in a land unencumbered by WiFi,
and I’m hoping to find a GPRS signal strong enough to send it to Rik, my edi-
tor, before the deadline, which is today I think, or maybe tomorrow.

Although we’ve arrived only a few weeks later in the year than usual, everything is different
here in my favorite place in the world: the air colder, the animals edgier, the light and foliage
more dramatic. When we manage to make it up here, we expect to be snowed on at least once
or twice, but this time we’ve been either rained, iced, or snowed on every day. This has only
accentuated our hiking, affording us some privacy on the trails, increasing the contrast of
our photos, and giving our supposedly waterproof boots an opportunity to prove their worth.

I love the mountains, not just because their size puts humanity in perspective, and not just
because they are unabashedly wild. I love the mountains because they encourage good habits
in the people who choose to venture into them. They reward hard work, awareness, and
respect, and they punish stupidity, sloth, and arrogance. I love the mountains because loving
them makes me a better human being.

I had planned this month to write more about libhearsay [1], and show off how I’ve used it to
connect a few different monitoring tools together. But that work is 3000 or so miles away,
and anyway those ideas could stand to be baked a bit more before I force them upon you like
an excited co-worker with a USB-stick full of vacation slides.

Instead, because I’ve been writing libhearsay in the Go programming language and also
because Go is a newish and hotish programming language created from scratch by the likes
of Ken Thompson and Rob Pike, I thought I’d share my experience with it thus far.

In the past few years, many smart programmers have written a bunch of brilliant articles
about Go that cover every nook and cranny of every feature and function. None of them, how-
ever, seem to convey a sense of what it feels like to create a program in Go, especially from the
perspective of a systems guy rather than an application developer. Having worked with it for
a few months and a couple of thousand lines, I’ve noticed that, like the mountains, Go seems
to be encouraging beneficial habits in me. Some of these are small things, and are easily
articulated, and others are larger and more subtle, but taken together, the patterns, idioms,
and manners of thought that Go encourages are making me a better programmer. I think that
this, rather than any particular linguistic feature, is the second greatest thing about Go (the
greatest thing about it obviously is its enormous potential for name-related puns). Here are a
few examples:

Dave Josephsen is the
author of Building a
Monitoring Infrastructure
with Nagios (Prentice Hall
PTR, 2007) and is Senior

Systems Engineer at DBG, Inc., where he
maintains a gaggle of geographically dispersed
server farms. He won LISA ‘04’s Best Paper
award for his co-authored work on spam
mitigation, and he donates his spare time to
the SourceMage GNU Linux Project.
dave-usenix@skeptech.org

www.usenix.org	   D ece m b er 20 13  Vo l . 3 8 N o. 6  61

COLUMNS
iVoyeur: Go, in Real Life

Go encourages me to use Git.. ahem, from the git-go
The “go” utility, which is a combination compiler, linker, and
packing tool, expects my Go code to be organized into a simple
directory structure. If I place a github.com folder inside the
top-level src directory of this structure, and commit the con-
tents of a subdirectory of the GitHub folder to GitHub, then
other Go users can install and build my program by typing “go
get foo” at their command prompt (where “foo” is the name of
my project on GitHub).

The go utility will go to GitHub, find my project, clone it into
the local users $GOPATH/src/github.com folder, and build it for
them. This is pretty great; you get a handy packaging mechanism
for free by using revision control, which is something you would
have done anyway. It supports sites other than GitHub, such as
launchpad, googlecode, and bitbucket, and a slew of version con-
trol systems, including Git, Mercurial, Subversion, and Bazaar.
You can even use private sites by following a naming convention
or by providing a <meta> tag.

The scheme is not without its problems, including, perhaps
ironically, that it’s not easy to specify upstream package ver-
sions, but it’s also illustrative of the underlying pragmatism
that typifies Go as a language. The developers didn’t bother
coming up with an unwieldy reimplementation of CPAN or
Gems; instead they observed that developers like to keep code
in revision control systems and hacked up a simple, lightweight
package manager as the shortest path to getting developers
what they probably want anyway.

Go encourages me to think about concurrency
Despite the hours (days?) of study I’ve invested in my consider-
able understanding of threading models and inter-process/
inter-thread communication libraries, and despite the tens (hun-
dreds?) of little test programs I’ve written in C, Perl, Python, and
Ruby in my attempt to implement those models, and even despite
the multi-threaded/multi-process open source projects to which
I’ve committed code, I have never once in my professional life
written a concurrent program for use in production. Nor have I
ever revisited and rewritten one of the thousands of little tools
I’ve written to make it concurrent. Not that is, until I met Go.

This is not for lack of understanding or caring on my part. In real
life I’m an OPS, and the nature of the job just makes impracti-
cal the creation of multi-threaded tools to solve the mundane
sort of everyday problems that I run into (at least in the shops
I’ve worked in so far). There is neither the time nor the payoff.
This sucks for me, because it means I don’t get to think concur-
rently often, and as I grow older, it probably renders that sort of
thinking more difficult for me. So that’s awesome; my current
languages are destroying my brain.

The second Go program I ever wrote was concurrent. It was not
concurrent because I wanted to prove or understand the model,
or because I was bound and determined to use go-routines and
channels. It became concurrent naturally, as a result of my prob-
lem and the fact that go-routines were available. Go-routines
are so handy that functionally, their use is hard to avoid. Which
brings me to:

Go encourages me to network
In the past, for example, I would avoid putting socket code into
my tools. I’ve written socket programs for my own edification,
and fully understand the threading issues among others, but in
real life it almost always makes more sense to quickly hack up
something to standard I/O and rely on daemontools, for example,
for TCP. This sentiment is alive and well among the node.js
crowd these days, but it is simply no longer true with Go. The
concurrency features are so well implemented that there is no
reason not to roll your own TCP server.

For anything of moderate size that is expected to remain resi-
dent in memory, there’s no reason not to roll your own HTTP
server for that matter, and it’s pretty common practice among Go
developers to build something like a distributed worker daemon
in Go, and then add an HTTP server to it to export metrics and
state data, or add an interface to control the worker remotely.

Go encourages me to embrace type and think
about data structures
In Go, creating your own type and extending it with a method is
so simple that even as someone who has never been enamored of
OOP, or the concept of sub-classing, I find myself naturally rea-
soning about my solutions primarily in terms of the interaction
between custom types. I think Go makes this palatable to me
because there isn’t any ceremony or magic involved. Type cre-
ation is no different from typedeffing in C, and adding methods
to types is only trivially different from function declaration.

As a result, where in any other language I might create an array
of doohickeys, and loop across them doing whatever, like:

for(i=0, i<numberOfDoohickeys,i++) myDoohickey=listOfThings[i]

doWhatever(myDoohickey)

in Go I’m much more likely to create a doohickey type of my own
to store in the array (which is probably a pretty complex (for me)
nested type), which has a built-in whatever method like this:

for i in listOfDoohickeys i.Whatever

I know, those pretty much seem like the same thing, but by creat-
ing my own doohickey I get to think about lots of interesting
things, such as exactly how large a doohickey is in memory and
whether the system creates a copy of my doohickey in memory
when it performs the whatever function, or operates directly on
the existing doohickey via a pointer.

62    D ece m b er 20 13  Vo l . 3 8 N o. 6 	 www.usenix.org

Columns
iVoyeur: Go, in Real Life

It also means that, although a program that loops across some
doohickeys doing whatever is useful maybe once or twice, a
program that defines doohockeys and implements an interface
to them that does whatever is useful may be a lot longer, because
other developers (or I) can come back later and trivially add more
interfaces to do other things. Now we have a shop-wide means
of dealing with doohickeys, and everybody who does whatever to
a doohickey from now on will do it in a repeatable way without
having to reinvent the wheel.

There’s an xkcd comic [2] where, having been asked to pass the
salt, an off-frame OCDish person begins developing a general
interface that will enable him to pass arbitrary condiments, and
over-engineering like this can easily get out of hand in some
of the other languages I’ve used. But I’ve noticed that general
interfaces spring into being quite naturally in Go without any
grand intention or purpose on my part; I didn’t whiteboard an
interface for doohickeys, or prototype it in a simple language and
then properly reimplement it in another. I didn’t begin by creat-
ing a doohickey library or subclassing something doohickey-like.
I—a meathead, knuckle-dragging OPS—in scratching my own
immediate doohickey itches, tend to accidently create robust,
probably even concurrent engineering solutions in Go. Solutions
that other OPS are likely to thank me for. As someone who has,
for years, prefaced my scripts with something like:

#Blame Dave: Fri Sep 15 20:56:47 CDT 2006

I appreciate creating code that I don’t need to feel vaguely
guilty about.

Finally, in other languages I’ve used, a certain amount of risk
came along with simplifying things like sockets; a linear rela-
tionship between the language’s ability to expose cool features
and the amount of cruft in my own code as I bolted on this or

that. I had to keep things simple, so the program execution
remained knowable—and this is perhaps unfortunate, because
what is the point of having a simple interface to sockets if
you always feel like it’s too cognitively expensive or ugly and
bloated to use?

In Go, however, the type system has a tendency to keep every-
thing clean and compartmentalized. My Go code is resistant to
cruft. If you aren’t fighting it, the code naturally segments and
documents itself via its type and function definitions, so add-
ing something like a TCP server doesn’t clutter things up, and
more importantly, doesn’t make your types—and therefore your
program—any more difficult to reason about. To be clear, I’m not
throwing HTTP servers into everything I write just in case, but
I’m certainly more likely to add something like a network inter-
face to expose some analytics where it makes sense to do so.

I’m painfully aware that most of what I’ve said in this article
amounts to subjective drivel that could probably be repeated en
masse by any proponent of any programming language ever, so
even though it won’t help, I’ll mention that I’m not married to
Go and, in fact, program in a multitude of languages. My intent
here was not to steal anyone’s mindshare or compliment Go
at the expense of any other language in particular. But I will
wholeheartedly suggest that you learn Go if you get a chance. If
you start using it, I think you’ll notice that Go wants you to be
productive. It keeps things simple, stays out of your way, rewards
you for being you, empowers you to build interesting stuff, and
makes you a better programmer in the process.

References
[1] libhearsay http://www.skeptech.org/hearsay.

[2] http://xkcd.com/974/.

xkcd

xkcd.com

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

Buy the Box Set!
Whether you had to miss a conference, or just didn’t make it to all of the sessions, here’s your chance to
watch (and re-watch) the videos from your favorite USENIX events. Purchase the “Box Set,” a USB drive
 containing the high-resolution videos from the te chnical sessions. This is perfect for folks on the go or
those without consistent Internet access.

Box Sets are available for:

 LISA ’13: 27th Large Installation System Administration Conference

 USENIX Security ’13: 22nd USENIX Security Symposium

 HealthTech ’13: 2013 USENIX Workshop on Health Information Technologies

 WOOT ’13: 7th USENIX Workshop on Offensive Technologies

 UCMS ’13: 2013 USENIX Configuration Mangement Summit

 HotStorage ’13: 5th USENIX Workshop on Hot Topics in Storage and File Systems

 HotCloud ’13: 5th USENIX Workshop on Hot Topics in Cloud Computing

 WiAC ’13: 2013 USENIX Women in Advanced Computing Summit

 NSDI ’13: 10th USENIX Symposium on Networked Systems Design and Implementation

 FAST ’13: 11th USENIX Conference on File and Storage Technologies

 LISA ’12: 26th Large Installation System Administration Conference

Learn more at:
www.usenix.org/boxsets

