
www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  59

REPORTSConference Reports

FAST ’14: 12th USENIX Conference on File
and Storage Technologies
February 17–20, 2014 , San Jose, CA

Opening Remarks
Summarized by Rik Farrow

Bianca Schroeder (University of Toronto) opened this year’s
USENIX Conference on File and Storage Technologies
(FAST ’14) by telling us that we represented a record number
of attendees for FAST. Additionally, 133 papers were submit-
ted, with 24 accepted. That’s also near the record number of
submissions, 137, which was set in 2012. The acceptance rate
was 18%, with 12 academic, three industry, and nine collabora-
tions in the author lists. The 28 PC members together completed
500 reviews, and most visited Toronto in December for the PC
meeting.

Eno Thereska (Microsoft Research), the conference co-chair,
then announced that “Log-Structured Memory for DRAM-Based
Storage,” by Stephen M. Rumble, Ankita Kejriwal, and John
Ousterhout (Stanford University) had won the Best Paper award,
and that Jiri Schindler (Simplivity) and Erez Zadok (Stony Brook
University) would be the co-chairs of FAST ’15.

Big Memory
Summarized by Michelle Mazurek (mmazurek@cmu.edu)

Log-Structured Memory for DRAM-Based Storage
Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout, Stanford
University
Awarded Best Paper!

The primary author, Stephen Rumble, was not available, so
John Ousterhout presented the paper, which argued that DRAM
storage systems should be log-structured, as in their previous
work on RAMCloud. When building a log-structured DRAM
system, an important question is how memory is allocated.
Because DRAM is (relatively) expensive, high memory uti-
lization is an important goal. Traditional operating-system
allocators are non-copying; data cannot be moved after it is
allocated. This results in high fragmentation and, therefore,
low utilization. Instead, the authors consider a model based on
garbage collection, which can consolidate memory and improve

utilization. Existing garbage collectors, however, are expensive
and scale poorly. They wait until a lot of free space is available
(to amortize cleaning costs), which can require up to 5x over
utilization of memory. When the garbage collector does run,
it can consume up to three seconds, which is slower than just
resetting the system and rebuilding the RAM store from the
backup log on disk.

The authors develop a new cleaning approach that avoids these
problems. Because pointers in a file system are well-controlled,
centrally stored, and have no circularities, it is possible to
clean and copy incrementally (which would not work for a more
general-purpose garbage-collection system). In the authors’
approach, the cleaner continuously finds and cleans some seg-
ments with significant free space, reducing cleaning cost and
improving utilization. Further, the authors distinguish between
the main log, kept in expensive DRAM with high bandwidth
(targeted at 90% utilization), and the backup log, stored on disk
where capacity is cheap but bandwidth is lower (targeted at
50% utilization). They use a two-level approach in which one
cleaner (“compaction”) incrementally cleans one segment at a
time in memory, while a second one (“combined cleaning”) less
frequently cleans across segments in both memory and disk.
Both cleaners run in parallel to normal operations, with limited
synchronization points to avoid interference with new writes.
The authors’ evaluation demonstrates that their new approach
can achieve 80–90% utilization with performance degradation
of only 15–20% and negligible latency overhead.

Bill Bolosky (Microsoft Research) asked how single segments
cleaned via compaction can be reused before combined cleaning
has occurred. Ousterhout explained that compaction creates
“seglets” that can be combined into new fixed-sized chunks and
allocated. A second attendee asked when cleaning occurs. Oust-
erhout replied that waiting as long as possible allows more space
to be reclaimed at each cleaning to better amortize costs.

Strata: High-Performance Scalable Storage on Virtualized
Non-Volatile Memory
Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim
Deegan, Daniel Stodden, Geoffrey Lefebvre, Daniel Ferstay, and Andrew
Warfield, Coho Data

Brendan Cully discussed the authors’ work developing an
enterprise storage system that can take full advantage of fast
non-volatile memory while supporting existing storage array
customers who want to maintain legacy protocols (in this case,
NFSv3). A key constraint is that, because flash gets consistently
cheaper, enterprise customers want to wait until the last pos-
sible moment to purchase more of it, requiring the ability to add
flash dynamically. The authors’ solution has three key pieces.

In this issue:
59	� FAST ’14: 12th USENIX Conference on File

and Storage Technologies
	� Summarized by Matias Bjørlin, Jeremy C. W. Chan, Yue Cheng, Qian

Ding, Qianzhou Du, Rik Farrow, Xing Lin, Sonam Mandal, Michelle
Mazurek, Dutch Meyer, Tiratat Patana-anake, Kai Ren, and Kuei Sun

76	� Linux FAST Summit ’14
	� Summarized by Rik Farrow

60    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

◆◆ Device virtualization: clients receive a virtual object name
for addressing while, underneath, an rsync interface manages
replication.

◆◆ Data path abstractions: for load balancing and replication,
keep object descriptions in a shared database that governs
paths and allows additional capacity and rebalancing, even
when objects are in use.

◆◆ Protocol virtualization targeting NFSv3: the authors use
a software-defined switch to control connections between
clients and servers. Packets are dispatched based on their
contents, allowing rebalancing without changes to the client.
All nodes have the same IP and MAC address, so they appear
to the client to be one node.

To evaluate the system, the authors set up a test lab that can
scale from 2 to 24 nodes (the capacity of the switch) and rebal-
ance dynamically. As nodes are added, momentary drops in
IOPS are observed because nodes must both serve clients and
support rebalancing operations. Overall, however, performance
increases, but not linearly; the deviation from linear comes
because, as more nodes are added, the probability of nodes doing
remote I/O on behalf of clients (slower than local I/O) increases.
This effect can be mitigated by controlling how clients and
objects are assigned to promote locality; with this approach, the
scaling is much closer to linear. CPU usage for this system is
very high, so introduction of 10-core machines improves IOPS
significantly.

An attendee asked whether requests can always be mapped to a
node that holds an object, avoiding remote I/O. Cully responded
that clients can’t be moved on a per-request basis, and they will
ask for objects that may live on different nodes. Niraj Tolia of
Maginatics asked how the system deals with multiple writers.
Cully responded that currently only one client can open the file
for writing at a time, which prevents write conflicts but requires
consecutive writers to wait; multiple readers are allowed.

Evaluating Phase Change Memory for Enterprise Storage
Systems: A Study of Caching and Tiering Approaches
Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu, IBM
Almaden Research Center

Hyojun Kim presented a measurement study of a prototype SSD
with 45 nm 1 GB phase-change memory. PCM melts and cools
material to store bits: amorphous = reset, crystalline = set. Writ-
ing set bits takes longer. Write latency is typically reported at
150 ns, which is more than 1000x faster than flash and only 3x
slower than DRAM, but which does not count 50 ns of additional
circuit time. Write throughput is limited (4 bits per pulse) by the
chip’s power budget for heating the material. Kim directly com-
pared PCM with flash, normalized for throughput, using Red
Hat, a workload generator, and a statistics collector. They found
that for read latency, PCM is 16x faster on average and also has
much faster maximums. For write latency, however, PCM is 3.4x
slower on average, with a maximum latency of 378 ms compared
to 17.2 ms for flash.

The second half of the talk described how simulation was applied
to assess how and whether PCM is useful for enterprise storage
systems. First, the authors simulated a multi-tiered system that
writes hot data to flash or PCM and cold data to a cheap hard
drive, incorporating the following relative price assumptions:
PCM = 24, flash = 6, disk = 1 per unit of storage. They evaluated a
variety of system combinations using x% PCM, y% flash, and z%
disk, based on a one-week trace from a retail store in June 2012,
and measured the resulting performance in IOPS/unit cost.
Using an ideal static placement based on knowing the workload
traces a priori, the optimal combination was 30% PCM, 67%
flash, and 3% disk. With reactive data movement based on I/O
traffic (a more realistic option), the ideal combination was 22%
PCM, 78% flash. A second simulation used flash or PCM as
application-server-side, write-through, and LRU caching, using
a 24-hour trace from customer production systems (manufac-
turing, media, and medical companies). The results measured
average read latency. To include cost in this simulation, different
combinations of flash and PCM with the same IOPS/cost were
simulated. For manufacturing, the best results at three cost
points were 64 GB of flash alone, 128 GB of flash alone, and 32
GB PCM + 128 GB flash. In summary, PCM has promise for stor-
age when used correctly, but it’s important to choose accurate
real-world performance numbers.

One attendee asked whether the measurements had considered
endurance (e.g., flash wearout) concerns as well as IOPS. Kim
agreed that it’s an important consideration but not one that was
measured in this work. Someone from UCSD asked whether
write performance for PCM is unfairly disadvantaged unless
capacity-per-physical-size issues are also considered. Kim
agreed that this could be an important and difficult tradeoff. A
third attendee asked about including DRAM write buffers in
PCM, as is done with flash. Kim agreed that the distinction is an
important one and can be considered unfair to PCM, but that the
current work attempted to measure what is currently available
with PCM—write buffers may be available in the future. A final
attendee asked for clarification about the IOPS/unit cost metric;
Kim explained that it’s a normalized relative metric alternative
to capturing cost explicitly in dollars.

Flash and SSDs
Summarized by Jeremy C. W. Chan (cwchan@cse.cuhk.edu.hk)

Wear Unleveling: Improving NAND Flash Lifetime by
Balancing Page Endurance
Xavier Jimenez, David Novo, and Paolo Ienne, Ecole Polytechnique Fédérale
de Lausanne (EPFL)

Xavier Jimenez presented a technique to extend the lifetime of
NAND flash. The idea is based on the observation that inside a
block of a NAND flash, some pages wear out faster than others.
As a result, the endurance of a block is determined by the weak-
est page.

To improve the lifetime, Xavier and his team introduced a fourth
page state, “relieved,” to indicate pages not to be programmed

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  61

REPORTS

during a Program/Erase (P/E) cycle. By measuring the bit error
rate (BER), they showed that relieved pages possess higher
endurance than unrelieved ones. Xavier continued about how
relief can be performed in the case of a multi-level cell (MLC).
In MLC, each one of the two bits is mapped to a different page,
forming an LSB and MSB page pair. A full relief means both
pages are skipped in a P/E cycle, while a half relief means only
the MSB is relieved. Although a half relief produces higher rela-
tive wear, it is more effective in terms of written bits per cycle.

Xavier then described two strategies on how to identify weak
pages. The simple strategy is reactive, which starts relieving a
page when the BER reaches a certain threshold. However, the
reactive approach requires the FTL to read a whole block before
erasing it, which adds an overhead to the erasing time. There-
fore, the authors further proposed the proactive strategy, which
predicts the number of times weak pages should be relieved to
match the weakest page’s extended endurance by first charac-
terizing the endurance of the LSB/MSB pages at every posi-
tion of the block. The proactive strategy is used together with
adaptive planning, which predefines a number of lookup tables
called plans. The plan provides the probability for each page to
be relieved.

In the evaluation, Xavier and his team implemented the proac-
tive strategy on two previously proposed FTLs, ROSE and Com-
boFTL, and on two kinds of 30 nm class chips, C1 and C2. C1 is
an ABL chip with less interference, whereas C2 is an interleaved
chip, which is faster and more flexible. The evaluation on real-
world traces shows that the proactive strategy improves lifetime
by 3–6% on C1 and 44–48% on C2. Only a small difference is
observed in execution time because of the efficient half relief
operation.

Alireza Haghdoost (University of Minnesota) asked whether
Xavier’s approach is applicable to a block-level FTL. Xavier
explained that block-level relieving is impractical and that the
evaluation is entirely based on page-level mapping. Steve Swan-
son (UCSD) asked if page skipping would affect the performance
of reading the neighboring pages. Xavier said the endurance
of the neighboring pages will be decreased by at most 2%, and
because they are the stronger pages, the impact is minimal on
the block’s lifetime.

Lifetime Improvement of NAND Flash-Based Storage
Systems Using Dynamic Program and Erase Scaling
Jaeyong Jeong and Sangwook Shane Hahn, Seoul National University; Sungjin
Lee, MIT/CSAIL; Jihong Kim, Seoul National University

Jaeyong Jeong presented a system-level approach called
dynamic program and erase scaling (DPES) to improve the
lifetime of NAND flash-based storage systems. The approach
exploits the fact that the erasure voltage and the erase time
affect the endurance of NAND flash memory.

Jaeyong began the presentation with an analogy illustrated by
interesting cartoons. In the analogy, NAND flash is a sheet of

paper, the program action is writing on the paper with a pencil,
and the erase action is using an eraser to clear out the word for
the whole page. Finally, the flash translation layer (FTL) is a
person called Flashman. With this analogy, Jaeyong explained
why NAND endurance had decreased by 35% during the past
two years despite the 100% increase in capacity. He said that
advanced semiconductor technology is just like a thinner piece
of paper, which wears down more easily than a thick piece of
paper after a certain number of erasure cycles. However, low
erase voltage and long erase time are the two main keys to
improving the endurance of NAND flash.

The fundamental tradeoff between erase voltage and program
time is that the lower the erase voltage, the longer the program
time required. With this observation, Jaeyong and his team
proposed the DPES approach, which dynamically changes the
program and erase voltage/time to improve the NAND endur-
ance while minimizing negative impact on throughput.

They implemented their idea on an FTL and called it AutoFTL.
It consists of a DPES manager, which selects the program time,
erase speed, and erase voltage according to the utilization of
an internal circular buffer. For instance, a fast write mode is
selected to free up buffer space when its utilization is high. In
the evaluation, Jaeyong and his team chose six volumes with dif-
ferent inter-arrival times from the MSR Cambridge traces. On
average, AutoFTL achieves a 69% gain on the endurance of the
NAND flash with only negligible impact (2.2%) on the overall
write throughput.

Geoff Kuenning (Harvey Mudd College) asked why high voltage
causes electrons to get trapped in the oxide layer. Jaeyong reem-
phasized that the depletion of the tunnel side has an exponential
relationship to the erase voltage and time. Yitzhak Birk (Tech-
nion) said that the approach of programming in small steps
works but may bring adverse effects to the neighboring cells.
Peter Desnoyers (Northeastern University) asked how they man-
age to select the appropriate reading method according to the
voltage level applied. Jaeyong replied that the lookup table would
be able to track the voltage level. Peter followed up that a scan
for pages is not possible because you cannot read a page before
knowing the voltage level.

ReconFS: A Reconstructable File System on Flash Storage
Youyou Lu, Jiwu Shu, and Wei Wang, Tsinghua University

Youyou Lu began with the novelty of ReconFS in metadata
management of hierarchical file systems. This work addresses
a major challenge in namespace management of file systems on
solid-state drives (SSDs), which are the scattered small updates
and intensive writeback required to maintain a hierarchical
namespace with consistency and persistence. These writes
cause write amplification that seriously hurts the lifetime of
SSDs. Based on the observation that modern SSDs have high
read bandwidth and IOPS and that the page out-of-band (OOB)
area provides some extra space for page management, Youyou

62    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

and his team built the ReconFS, which decouples maintenance
of volatile and persistent directory trees to mitigate the overhead
caused by scattered metadata writes.

Youyou presented the core design of ReconFS on metadata man-
agement. In ReconFS, a volatile directory tree exists in memory,
which provides hierarchical namespace access, and a persistent
directory tree exists on disk, which allows reconstruction after
system crashes. The four triggering conditions for namespace
metadata writeback are: (1) cache eviction, (2) checkpoint, (3)
consistency preservation, and (4) persistence maintenance.
Although a simple home-location update is used for cache evic-
tion and checkpoint, ReconFS proposes an embedded inverted
index for consistency preservation and metadata persistence
logging for persistence maintenance. Inverted indexing in
ReconFS is placed in the log record and the page OOB depending
on the type of link. The key objective of inverted indexing is to
make the data pages self-described. Meanwhile, ReconFS writes
back changes to directory tree content to a log to allow recovery
of a directory tree after system crashes. Together with unin-
dexed zone tracking, ReconFS is able to reconstruct the volatile
directory tree in both normal and unexpected failures.

To evaluate the ReconFS prototype, Youyou and his team imple-
mented a prototype based on ext2 on Linux. Using filebench
to simulate a metadata-intensive workload, they showed that
ReconFS achieves nearly the best throughput among all evalu-
ated file systems. In particular, ReconFS improves performance
by up to 46.3% in the varmail workload. Also, the embedded
inverted index and metadata persistence logging enabled
ReconFS to give a write reduction of 27.1% compared to ext2.

Questions were taken offline because of session time constraints.

Conference Luncheon and Awards
Summarized by Rik Farrow

During the conference luncheon, two awards were announced.
The first was the FAST Test of Time award, for work that
appeared at a FAST conference and continues to have a lasting
impact. Nimrod Megiddo and Dharmendra S. Modha of IBM
Almaden Research Center won this year’s award for “ARC: A
Self-Tuning, Low Overhead Replacement Cache” (https://www
.usenix.org/conference/fast-03/arc-self-tuning-low-overhead
-replacement-cache).

The IEEE Reynolds and Johnson award went to John Ouster-
hout and Mendel Rosenblum, both of Stanford University, for
their paper “The Design and Implementation of a Log-Struc-
tured File System” (http://www.stanford.edu/~ouster/cgi-bin
/papers/lfs.pdf). Rosenblum commented that he was Ouster-
hout’s student at UC Berkeley when the paper was written. Later,
Rosenblum wound up working with Ousterhout at Stanford.

Personal and Mobile
Summarized by Kuei Sun (kuei.sun@utoronto.ca)

Toward Strong, Usable Access Control for Shared
Distributed Data
Michelle L. Mazurek, Yuan Liang, William Melicher, Manya Sleeper, Lujo
Bauer, Gregory R. Ganger, and Nitin Gupta, Carnegie Mellon University;
Michael K. Reiter, University of North Carolina

Michelle Mazurek began her presentation by showing us recent
events where improper access control led to mayhem and privacy
invasions. The main issue is that access control is difficult, espe-
cially for non-expert users. In their previous work, the authors
identified users’ need for flexible policy primitives, principled
security, and semantic policies (e.g., tags). To this end, they
based the design of their system on two important concepts:
tags, which allow users to group contents, and logical proof,
which allows for fine-grained control and flexible policy. For
every content access, a series of challenges and proofs needs to
be made before access is granted. On each device participating
in the system, a reference monitor exists to protect the content
that the device owns, a device agent that performs remote proofs
for enabling content transfer across the network, as well as user
agents that construct proofs on behalf of the users. Michelle
walked us through an example of how Bob could remotely access
a photo of Alice on a remote device in this system. Michelle then
described the authors’ design of strong tags. Tags are first-class
objects, such that access to them is independent of content
access. To prevent forging, tags are cryptographically signed.

In their implementation, the authors mapped system calls to
challenges. They cached recently granted permissions so that
the same proof would not need to be made twice. In their evalu-
ation, they wrote detailed policies drawn from user studies
using their policy languages, all of which could be encoded in
their implementation and showed that their logic had sufficient
expressiveness to meet user needs. They simulated access
patterns because they do not have a user study based on the
perspective of the user accessing content. They ran two sets
of experimental setups on their prototype system: one with a
default-share user and the other with a default-protect user.
The main objective of the experiments was to measure latency
for system calls and see whether they were low enough for
interactive users. The results showed that with the exception of
readdir(), system calls fell well below the 100 ms limit that they
set. The authors also showed that access control only accounted
for about 5% of the total overhead. Finally, it took approximately
9 ms to show that no proof could be made (access denied!),
although variance in this case can be quite high.

Tiratat Patana-anake (University of Chicago) wanted clarifica-
tion on the tags. Michelle explained that you only need access to
the tags required for access to the file. Someone from University
of California, Santa Cruz, wanted to know which cryptographic
algorithm was used, what its overhead was, and which dis-
tributed file system was used. Michelle said the proofer uses
the crypto library from Java and that it doesn’t add too much

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  63

REPORTS

overhead. The distributed file system was homemade. Another
person from UCSC asked whether the authors intended to
replace POSIX permission standards, and the response was yes.
He went on to ask whether they have reasonable defaults because
most users are lazy. Michelle first explained that their user study
indicates a broad disagreement among users on what they want
from such a system. However, she agreed that users are gener-
ally lazy so more research into automated tagging and a better
user interface would be helpful. Finally, someone asked about
transitivity, where one person would take restricted content and
give it to an unauthorized user. Michelle believed that there was
no solution to the problem where the person to whom you grant
access is not trustworthy.

On the Energy Overhead of Mobile Storage Systems
Jing Li, University of California, San Diego; Anirudh Badam and Ranveer
Chandra, Microsoft Research; Steven Swanson, University of California, San
Diego; Bruce Worthington and Qi Zhang, Microsoft

Jing Li began the talk by arguing that in spite of the low energy
overhead of storage devices, the overhead of the full storage
stack on mobile devices is actually enormous. He presented the
authors’ analysis of the energy consumption used by components
of the storage stack on two mobile devices: an Android phone and
a Windows tablet. After giving the details of the experimental
setup, he showed the microbenchmark results, which revealed
that the energy overhead of storage stack is 100 to 1000x higher
than the energy consumed by the storage device alone. He then
focused on the CPU’s busy time, which showed that 42.1% of the
busy time is spent in encryption APIs while another 25.8% is
spent in VM-related APIs.

Li and his team first investigated the true cost of data encryp-
tion by comparing energy consumption between devices with
and without encryption. Surprisingly, having encryption costs
on average 2.5x more energy. Next, Li gave a short review of the
benefits of isolation between applications and of using managed
languages. He then showed the energy overhead for using man-
aged languages, which is anywhere between 12.6% and 102.1%
(for Dalvik on Android!). Li ended his talk with some sugges-
tions. First, storage virtualization can be moved into the storage
hardware. Second, some files, such as the OS library, do not need
to be encrypted. Therefore, a partially encrypted file system
would help reduce the energy overhead. Finally, hardware-based
solutions (e.g., DVFS or ASIC) can be used to support encryption
or hardware virtualization while keeping energy cost low.

Yonge (University of California, Santa Cruz) asked how the
energy impact of DRAM was measured. Li said that they ran the
benchmark to collect the I/O trace. They then replayed the I/O
trace to obtain the energy overhead of the storage stack. As such,
the idle power was absent from the obtained results.

ViewBox: Integrating Local File Systems with Cloud
Storage Services
Yupu Zhang, University of Wisconsin–Madison; Chris Dragga, University of
Wisconsin–Madison and NetApp; Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau, University of Wisconsin–Madison

Yupu Zhang started by reminding us that cloud storage services
are gaining popularity because of promising benefits such as
reliability, automated synchronization, and ease of access. How-
ever, these systems can fail to keep data safe when local corrup-
tion or a crash arises, which causes bad data to be propagated to
the cloud. Furthermore, because files are uploaded out of order,
the cloud may sometimes have an inconsistent set of data. To
provide a strong guarantee that the local file system’s state is
equal to the cloud’s state, and that both states are correct, the
authors developed ViewBox, which integrates the file system
with the cloud storage service. ViewBox employs checksums
to detect problems with local data, and utilizes cloud data to
recover from local failures. ViewBox also keeps in-memory snap-
shots of valid file system state to ensure consistency between
the local file system and the cloud.

Yupu presented the results of detailed experimentation, which
revealed the shortcomings of the current setup. In their first
experiment, the authors corrupted data beneath the file system
to see whether it was propagated to the cloud. ZFS detected
all corruptions because it performed data checksumming, but
services running on top of ext4 propagated all corruptions to the
cloud. In the second experiment, they emulated a crash during
synchronization. Their results showed that without enabling
data journaling on the local file system, the synchronization ser-
vices would behave mostly erratically. All three services that the
authors tested violated causal ordering that is locally enforced
by fsync().

Next, Yupu gave an overview of the architecture. They modified
ext4 to add checksums. Upon detecting corrupt data, ext4-cksum
can communicate with a user daemon named Cloud Helper
via ioctl() to fetch correct data from the cloud. After a crash,
the user is given the choice of either recovering inconsistent
files individually or rolling back the entire file system to the
last synchronized view. The View Manager, on the other hand,
creates consistent file system views and uploads them to the
cloud. To provide consistency efficiently, they implemented
two features: cloud journaling and incremental snapshotting.
The basic concept of cloud journaling is to treat the cloud as an
external journal by synchronizing local changes to the cloud at
file system epochs. View Manager would continuously upload
the last file system snapshot in memory to the cloud. Upon fail-
ure, it would roll the file system back to the latest synchronized
view. Incremental snapshotting allows for efficient freezing
of the current view by logging namespace and data changes in
memory. When the file system reaches the next epoch, it will
update the previous frozen view without having to interrupt the
next active view.

64    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

In their evaluation, the authors showed that ViewBox could cor-
rectly handle all the types of error mentioned earlier. ViewBox
has a runtime overhead of less than 5% and a memory overhead
of less than 20 MB, whereas the workload contains more than 1
GB of data.

Someone asked how much they roll back after detecting corrup-
tion. Yupu responded that if you care about the whole file system,
ideally, you roll back the whole file system, but generally you just
roll back individual files. The same person asked what happens
if an application is operating on a local copy that gets rolled back.
Yupu said that the application would have to be aware of the
rollback. Mark Lillibridge (HP) suggested that a correctly writ-
ten application should make a copy, change that copy, and then
rename the copy to avoid problems like this. Yupu agreed.

RAID and Erasure Codes
Summarized by Yue Cheng (yuec@vt.edu)

CRAID: Online RAID Upgrades Using Dynamic Hot Data
Reorganization
Alberto Miranda, Barcelona Supercomputing Center (BSC-CNS); Toni Cortes,
Barcelona Supercomputing Center (BSC-CNS) and Technical University of
Catalonia (UPC)

Alberto Miranda presented an economical yet effective approach
for performing RAID upgrading. The authors’ work is moti-
vated by the fact that storage rebalancing caused by degraded
uniformity is way too expensive. Miranda proposed CRAID, a
data distribution strategy that redistributes only hot data when
performing RAID upgrading by using a dedicated small partition
in each device as a persistent disk-based cache.

Taking advantage of the I/O access pattern monitoring that is
used to keep track of data access statistics, an I/O redirector can
strategically redistribute/rebalance only frequently used data to
the appropriate partitions. The realtime monitoring provided by
CRAID guarantees that a newly added disk will be used as long
as it is added. Statistics of data access patterns are also used to
effectively reduce the cost of data migration. The minor disad-
vantage of this mechanism is that the invalidation on the cache
partition results in the loss of all the previous computation.
Trace-based simulations conducted on their prototype showed
that CRAID could achieve competitive performance with only
1.28% of all available storage capacity, compared to two alterna-
tive approaches.

Someone asked Alberto to comment on one of the workload char-
acteristics that can impact the rebalancing algorithm. Miranda
said that the available traces they could find were limited.

STAIR Codes: A General Family of Erasure Codes for
Tolerating Device and Sector Failures in Practical Storage
Systems
Mingqiang Li and Patrick P. C. Lee, The Chinese University of Hong Kong

Patrick Lee presented STAIR codes, a set of novel erasure
codes that can efficiently tolerate failures in both device and
sector levels. What motivates STAIR is that traditional RAID

and erasure codes use multiple parity disks/parity sectors (the
cost of which is prohibitive) to provide either device-level or
sector-level tolerance. They proposed a general (without any
restriction) and space-efficient family of erasure codes that can
tolerate simultaneous device and sector failures.

The key idea of STAIR codes is to base protection against sec-
tor failure on a pattern of how sector failures occur, instead
of setting a limit on tolerable sector failures. The actual code
structure builds based on two encoding phases, each of which
builds on any MDS code that works as long as the parameters
support the code. The interesting part of their approach is the
upstairs and downstairs encoding that can reuse computed par-
ity results, thus providing space efficiency and complementary
performance advantages. Evaluation results showed that STAIR
codes improve encoding by up to 100% while achieving storage
space efficiency. Their open-sourced coding library can be found
at: http://ansrlab.cse.cuhk.edu.hk/software/stair.

Someone asked whether the authors managed to measure the
overhead (reading the full stripe) of some special (extra) sectors’
encoding every time they had to be recreated in a RAID device.
Patrick said their solution needed to read the full stripe from the
RAID so as to perform the upstairs and downstairs encoding.
Umesh Maheshwari (Nimble Storage) asked whether the sce-
nario where errors come in a burst was an assumption or a case
that STAIR took care of; his concern was that in SSD the errors
might end up in a random distribution. Patrick said the error
burst case was an issue they were trying to address.

Parity Logging with Reserved Space: Towards Efficient
Updates and Recovery in Erasure-Coded Clustered
Storage
Jeremy C. W. Chan, Qian Ding, Patrick P. C. Lee, and Helen H. W. Chan, The
Chinese University of Hong Kong

Patrick Lee also presented CodFS, an erasure-coded clustered
storage system prototype that can achieve both high update and
recovery performance. To reduce storage costs and footprint,
enterprise-scale storage clusters now use erasure-coded storage
rather than replication mechanisms that incur huge overheads.
However, the issues faced by erasure coded storage systems are
that updates are too costly and recovery is expensive as well. To
deal with this, Patrick and his students propose a parity-logging
scheme with reserved space that adopts a hybrid in-place and
log-based update mechanism with adaptive space readjustment.

They studied two real-world storage traces and, based on the
observed update characteristics, propose a novel delta-based
parity logging with reserved space (PLR) mechanism that
reduces disk seeks by keeping each parity chunk and its par-
ity delta next to each other with additional space, the capacity
of which can be dynamically adjusted. The challenges lie in
how much reserved space is most economical and the timing of
reclaiming unused reserved space.

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  65

REPORTS

In-place updates are basically overwriting existing data and
parity chunks while log-based updates are appending changes
by converting random writes to sequential writes. Their hybrid
approach smartly maintains the advantages of the above two
update schemes while mitigating the problems that might occur.

Konstantin Shvachko (WANdisco) asked how restrictions on
I/O patterns (i.e., cluster storage systems that only support
sequential reads/writes) affect the performance of workloads.
Patrick said performance purely depends on workload types,
and their work looked in particular at server workload that they
attempted to port into cluster storage systems. Brent Welch
(Google) mentioned two observations: (1) real-world workloads
might consist of lots of big writes due to the fact that there are
many big files distributed in storage; (2) an Object Storage
Device layer is unaware of data types and is decoupled from the
lower layer file system. Patrick agreed with these observations
and said (1) people can choose a different coding scheme based
on the segments, and (2) the decoupling problem remains an
issue left to be explored in future work.

Poster Session I
Summarized by Sonam Mandal (somandal@cs.stonybrook.edu)

In-Stream Big Data Processing Platform for Enterprise
Storage Management
Yang Song, Ramani R. Routray, and Sandeep Gopisetty, IBM Research

This poster presents an approach for in-stream processing of
Big Data, which is becoming increasingly important because of
the information explosion and subsequent escalating demand
for storage capacity. The authors use Cassandra as their stor-
age, Hadoop/HDFS for computation, RHadoop as the Machine
Learning algorithm, and IBM InfoSphere Streams for their use
case example. They implemented many ensemble algorithms like
Weighted Linear Regression with LASSO, Weighted General-
ized Linear Regression (Poisson), Support Vector Regression,
Neural Networks, and Random Forest. They use their tech-
nique to identify outliers in 2.2 million backup jobs each day for
jobs having 20+ metrics. They try to identify anomalies using
the Contextual Local Outlier Factor algorithm before storing
on HDFS/Cassandra. To do so, they leverage backup-specific
domain knowledge and have shown the results of their outlier
detection experiment in the poster.

Page Replacement Algorithm with Lazy Migration for
Hybrid PCM and DRAM Memory Architecture
Minho Lee, Dong Hyun Kang, Junghoon Kim, and Young Ik Eom,
Sungkyunkwan University

The authors came up with a page replacement algorithm to
benefit hybrid memory systems using PCM by reducing the
number of write operations to them. PCM is non-volatile and
has in-place update and byte-addressable memory with low
read latency. PCM suffers from a low endurance problem, where
only a million writes are possible before it wears out, and the
write latency of PCM is much slower than its read latency. PCM
reduces the overhead of migration by using lazy migration.

When a page fault occurs, it is always allocated in DRAM
regardless of whether it was a read or write operation; and, when
the DRAM fills up, pages in the DRAM are migrated to the
PCM. When a write operation occurs on a page in the PCM, it
attempts to migrate this page to DRAM. If there is no free space
in the PCM, a page is evicted according to rules from the CLOCK
algorithm.

The authors’ results show that they obtained a high hit ratio
regardless of PCM size in hybrid memory architectures. They
reduced the number of PCM writes by up to 75% compared to
state of the art algorithms and by 40% compared to the CLOCK
algorithm.

On the Fly Automated Storage Tiering
Satoshi Iwata, Kazuichi Oe, Takeo Honda, and Motoyuki Kawaba, Fujitsu
Laboratories

The authors present issues with existing storage-tiering
techniques and propose their own technique to overcome the
shortcomings of existing approaches. Storage tiering combines
fast SSDs with slow HDDs such that hot data is kept on SSDs and
cold data is stored on HDDs. Less frequently accessed data in
SSDs is swapped out at predefined intervals to follow changes in
workloads. Existing methods have difficulty following workload
changes quickly as the migration interval cannot be reduced too
far. Shorter intervals lead to lower I/O performance due to more
disk bandwidth consumed by migration.

The authors propose an on-the-fly agreed service time (AST)
to follow any workload changes within minutes, instead of
the granularity of hours or a day with previous methods. Less
frequently accessed data is filtered out from migration candi-
dates, thus decreasing bandwidth consumption, even though it
results in unoccupied SSD storage space. They use a two-stage
migration-filter approach. The first stage filters out hotter but
not very hot segments by checking access concentrations. The
second filters out segments for which the hot duration is not long
enough.

When 60% of the total I/O is sent to fewer than 20 segments
(approximately 10% of data size), then these segments are
marked as candidates. When a segment has been marked as a
candidate three times in a row, it is migrated to the SSD. The
authors’ evaluation results back their claims and show that
workload changes can be followed in a matter of minutes using
their approach.

SSD-Tailor: Customization System for Enterprise SSDs
Hyunchan Park, Youngpil Kim, Cheol-Ho Hong, and Chuck Yoo, Korea
University; Hanchan Jo, Samsung Electronics

This poster presents SSD-Tailor, a customization system for
SSDs. With the increasing need to satisfy customers for require-
ments of high performance and reliability for various workloads,
it becomes difficult to design an optimal system with such a
large number of potential configuration choices. SSD-Tailor
determines a near-optimal design for a particular workload of

66    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

an enterprise server. It requires three inputs: customer require-
ments, workload traces, and design options. It has three com-
ponents: Design Space Explorer, Trace-driven SSD Simulator,
and Fitness Analyzer, which work together iteratively in a loop
to produce a near-optimal design for the given requirements and
workload traces.

Design options consist of a type of flash chip, FTL policies, etc.
Customer requirements may include low cost, high performance,
high reliability, low energy consumption, and so on. Workload
traces are full traces rather than extracted profiles.

The Design Space Explorer used genetic algorithms to find near-
optimal SSD design. Genetic algorithms mimic the process of
natural selection. The Trace-driven SSD Simulator (the authors
used DiskSim) can help change and display the design options
easily, because in spite of a reduced set of design options, too
many still need to be analyzed. The Fitness Analyzer evaluates
the simulation results based on scores.

The authors show that tailoring overhead is high but needs to be
done only once. The benefits obtained are quite high according
to their results. They compared SSD-Tailor with a brute force
algorithm as their baseline.

Multi-Modal Content Defined Chunking for Data
Deduplication
Jiansheng Wei, Junhua Zhu, and Yong Li, Huawei

The authors of this paper have come up with a deduplication
mechanism based on file sizes and compressibility informa-
tion. They identified that many file types such as mp3 and jpeg
are large, hardly modified, and often replicated as is; such files
should have large chunk sizes to reduce metadata volume with-
out sacrificing too much in deduplication ratio. Other file types
consist of highly compressible files, some of which are modified
frequently, and these benefit from having small chunk sizes to
maximize deduplication ratio.

The authors propose two methods, both of which require a pre-
processing step of creating a table for size range, compressibility
range, and the expected chunk size. The first method divides
data objects into fixed-sized blocks and estimates their compres-
sion ratio using sampling techniques. Adjacent blocks with simi-
lar compression ratios are merged into segments. Segments are
divided into chunks using content-defined chunking techniques,
and these chunk boundaries may override segment boundaries.
Then the chunk fingerprints are calculated.

In the second approach, many candidate chunking schemes
using Content Defined Chunking (CDC) with different expected
chunk sizes are generated in a single scan. One chunking scheme
is used to calculate the compression ratio of its chunks, and
chunks with similar compression ratios are merged together.
These chunking results are directly used and their fingerprints
are calculated. Their experimental results show that their Multi-
Modal CDC can reduce the number of chunks by 29.1% to 92.4%.

Content-Defined Chunking for CPU-GPU Heterogeneous
Environments
Ryo Matsumiya, The University of Electro-Communications; Kazushi
Takahashi, Yoshihiro Oyama, and Osamu Tatebe, University of Tsukuba and
JST, CREST

Chunking is an essential operation in deduplication systems,
and Content-Defined Chunking (CDC) is used to divide a file
into variable-sized chunks. CDC is slow as it calculates many
fingerprints. The authors of this poster came up with parallel-
izing approaches that use both GPU and CPU to chunk a given
file. Because of the difference in speed of CPU and GPU, the
challenge becomes that of task scheduling. They propose two
methods, Static Task Scheduling and Dynamic Task Scheduling,
to efficiently use both the GPU and CPU.

Static Task Scheduling uses a user-defined parameter to deter-
mine the ratio of dividing the file such that one part is assigned
to the GPU and the other part to the CPU. Each section is further
divided into subsections, which are each assigned to a GPU
thread or CPU thread.

Dynamic Task Scheduling consists of an initial master thread,
which divides a file into distinct, fixed-sized parts called large
sections. Each is assigned to a GPU thread. For detection of
chunk boundaries lying across more than one segment, small
subsections are created, including data parts across boundaries
of large sections. Each small subsection is assigned to the CPU.
Worker threads are created for GPU and CPU to handle these
sections. While the task queue is not empty, each worker will
perform CDC; if a queue becomes empty, then a worker will steal
tasks from another worker’s queue.

The authors ran experiments to find the throughput of their
static and dynamic methods and compared them to CPU-only
and GPU-only methods. They showed that static performs the
best and dynamic follows closely behind it. The benefit of having
a dynamic method is to avoid tuning parameters as is required
for the static method.

Hash-Cast: A Dark Corner of Stochastic Fairness
Ming Chen, Stony Brook University; Dean Hildebrand, IBM Research; Geoff
Kuenning, Harvey Mudd College; Soujanya Shankaranarayana, Stony Brook
University; Vasily Tarasov, IBM Research; Arun O. Vasudevan, Stony Brook
University; Erez Zadok, Stony Brook University; Ksenia Zakirova, Harvey
Mudd College

This poster uncovers Hash-Cast, a networking problem that
causes identical NFS clients to get unfair shares of the network
bandwidth when reading data from an NFS server. Hash-Cast
is a dark corner of stochastic fairness where data-intensive
TCP flows are randomly hashed to a small number of physical
transmit queues of NICs and hash values collide frequently.
Hash-Cast influences not only NFS but also any storage servers
hosting concurrent data-intensive TCP streams, such as file
servers, video servers, and parallel file system servers. Hash-Cast
is related to the bufferbloat problem, a phenomenon in which
excessive network buffering causes unnecessary latency and
poor system performance. The poster also presents a method to

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  67

REPORTS

work around Hash-Cast by changing the default TCP congestion
control algorithm from TCP CUBIC to TCP VEGAS, another
algorithm that alleviates the bufferbloat problem.

MapReduce on a Virtual Cluster: From an I/O
Virtualization Perspective
Sewoog Kim, Seungjae Baek, and Jongmoo Choi, Dankook University;
Donghee Lee, University of Seoul; Sam H. Noh, Hongik University

The authors of this poster analyze two main questions with
respect to the MapReduce framework making use of virtual-
ized environments. They try to analyze whether Hadoop runs
efficiently on virtual clusters and whether any I/O performance
degradation is seen, then whether they can be mitigated by
exploiting the characteristics of I/O access patterns observed
in MapReduce algorithms. They ran a Terasort benchmark and
found that the I/O is triggered in a bursty manner, requested
intensively for a short period, and sharply increased and
decreased. Some phases utilize a memory buffer. Virtual
machines share I/O devices in a virtual cluster; thus, this
bursty I/O may cause I/O interference among VMs. When
VMs request bursty I/Os concurrently, the I/O bandwidth
suffers a performance drop of about 31%, going from 1 to 4
VMs. Additionally, long seek distance and high context
switch overheads exist among VMs.

To help mitigate this issue, the authors propose a new I/O sched-
uler for Hadoop on a virtual cluster, which minimizes the I/O
interference among VMs and also exploits the I/O burstiness
in MapReduce applications. Their new I/O scheduler controls
bandwidth of VMs using Cgroups-blkio systems and operate at a
higher layer than the existing scheduler. The Burstiness Monitor
detects bursty I/O requests from each VM. The Coarse-grained
Scheduler allows a bursty VM to use the I/O bandwidth exclu-
sively for a time quantum in round-robin manner. This allows
the overhead caused by context switching among multiple VMs
to be reduced, along with reducing overall seek distance and
execution time. Their experimental results verify the perfor-
mance gains using their approach.

Keynote Presentation
FireBox: A Hardware Building Block for 2020 Warehouse-
Scale Computers
Krste Asanović, University of California, Berkeley
Summarized by Tiratat Patana-anake (tiratatp@uchicago.edu)

Krste Asanović told a story about the past, present, and future of
Warehouse Scale Computing (WSC), which has many applica-
tions but will gain popularity because of the migration to the
extreme, with the cloud backing all devices. We moved from
commercial off-the-shelf (COTS) servers to COTS parts, and
we’ll move to custom everything, said Asanović.

Asanović stated that the programming model for WSC needs
to change. Currently, the silo model is used, but he believes that
Service Oriented Architecture (SOA) is better. In SOA, each
component is a service that connects via network, and each

application is composed of many services. The benefits of SOA
are reusability and ease of management. Moreover, by decom-
posing big software into small services, the services are easier to
tailor to each user subset. A statistic shows that small (less than
$1 million) projects have higher success rates than big projects.

Asanović then compared old wisdom to new wisdom in many
related aspects. In the old wisdom, we cared only about building
fault-tolerant systems. Today, we need to care about tail-latency
tolerance, too, which means building predictable parts from
less predictable ones. Many techniques can be used to build a
tail-tolerant service. We can use software to reduce component
variation by using different queues or breaking up tasks into
small parts, or try to cope with variability by hedging requests
when the first request result was slow, for example, or by trying
requests in different queues. We can also try to improve the
hardware by reducing overhead, reducing queuing, increasing
network bisection bandwidth, or using partitionable resources.

The second thing that Asanović compared was the memory
hierarchy. In the old days, we had DRAM, disk, and tape. Now, we
have DRAM, NVRAM, and then disk. In the future, we will have a
new kind of NVM that has DRAM read latency and endurance. In
terms of memory hierarchy, there will be more levels in the mem-
ory hierarchy, and we might see a merging between high-capacity
DRAM and flash memory into something new such as PCM.

Third, Moore’s Law is dead (for logic, SRAM, DRAM, and
likely 2D flash), said Asanović. The takeaway is that we have
to live with this technology for a long time, and improvements
in system capability will come from above the transistor level.
More importantly, without Moore’s Law and scaling, the cost of
custom chips will come down because of the amortized cost of
technology.

Fourth, Asanović discussed which ISA (Instruction Set Archi-
tecture) was better, ARM or x86. He said the real important
difference was that we could build a custom chip with ARM, not
Intel. He added that ISA should be an open industry standard.
The goal is to have an open source chip design, such as Berkeley’s
RISC-V, which is an open ISA.

Moreover, Asanović said that security is very important. The key
is to have all data encrypted at all times. He also said that rather
than using shared memory to do inter-socket communication,
message passing has won the war, which is also a better match
for SOA.

Next, Asanović presented the FireBox, which is a prototype of
2020 WSC design. It is a custom “Supercomputer” for interactive
and batch application that can support fault and tail tolerance,
will have 1000 SoC, 1 terabit/s high radix photonic switch, and
1000 NVM modules for 100 PB total. FireBox SoC will have 100
homogeneous cores per SoC with cache coherence only on-chip
and acceleration module (e.g., vector processors). NVM stack
will have photonic I/O built in. Photonic switch is monolithic

68    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

integrated silicon photonics with wave-division multiplexing
(WDM). Photonics will have bandwidth of 1 Tb in each direc-
tion. Moreover, data will always be encrypted. Asanović said the
bigger size will reduce operation expenses, can support a huge
in-memory database, and has low latency network to support
SOA. There are still many open questions for FireBox, such as
how do we use virtualization, how do we process bulk encrypted
memory, and which in-box network protocol should we use?

Finally, Asanović talked about another related project, DIABLO,
which is an FPGA that simulates WSC. By using DIABLO, they
found that the software stack is the overhead.

Rik Farrow wondered about the mention of Linux as the sup-
ported operating system. Asanović said that people expected
a familiar API, but that FireBox would certainly include new
operating system design. Kimberly Keeton (HP Labs) asked who
is the “everybody” that considers using custom design chips.
Asanović answered big providers are building custom chips, and
if we move to an open source model, we will start seeing more.
Keeton also asked a question about code portability. Asanović
explained that 99.99% of code in applications doesn’t need an
accelerator. So, only the .01% that does need accelerators will
need any changes.

Someone from VMware asked about the role of disk in FireBox.
Asanović replied that disk and DC-level network are outside
the scope of this project right now. Tom Spinney (Microsoft)
asked about protecting keys and cryptography engines. Asanović
responded that they planned on using physical mechanisms, and
that this was an area of active research.

Experience from Real Systems
Summarized by Xing Lin (xinglin@cs.utah.edu)

(Big) Data in a Virtualized World: Volume, Velocity, and
Variety in Cloud Datacenters
Robert Birke, Mathias Bjoerkqvist, and Lydia Y. Chen, IBM Research Zurich
Lab; Evgenia Smirni, College of William and Mary; Ton Engbersen, IBM
Research Zurich Lab

Mathias Bjoerkqvist started his presentation by noting that
virtualization is widely used in datacenters to increase resource
utilization, but the understanding of how I/O behaves in virtual-
ized environments is limited, especially at large scales. To get a
better understanding, they collected I/O traces in their private
production datacenters over a three-year period. The total I/O
trace was 22 PB, including 8,000 physical host machines and
90,000 virtual machines. Most of virtual machines were Win-
dows and ran within VMware. Then they looked at how capacity
and data changed and characterized read/write operations at
the virtual machine layer and the host layer. They also studied
the correlation between CPU, I/O, and network utilization for
applications.

What’s most interesting in their findings is that most contri-
butions to the peak load came from only one third of virtual
machines, which implies that we could improve the system

by optimizing these few VMs. In their study, they also found a
diverse set of file systems were used: For each virtual machine,
as many as five file systems were used. Thus, about 20 virtual
file systems were used in each host machine on average. The
more CPUs and memory the host machine has, the more file
systems. The data churn rate at the virtual machine layer is
lower than at the host layer: 18% and 21%, respectively. They also
looked at I/O amplification and deduplication rate. Comparing
the number of I/Os at the virtual machine layer and the physical
block layer at the host operating system, they found that amplifi-
cation appears more often than deduplication. Finally, they used
a k-means clustering algorithm to classify application workloads
and found a strong correlation between CPU usage and I/O or
network usage.

One person asked for the breakdown of true deduplication
and caching effect. He suggested that the deduplication rates
presented could be the combination of both. The author acknowl-
edged that he was correct: They measured the total I/Os at the
virtual machine layer and the physical host layer and were not
able to distinguish between the caching effect and true dedupli-
cation. Fred Douglis (EMC) pointed out that the comparison of
the data churn rate presented in this work and his own previous
work was not appropriate because the workloads for this paper
were primary workloads, whereas Fred’s work studied backup
workloads. Yaodong Yang (University of Nebraska-Lincoln)
asked about the frequency of virtual machine migration in their
datacenters. The authors replied that the peak load varied over
time; the peak load in the middle of night could be correlated
with virtual machine migration activities. Christos Karamano-
lis (VMware) asked a few fundamental clarification questions
about their measurements, such as what the definition of a
virtual I/O was, what the side-effect was from write buffering
and read caching at the guest OS, and which storage infrastruc-
ture was used at the back end. The authors said they collected
I/O traces at the guest OS and host OS level and suggested that
people come to their poster for more details.

From Research to Practice: Experiences Engineering
a Production Metadata Database for a Scale Out File
System
Charles Johnson, Kimberly Keeton, and Charles B. Morrey III, HP Labs; Craig
A. N. Soules, Natero; Alistair Veitch, Google; Stephen Bacon, Oskar Batuner,
Marcelo Condotta, Hamilton Coutinho, Patrick J. Doyle, Rafael Eichelberger,
Hugo Kiehl, Guilherme Magalhaes, James McEvoy, Padmanabhan Nagarajan,
Patrick Osborne, Joaquim Souza, Andy Sparkes, Mike Spitzer, Sebastien
Tandel, Lincoln Thomas, and Sebastian Zangaro, HP Storage

Kimberly Keeton characterized her team’s work as special,
covering their experience in transforming a research prototype
(LazyBase) into a fully functional production (Express Query).
Unstructured data grows quickly, at 60% every year. To make
use of unstructured data, the metadata is usually used to infer
the underlying structure. Standard file system search function
is not feasible for providing rich metadata services, especially in
scale-out file systems. The goal of their work is to design a meta-

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  69

REPORTS

data database, to allow rich metadata queries for their scale-out
file systems.

LazyBase was designed to handle high update rates, at the
expense of some amount of staleness. This matches well with the
design of Express Query. Thus, they started with LazyBase and
made three main changes to transform it into Express Query.
The first change was to eliminate automatic incremental ID for
long strings and ID remap because the mapping cannot be done
lazily and the assignment of ID for a string cannot be done in
parallel. Through experimentation, they found that ID-based
lookup or joins was inefficient: minutes for ID-based versus
seconds for non-ID based.

The second change was related to the transaction model in
LazyBase, which allows updates to be applied asynchronously at
a later time. When users delete a file, there is no way to reliably
read and delete the up-to-date set of custom attributes. To deal
with this problem, the authors introduced timestamps to track
file operation events and attribute creations. These timestamps
were then used to check for attribute validation during queries.
To get the metadata about files, they put a hook in the journaling
mechanism in the file system. Then the metadata was aggre-
gated and stored into LazyBase. To support SQL-like queries,
they used PostgreSQL on top of LazyBase. A REST API was
designed to make Express Query easier and more flexible to use.

Scott Auchmoody (EMC) asked about using hashing to get IDs.
Kimberly said that would break the locality; tables are organized
according to IDs and with hashing, records for related files could
be stored far away from each other. Brent Welch (Google) sug-
gested that distributed file systems usually have an ID for each
file, which could be taken and used. Kimberly acknowledged that
they had taken advantage of that ID to be a unique identity for
each file, and the index and sorting are based on pathname. One
person noted that if metadata for files within a directory was
organized as a tree structure, the tree structure could become
very huge and wondered how much complexity was involved in
managing large tree structures. Kimberly answered that they
stored metadata as a table, and the directory structure was
encoded in the path name. Shuqin Ren (Data Storage Institute,
A*STAR) asked what the overhead was when adding the hook in
the journaling mechanism to collect metadata. Kimberly replied
that the journaling happened anyway, and they did not add any
other instrumentation to the file system so the overhead was small.

Analysis of HDFS under HBase: A Facebook Messages
Case Study
Tyler Harter, University of Wisconsin—Madison; Dhruba Borthakur, Siying
Dong, Amitanand Aiyer, and Liyin Tang, Facebook Inc.; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Tyler Harter presented his work on analyzing I/O characteriza-
tions for the layered architecture of HBase for storing and pro-
cessing messages in Facebook. Reusing HBase and HDFS lowers
the development cost and also reduces the complexity of each
layer. However, Tyler also pointed out that layered architecture

could have some performance overheads and that performance
could potentially be improved if the system were layer-aware.
Their work studied how each layer altered I/O requests and
exploited two use cases to demonstrate that performance could
be improved by making the system layer-aware.

Tyler showed that at the HDFS layer, only 1% of all read/write
requests it received were writes. However, writes became
21% because of compaction and logging used in HDFS. At the
local file system layer, 45% of requests were writes because of
three-way replication. At the disk layer, the percentage of writes
was 64%. The same trend held when they considered I/O size.
Two thirds of data is cold. Then Tyler presented the distribu-
tion of file sizes. Half of files used in HBase had sizes smaller
than 750 KB. For access locality, they found a high temporary
locality: the hit rate was 25% if they kept accessed data for 30
minutes and 50% for two hours. Spatial locality was low, and as
much as 75% reads were random. Then they looked into what
hardware upgrade was most effective in terms of I/O latency
and cost. They suggested that adding a few more SSDs gave the
most benefit with little increase in cost; buying more disks did
not help much. To demonstrate that performance is increased
by making the system layer-aware, Tyler presented two opti-
mizations: local compaction and combined logging. Instead of
sending compacted data, they proposed sending the compact
command to every server to initiate compaction. This change
reduced the network I/O by 62%. With combined logging, a
single disk in each server machine was used for logging while
other disks could serve other requests. This change reduced disk
head contention, and the evaluation showed a six-fold speedup
for log writes and performance improvement for compaction and
foreground reads.

Bill Bolosky (Microsoft Research) pointed out that file size
distribution usually had a heavy tail and thus the mean file
size would be three times larger than the median size. He
asked whether the authors had looked into the mean size. Tyler
acknowledged that in their paper they did have numbers for
mean file size but he did not remember them. He also suggested
that, because most files were small, what mattered for perfor-
mance was the number of files, specifically metadata operations.
Brad Morrey (HP Labs) noted that for their local compaction
to work, related segments had to be stored in a single server.
This would affect recovery performance if a server died. Tyler
replied that they did not do simulation for recovery. However,
the replication scheme was pluggable and they should be able to
exploit different replication schemes. Margo Seltzer (Harvard)
suggested that it was probably wrong to use HDFS to store small
files; HDFS was not designed for that, and other systems should
probably be considered. Tyler acknowledged that was a fair argu-
ment, but Facebook uses HDFS for a lot of other projects and that
argues for using a uniform architecture.

70    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

Automatic Identification of Application I/O Signatures
from Noisy Server-Side Traces
Yang Liu, North Carolina State University; Raghul Gunasekaran, Oak Ridge
National Laboratory; Xiaosong Ma, Qatar Computing Research Institute
and North Carolina State University; Sudharshan S. Vazhkudai, Oak Ridge
National Laboratory

Yang Liu started his talk by introducing the second fastest
supercomputer in the world: TITAN, which has 18,000 compute
nodes. More than 400 users use this supercomputer for various
scientific computations, such as climate simulation. The Spider
file system is used to provide file system service: In total, TITAN
can store 32 PB of data and can provide 1 TB/s bandwidth.
Because the supercomputer is shared by multiple users, work-
loads from different users could compete for the shared storage
infrastructure and thus interfere with each other. Thus, it is
important to understand the I/O behavior of each application.
With that understanding, we can do a better job in scheduling
these jobs and thus reduce I/O contention. Their work proposed
an approach to extract I/O signatures for scientific workloads
running from server-side tracing.

Client-side tracing is the other alternative but has a few draw-
backs. Client-side tracing requires a considerable development
effort, and it usually introduces some performance overhead,
ranging from 2% to 8%. Different applications probably use dif-
ferent trace formats and may not be compatible. What’s worse,
client-side tracing introduces extra I/O requests. So they decided
to use the coarse-grain logging at the RAID controller level at
the server-side. It has no overhead and does not require any user
effort. However, I/O requests are mixed at the server-side. The
challenge is to extract I/O signatures for a particular application
from this mixed I/O traffic. Fortunately, there are a few inherent
features in scientific applications that can help to achieve that
goal.

These applications usually have two distinct phases: compute
phase and I/O phase. During the I/O phase, applications typi-
cally request large writes of either intermediate results or check-
pointing, so there are periodic bursts for these applications.
Besides, users tend to run the same application multiple times
with the same configuration. Thus, I/O requests are repetitive
for these applications. Given the job scheduler logs with start and
end time for each job and the server-side throughput logs from
Spider, they can extract the samples for a particular job. The
insight from the authors is that the commonality across multiple
samples tends to belong to the target application.

The challenges of extracting I/O signatures from these samples
include background noise and I/O drift. To deal with these
challenges, the authors proposed three stages to extract the I/O
signature: (1) data preprocessing that eliminates outliers, refines
the granularity of the samples, aligns durations, and reduces
noise by removing light I/O traffic; (2) use of wavelet transform
for each sample to make each sample smoother and to more
easily distinguish bursts from background noise; and (3) use of
the CLIQUE (Agrawal: SIGMOD ’08) clustering algorithm to

identify common bursts across samples. For evaluation, they
used I/OR, a benchmark tool for parallel I/O to generate a few
synthetic workloads and a real-world simulation: S3D. The sig-
nature extracted by their tool matched well with the actual I/O
signature. They also compared the accuracy of their algorithm
with Dynamic Time Warping (DTW) and found I/OSI outper-
formed DTW.

Kun Tang (Virginia Commonwealth University) asked whether
it was true that users actually ran an application multiple times.
Yang answered yes, based on what they observed from the job
scheduler log and several previous works. One person suggested
that if they already had the I/O signature, their tool would be
able to reproduce that signature. Yang replied that based on their
observation, each application would likely exhibit the same I/O
pattern in future runs, and they could use this insight for better
scheduling.

Works-in-Progress
Summarized by Dutch Meyer (dmeyer@cs.ubc.ca)

The FAST ’14 Works-in-Progress session started with Taejin
Kim (Seoul National University), who presented his work on
“Lifetime Improvement Techniques for Multiple SSDs.” He
observed that write amplification in a cluster of SSDs may
degrade the device’s lifetime because of intermediate layers
which perform replication, striping, and maintenance tasks
such as scrubbing. As an example, he showed how writes could
be amplified by 2.4x under Linux’s RAID-5 implementation. He
proposed integrating many different write prevention tech-
niques, such as compression, deduplication, and dynamic throt-
tling, to lower the write workload, as well as smaller stripe units,
delta compression, and modifying erasure coding algorithms to
use trim in place of writes.

Dong Hyun Kang (Samsung Electronics) presented “Flash-
Friendly Buffer Replacement Algorithm for Improving Perfor-
mance and Lifetime of NAND Flash Storages.” He explained
how traditional buffer replacement algorithms are based on
magnetic drives and proposed an algorithm called TS-Clock to
perform cache eviction. TS-Clock is designed to limit write-
backs and improve cache hit rate. His preliminary results
show that on DBench the TS-Clock algorithm has up to a 22.7%
improvement in hit rate and extends flash lifetime by up to
40.8%.

Douglas G. Otstott (Florida International University) described
his work towards developing a “holistic” approach to scheduling.
In his presentation, “A Host-Side Integrate Flash Scheduler for
Solid State Drives,” he listed the inefficiencies of the OS to flash
interface. Flash devices themselves have limited resources to
consider complex scheduling. However, in the relatively more
powerful OS-layer, most of the potentially useful details about
individual request performance, such as read vs. write latencies,
write locations, and logical to physical block mappings, are hid-
den. In his alternate approach, device management occurs in the

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  71

REPORTS

OS stack but pushes commands down to the device to balance
load, ensure that writes aren’t committed ahead of reads, and
limit GC performance costs. His proposed interface includes
isolated per-die queues for read, write, and garbage collection.
He is working to validate his Linux prototype in DiskSim and is
working on an FPGA implementation.

Next, Eunhyeok Park (University of Pittsburgh) described his
work: “Accelerating Graph Computation with Emerging Non-
Volatile Memory Technologies.” Algorithms that access large
graph data structures incur frequent and random storage access.
After describing the CPU bottlenecks in these workloads, he
described Racetrack, an approach based on an idealized memory
model. Park’s simulations based on Pin show that it is faster and
has lower energy consumption than alternatives. His prelimi-
nary results suggest that some simple computations, for example
PageRank, could be done by a CPU or FPGA on the storage
device itself.

In “Automatic Generation of I/O Kernels for HPC Applications,”
Babak Behzad (University of Illinois at Urbana-Champaign)
described his efforts to autonomously generate an I/O kernel,
which is a replayable trace that includes dependency constraints.
His approach is to wrap I/O activity with an application-level
library to trace parallel I/O requests in high-performance
computing environments. His work promises to provide better
analytics for future optimization, I/O auto-tuning, and system
evaluation.

Florin Isaila (Argonne National Laboratory) described “Clar-
isse: Cross-Layer Abstractions and Runtime for I/O Software
Stack of Extreme Scale Systems.” His goal is to enable global
optimization in the software I/O stack to avoid the inefficiencies
of I/O requests that pass through multiple layers of uncoordi-
nated memories and nodes, each of which provides redundant
function. He proposed providing cross-layer control abstrac-
tions and mechanisms for supporting data flow optimizations
with a unified I/O controller. Instead of the traditional layered
model, Clarisse intercepts calls at different layers. Local control
modules at each stack layer talk over a backplane to a controller
that coordinates buffering, aggregation, caching prefetching,
optimization selection, and event processing.

Howie Huang (George Washington University) presented
“HyperNVM: Hypervisor Managed Non-Volatile Memory.” He
observed that warehouse-scale datacenters are increasingly
virtualized and that many VMs performing large amounts of
I/O require high performance memory subsystems and need
better systems support for emerging non-volatile memories. To
solve these problems, he proposed that the hypervisor needs to
be more memory aware and that the OS and applications should
pass more control of memory management to the hypervisor.
He proposed a system called Mortar, which is a general-purpose
framework for exposing hypervisor-controlled memory to
applications.

Dan Dobre (NEC Labs Europe) described his work on “Hybris:
Robust and Consistent Hybrid Cloud Storage.” He noted that
potential users of cloud storage services are concerned about
security and weak consistency guarantees. To address these two
concerns, he proposed a hybrid solution that employs a private
cloud backed by multiple public clouds. His approach maintains
a trusted private cloud to store metadata locally, with strong
metadata consistency to mask the weak data consistency offered
by public clouds.

In “Problems with Clouds: Improving the Performance of Multi-
Tenant Storage with I/O Sheltering,” Tiratat Patana-anake
(University of Chicago) described an approach to limit the
performance impact of random writes in otherwise sequential
workloads. In his approach, called “I/O Sheltering,” random
writes are initially written sequentially inline with sequential
writes. Later, these sheltered writes are moved to their in-place
locations. He argued that this approach would be successful
because random write applications are rare, memory is abun-
dant, and NVM provides a better location to shelter indexes. He
concluded by showing significant performance improvements
in multi-tenant Linux, when one random writer ran in conjunc-
tion with many sequential writers. He proposed to integrate this
technique into the file system and journal in the future.

Michael Sevilla (University of California, Santa Cruz) argued
that load balancing should be based on a deeper understand-
ing of individual node resources and contention in his work on
“Exploring Resource Migration Using the CephFS Metadata
Cluster.” Sevilla has been using Ceph as a prototyping platform
to investigate migration and load balancing. He has observed
that decisions about whether to migrate are often non-intuitive.
Sometimes migration helps mitigate loads, but it may also hurt,
because it denies access to a full metadata cache. He is attempt-
ing to develop a distributed, low-cost, multiple objective solver to
make more informed migration decisions. In closing, he demon-
strated the practicality of the problem by detailing an experi-
ment where re-ordering name servers in a cluster under high
load resulted in a considerable performance improvement.

With his work on “Inline Deduplication for Storage Caching,”
Gregory Jean-Baptiste (Florida International University) pro-
posed enhancing existing client-side flash caches with inline
deduplication to increase their effective capacity and lifespan.
He has a prototype system in place that shows better perfor-
mance with the IOZone benchmark over iSCSI. He noted that
this approach may lead to other architectural changes, such as
replacing LRU with an eviction algorithm that is aware that
evicting a widely shared block could be more painful that an
unshared one.

Alireza Haghdoost (University of Minnesota) presented
“hfplayer: High Fidelity Block I/O Trace Replay Tool.” hfplayer
can reproduce previously captured SAN workload with high
fidelity for the purposes of benchmarking, performance evalu-

72    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

ation, and validation with realistic workloads. His design is
based on a pool of worker threads that issue I/O requests and a
harvester thread to process completion events and keep track
of in-flight I/O requests. To control replay speed, a load-aware
algorithm dynamically matches the number of in-flight I/O
requests with the load profile in the original trace. When inter-
arrival times are very short, threads bundle requests together to
avoid system call overhead.

Nagapramod Mandagere (IBM Research) has been analyzing
the performance of backup servers and has found some interest-
ing opportunities for optimization. In his presentation titled
“Towards a Framework for Adaptive Backup Management,”
he described some of his observations. He noted that backup
workloads show temporal skew, where most traffic arrives
at hourly boundaries but large bursts of heavy utilization are
possible. Another problem is spatial skew, in which one backup
server is overloaded while others are not. Both these problems
stem from backups that are managed by static policies while the
workload they create is very dynamic. As client backup windows
get shorter and shorter (due to lack of idle times), server initi-
ated backups are harder to schedule, but when the clients are
instead allowed to push updates themselves, the backup servers
can become overloaded. Furthermore, backup servers them-
selves need idle periods for their own maintenance. He proposes
an adaptive model-based backup management framework that
dynamically determines client/server pairings to minimize cli-
ent backup windows.

Performance and Efficiency
Balancing Fairness and Efficiency in Tiered Storage
Systems with Bottleneck-Aware Allocation
Hui Wang, Peter Varman, Rice University

Hui Wang started her presentation by talking about the trend of
multi-tiered storage in modern datacenters with both solid state
drives and traditional hard disks. This kind of combination has
several advantages, including better performance in data access
and lower cost. At the same time, it also brings some challenges,
such as providing fair resource allocation among clients and
maintaining high system efficiency. To be more specific, there
is a big speed gap between SSD and HD, so scheduling proper
workloads to achieve high resource utilization becomes very
important. Hui Wang talked about fair resource allocation and
high performance efficiency to make up for some disadvantages
of heterogeneous clusters. She talked about her team’s motiva-
tion using several examples: single device type, multiple devices,
and dominant resource from both fairness and efficiency angles.

Based on these considerations, she presented a new allocation
model, Bottleneck-Aware Allocation (BAA), based on the notion
of per-device bottleneck sets. Clients bottlenecked on the same
device receive throughputs in proportion to their fair shares,
whereas allocation ratios between clients in different bottleneck
sets are chosen to maximize system utilization. In this part, she
discussed the fairness policy first, showed the bottleneck sets

and fairness requirements of BAA, and then introduced their
optimization algorithm of allocation.

They performed two simulations: one to evaluate the BAA’s
efficiency, and the other monitoring BAA’s dynamic behavior
under changing workloads. They also implemented a prototype,
interposing BAA scheduler in the I/O path and evaluated BAA’s
efficiency and fairness.

Umesh Maheshwari (Nimble Storage) asked if that kind of dra-
matic ratio somehow changed the nature of this work. Hui Wang
said, suppose it was for a single disk compared with SSD. It is
most likely that HD would be the bottleneck, but if you have a
large HD array, the speed gap between the two is not so dramati-
cally large, so you would very easily have the balanced set cluster
on both. Umesh asked again, assuming there was such a large
difference between the two tiers, would the BBA model still hold
the same performance using this approach? Hui Wang answered
yes. Shuqin (Data Storage Institute Singapore) asked whether
their model would work on multiple nodes. Hui Wang said she
thought that their model could be easily extended to multiple
nodes with coordination between schedulers. Kai Shen (Uni-
versity of Rochester) asked what was particularly challenging
in this project. Hui Wang said the most challenging part was to
accurately estimate the capacity of the system.

SpringFS: Bridging Agility and Performance in Elastic
Distributed Storage
Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, and Nitin Gupta,
Carnegie Mellon University; Michael A. Kozuch, Intel Labs; Gregory R.
Ganger, Carnegie Mellon University

In this presentation, Xu introduced the concept of elasticity in
distributed storage. Elastic distributed storage means storage
that is able to resize dynamically as workload varies, and its
advantages are the ability to reuse storage for other purposes or
reduce energy usage; they can decide how many active servers to
provide to work with a changing workload. By closely monitoring
and reacting quickly to changes in workload, machine hours are
saved. But most current storage, such as GFS and HDFS, is still
not elastic. If they deactivate the nodes, it will cause some data
to not be available. Before Xu talked about SpringFS, he gave two
examples of prior elastic distributed storage, Rabbit and Sierra,
discussing the differences between them and the disadvantages
of each. Fortunately, SpringFS provides balance and fills the gap
between them.

First, Xu showed a non-elastic example: in this case, almost all
servers must be “active” to be certain of 100% availability, so
it has no potential for elastic resizing. He then discussed the
general rule of data layout in elastic storage and tradeoff space.
Based on this, the authors proposed an elastic storage system,
called SpringFS, which can change its number of active servers
quickly, while retaining elasticity and performance goals. This
model borrows the ideas of write availability and performance
offloading from Rabbit and Sierra, but it expands on previous
work by developing new offloading and migration schemes that

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  73

REPORTS

effectively eliminate the painful tradeoff between agility and
write performance in state-of-the-art elastic storage designs.
This model, combined with the read offloading and passive
migration policies used in SpringFS, minimizes the work needed
before deactivation or activation of servers.

Muhammed (HGST) asked what is used to predict the perfor-
mance ahead of time and whether the offload set value could
be adjusted. Xu said they actually did not design this part of the
workload in their paper. They just assumed they had the perfect
predictor, and that it was possible to integrate some workload
predictor into their work. One person asked whether this model
tolerates rack fails. Xu said yes, because their model was modi-
fied from HDFS, it could tolerate rack fails as well as HDFS.
Another questioner asked what offloading in SpringFS essen-
tially means. Xu explained that offloading means redirecting
requests from a heavy loaded server to a lightly loaded server.

Migratory Compression: Coarse-grained Data Reordering
to Improve Compressibility
Xing Lin, Guanlin Lu, Fred Douglis, Philip Shilane and Grant Wallace, EMC
Corporation-Data Protection and Availability Division, University of Utah

Lin presented Migratory Compression (MC), a coarse-grained
data transformation, to improve the effectiveness of traditional
compressors in modern storage systems. In MC, similar data
chunks are relocated together to improve compression factors.
After decompression, migrated chunks return to their previous
locations. This work is motivated by two points. The first is to
exploit redundancy across a large range of data (i.e., many GB)
during compression by grouping similar data together before
compressing. The second point is to improve the compression for
long-term retention. However, the big challenge in doing MC is to
identify similar chunks efficiently and scalably; common prac-
tice is to generate similarity features for each chunk because two
chunks are likely to be similar if they share many features.

There are two principal use cases of MC. The first case is mzip,
that is, compressing a single file by extracting resemblance
information, clustering similar data, reordering data in the
file, and compressing the reordered file using an off-the-shelf
compressor. The second case is archival, involving data migra-
tion from backup storage systems to archive tiers or data stored
directly in an archive system, such as Amazon Glacier. The
evaluation result showed that adding MC to a compressor sig-
nificantly improves the compression factor (23–105% for gzip,
18–84% for bzip2, 15–74% for 7z, and 11–47% for rzip), and we
can also see the improvement of compression throughput with
MC. In all, MC improves both compression factor and through-
put by deduplication and reorganization.

Cornel Constantinescu (IBM Almaden Research Lab) asked
whether this model compressed the file. Lin said that in the mzip
case, they un-compacted the whole file. Constantinescu asked
whether they did a comparison with other similar work, such as
work used in Google’s BigTable. Lin admitted he did not know
that. Jacob Lorch (Microsoft Research) asked whether they

were starting to look at modifying the compression algorithms.
Lin said that he did not think they modified compression itself
and that MC could be used as a generic preprocessing stage that
could benefit all of the compression. And, if they are improving
compressions, they can get the same benefits by doing this as a
separate stage.

Poster Session II
Summarized by Kai Ren (kair@cs.cmu.edu)

VMOFS: Diskless and Efficient Object File System for
Virtual Machines
Shesha Sreenivasamurthy and Ethan Miller, UC Santa Cruz

This project is to design an object file system for virtual machine
environment by deduplicating common files shared in many VM
images. In their architecture, guest machines will run a VFS
layer software called VMOFS to track the mapping between
inode and object, and a hypervisor manages the storage and
deduplicates file objects and stores them into underlying object
storage. Deduplication is achieved at a per-object level to reduce
the dedup table size. This work is still under development, and no
experimental results were presented.

Characterizing Large Scale Workload and Its Implications
Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh,
Dankook University, University of Seoul and Hongik University

This project analyzes storage workloads from a collection of
traces from various cloud clusters. The observations are (1)
workloads with large data are not sensitive to cache size; (2)
cache allocation should be dynamically tuned due to irregular
cache status changes; and (3) to achieve high cache hit ratio, one
might use a policy that quickly evicts blocks with large request
size and hit counts in a special period. The next part of this proj-
ect will be to apply these observations to design and implement a
cache service for virtual machine clusters.

Automatic Generation of I/O Kernels for HPC
Applications
Babak Behzad, Farah Hariri, and Vu Dang, University of Illinois at Urbana-
Champaign; Weizhe Zhang, Harbin Institute of Technology

The goal of this project is to automatically extract I/O traces
from applications and regenerate these workloads to different
scales of storage systems for performance measurement or test-
ing. To fulfill such a goal, the workload generation systems have
long workflows. First, it extracts traces from multiple levels of
the I/O flow—application, MPI-I/O, and POSIX I/O levels—and
from multiple processes. The second step is to merge these
traces and understand the dependency between I/O operations
presented in the traces. To construct such a dependency, it needs
to understand semantics of I/O operations, which is mostly
inferred from MPI-I/O library calls. For operations without clear
dependency, timestamps are used to decide the order. The last
step is to divide the traces, and generate binaries to replay the
traces or simulate the workloads.

74    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

Poster Session II
Summarized by Qian Ding (qding8@gmail.com)

VMOFS: Breaking Monolithic VM Disks into Objects
Shesha Sreenivasamurthy and Ethan Miller, UC Santa Cruz

Shesha and Ethan propose a solution of efficient file sharing
among virtual machines (VMs) through an object-based root file
system. They are building a file system called VMOFS, which
adopts object-level deduplication to store monolithic VM images.
The hypervisor layer in the system encapsulates the OSD layer
and controls the communication between file system and the
OSDs via iSCSI. VMOFS is still under development so there is no
evaluation at the current stage.

Characterizing Large Scale Workload and Its Implications
Dongwoo Kang, Seungjae Baek, Jongmoo Choi, Donghee Lee, and Sam H. Noh,
Dankook University, University of Seoul and Hongik University

Dongwoo Kang presented work about characterizing a group of
recently released storage traces and explained their observations
and possible implications. The traces the team used were from
MSR-Cambridge and FIU. Their first finding was that such
traces were not sensitive to cache size when using a simple LRU
cache but have much variation on the change of cache hit ratio
and I/O size. They also found long inter-reference gaps (IRG)
from the traces and provide that as a reason for low cache sensi-
tivity. They propose two ways to improve the hit ratio: dynamic
cache allocation and evicting short IRGs in the cache. They also
propose ways for optimizing cache utility on a virtualized stor-
age environment.

MicroBrick: A Flexible Storage Building Block for Cloud
Storage Systems
Junghi Min, Jaehong Min, Kwanghyun La, Kangho Roh, and Jihong Kim,
Samsung Electronics and Seoul National University

Jaehong Min presented the design of MicroBrick for cloud stor-
age. The authors tried to solve the diverse resource requirement
problem, such as balancing the computing and storage resource
in cloud services. Each MicroBrick node adopts flexible control
for both CPU-intensive and storage-intensive configuration
through a PCIe switch. Thus, when the cloud system is com-
posed of MicroBrick nodes, they can use a software management
layer for autoconfiguration for different resource requirements.
The preliminary evaluation of MicroBrick shows competitive
results by running cloud computation (e.g., wordcount) and sort
programs.

OS and Storage Interactions
Summarized by Kuei Sun (kuei.sun@utoronto.ca)

Resolving Journaling of Journal Anomaly in Android I/O:
Multi-Version B-Tree with Lazy Split
Wook-Hee Kim and Beomseok Nam, Ulsan National Institute of Science and
Technology; Dongil Park and Youjip Won, Hanyang University

Wook-Hee Kim began the talk by reminding us that although
Android is the most popular mobile platform to date, it has
severe I/O performance bottlenecks. The bottlenecks are caused
by the “journaling of journal anomaly” between ext4 and SQLite,

which is used by many applications. Kim gave a stunning exam-
ple where one insert of 100 bytes resulted in nine random writes
of 4 KB each. Currently, the database calls fsync() twice: once
for journaling and once for insertion. Kim and his colleagues
proposed to obviate the need for database journaling by imple-
menting a variant of multi-version B-tree named LS-MVBT.

Kim presented several optimizations made to LS-MVBT based
primarily on the characteristics of the common workloads. Lazy
split seeks to reduce I/O traffic during node split by simultane-
ously garbage collecting dead entries so that the existing node
(aka lazy node) can be reused. However, if there are concurrent
transactions and the dead entries are still being accessed, then a
workaround is needed. Their solution is to reserve space on each
node so that new entries can still be added to the lazy node with-
out garbage collection. To further reduce I/O traffic, instead of
periodic garbage collection, LS-MVBT does not garbage collect
unless space is needed. Next, Kim showed that by not updating
the header pages with the most recent file change counter, only
one dirty page needs to be flushed per insertion. He pointed out
that this optimization would not increase overhead during crash
recovery because all B-tree nodes must be scanned anyway.
Lastly, they disabled sibling redistribution from the original
MVBT and forced a node split whenever a node became full. Kim
showed that this optimization actually reduced the number of
dirty pages.

In their evaluation, Kim showed that LS-MVBT improves
performance of database insertions by 70% against the original
SQLite implementation (WAL mode). LS-MVBT also reduces
I/O traffic by 67%, which amounts to a three-fold increase in
the lifetime of NAND flash. LS-MVBT is also five to six times
faster than WAL mode during recovery. Lastly, LS-MVBT out-
performs WAL mode unless more than 93% of the workload are
searches. At the end of the talk, Kim’s colleague demonstrated
a working version of their implementation, showing the perfor-
mance improvement in a simulated environment.

Journaling of Journal Is (Almost) Free
Kai Shen, Stan Park, and Meng Zhu, University of Rochester

Kai Shen started by arguing that journaling of journal is a viola-
tion of the end-to-end argument and showed that adding ext4
journaling to SQLite incurs a 73% slowdown in their experi-
ments. Existing solutions require substantial changes to either
the file system or the application. The authors proposed two
simple techniques.

Single-I/O data journaling attempts to minimize the number of
device writes on the journal commit’s critical path. In this case,
data and metadata are journaled synchronously. During their
experiments, they discovered a bug with ext4_sync_file(), which
unnecessarily checkpoints data to be overwritten or deleted
soon. The problem with the data journaling is the large volume
written due to the page-sized granularity of ext4. Therefore,
they proposed a second technique called file adaptive journaling,

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  75

REPORTS

which allows each file to have a custom journaling mode. They
found the solution effective for the journaling of journal problem.
In particular, write-ahead logs would prefer ordered journaling
due to little metadata change, and rollback logs would prefer data
journaling due to heavy metadata change. In their evaluation,
Shen showed that their enhanced journaling incurs either little
to no cost.

Theodore Wong (Illumina, Inc.) asked what would happen if file
system journaling were not used. Shen explained that protection
of both file system metadata and application data still would be
necessary because an untimely crash may cause the file system
to become inconsistent. Because the database only protects its
own data in a file, an inconsistent file system may cause the
database file to become inaccessible. Kim commented on the
fact that enterprise databases usually skip over the file system
and operate directly on raw devices. However, lightweight data-
bases may still prefer running on top of file systems for simplic-
ity. Peter Desnoyer (Northeastern University) wanted to know
whether these changes could affect the opportunity for inconsis-
tency. Shen replied that as long as the failure model is fail-stop,
then all of the guarantees would still apply.

Checking the Integrity of Transactional Mechanisms
Daniel Fryer, Mike Qin, Kah Wai Lee, Angela Demke Brown, Ashvin Goel, and
Jack Sun, University of Toronto

Daniel Fryer began his talk by showing us that corruptions
caused by file system bugs are frequently catastrophic because
they are persistent, silent, and not mitigated by existing reli-
ability techniques. The authors’ previous work, Recon, ensures
that file system bugs do not corrupt data on disk by checking the
consistency of every transaction at runtime to prevent corrupt
transactions from becoming durable. Because Recon performs
its checks at commit time, it requires the underlying file system
to use a transaction mechanism. Unfortunately, Recon does
not detect bugs in the transaction mechanism. Their solution
is to extend Recon to enforce the correctness of transaction
mechanisms.

Recon already checks the consistency of transactions by verify-
ing that metadata updates within a transaction are mutually
consistent. To enforce atomicity and durability, Recon needs to
also be able to catch unsafe writes and prevent them from reach-
ing disk. Fryer defined two new sets of invariants, atomicity and
durability invariants (collectively called location invariants),
which govern the integrity of committed transactions. These
invariants need to be checked on every write to make sure that
the location of every write is correct. Fryer walked us through
two types of transaction mechanisms, journaling and shadowing
paging, as well as their respective invariants. Next, he presented
a list of file system features that are required for efficient invari-
ant checking at runtime.

Fryer and his team implemented location invariants for ext3 and
btrfs by extending Recon. They had to retrofit ext3 with a meta-
data bitmap to distinguish between data and metadata, which

is required to detect unsafe overwrites to metadata blocks. To
evaluate the correctness of their implementation, they corrupted
file system writes of various types to simulate bugs in the trans-
action mechanism and successfully caught most of them. The
ones they missed did not affect file system consistency. Finally,
they showed that adding location invariants to Recon incurs
negligible overhead.

Keith Smith (NetApp) asked what could be done after a violation
was detected. Fryer responded that while optimistically delay-
ing a commit is plausible, what they’ve done at the moment is to
return an error since their first priority is to prevent a corrupt-
ing write from reaching disk. Ted Ts’o (Google) wanted clari-
fication on why losing some writes did not affect correctness
during the corruption experiments. Fryer explained that the
particular implementation of the file system was suboptimal and
was checkpointing some metadata blocks unnecessarily because
future committed versions of those blocks exist in the journal.
Therefore, losing those writes was inconsequential. Harumi
Kuno (HP Labs) was baffled by the fact that checking both con-
sistency and location invariants resulted in better performance
than just checking consistency alone. Fryer believed that it was
simply due to an insufficient number of trials.

OS and Peripherals
Summarized by Matias Bjørlin (mabj@itu.dk)

DC Express: Shortest Latency Protocol for Reading Phase
Change Memory over PCI Express
Dejan Vučinić, Qingbo Wang, Cyril Guyot, Robert Mateescu, Filip Blagojević,
Luiz Franca-Neto, and Damien Le Moal, HGST San Jose Research Center;
Trevor Bunker, Jian Xu, and Steven Swanson, University of California, San
Diego; Zvonimir Bandić, HGST San Jose Research Center

Dejan Vučinić began on a side note by stating that the next big
thing isn’t DRAM, because of its high energy utilization, refer-
ring to the previous FireBox keynote. He then stated the motiva-
tion for his talk by showing upcoming non-volatile memories
and their near DRAM access timings. He explained how they
each compete with DRAM on either price or latency and showed
why PCM has fast nanosecond reads but microsecond writes.
He explained that to work with PCM, the team built a prototype,
exposing it through a PCI-e interface.

Dejan then showed how PCI-e communicates with the host
using submission and completion queues. When a new request
is added to the queue, a doorbell command is issued to the PCI-e
device. When received, the device sends a DMA request to which
the host returns the actual data request. The request is pro-
cessed, and data with a completion command at the end is sent.
The handshake requires at least a microsecond before any actual
data is sent. To eliminate some of the overhead, they began by
removing the need for ringing the doorbell. They implemented
an FPGA that continuously polls for new requests on the mem-
ory bus. Then they looked at how completion events take place,
which the host could poll for when the data is finished. However,
instead of the host polling, they show that completion can be

76    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

inferred from the response data by inserting a predefined bit
pattern in DRAM. Data is stored in DRAM from the device and
should be different; thus, they could infer when all data packets
have been received.

Dejan then showed that using their approach they achieve, using
a single PCI-e lane, a 1.4 ms round-trip time for 512 bytes. Even
with these optimizations, there continues to be large overhead
involved, and thus the fundamental overhead of the communica-
tion protocol should be solved to allow PCM and other next-
generation memories to be used efficiently.

Brad Morrey (HP Labs) asked why they didn’t put it on the
DRAM bus. Dejan replied that there is a need for queues within
the DRAM. The queues are needed to prevent stalls while wait-
ing. He wants to have it there in the future, but PCM power
limitations should be taken into consideration. Peter Desnoyers
(Northeastern University) asked if they had a choice on how
PCI-e on PCM could evolve and what would they do? Dejan
answered that it could be used with, for example, hybrid memory
cubes. Finally, Ted Ts’o (Google) noted that the polling might be
expensive in power. What is the power impact? Dejan said that it
is very low, as you may only poll during an inflight I/O.

MultiLanes: Providing Virtualized Storage for OS-Level
Virtualization on Many Cores
Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu, and Jinpeng Huai,
Beihang University

Junbin Kang began by stating that manycore architectures
exhibit powerful computing capacity and that virtualization
is necessary to use this capacity. He then continued to argue
paravirtualization versus operating system virtualization and
ended by comparing the many layers of a traditional virtualiza-
tion stack with a stack using containers. Containers are simpler
in their architecture, but they expose scalability issues within
the Linux kernel.

To solve the scalability issues, Junbin presented MultiLanes.
The data access for containers are partitioned using a parti-
tioned Virtual File System (pVFS) abstraction. pVFS exposes
a virtualized VFS abstraction for the containers. In turn, the
pVFS eliminates contention within the host VFS layer and
improves locality of the VFS data structures. pVFS communi-
cates with the host using a container-specific virtualized block
driver (vDrive). The driver takes care of submitting the I/Os
from the container to the host system. This allows each con-
tainer data partition to be split and thereby avoid contention on
host VFS locks. Junbin then explained the internal structure of
the virtualized driver.

They evaluated their solution using both micro and macro
benchmarks on the file systems ext3, ext4, XFS, and btrfs, with
microbenchmarks being metadata operations and sequential
writes. For all of them, the operations scale significantly better
with additional containers. The macrobenchmarks consist of
varmail, fileserver, and MySQL, showing similar performance

improvements. Finally, they discussed the overhead of their solu-
tion and show it to be negligible in most cases. However, exces-
sive block remapping did have a cost during high throughput.

Kai Shen (University of Rochester) asked whether MultiLanes
adds a large memory footprint for each of the channels they
create. Junbin said that their approach is complementary to
previous approaches. Yuan (UCSC) noted that for a large number
of containers using XFS the performance was much better than
for ext4. The answer from Junbin and Theodore Ts’o, the ext4
maintainer, was that it depends on the kernel version and other
work. Further discussion was taken offline.

Linux FAST Summit ’14: 2014 USENIX
Research in Linux File and Storage
Technologies Summit
San Jose, CA
February 20, 2014
Summarized by Rik Farrow

The Linux FAST Summit took place shortly after FAST ’14 had
finished. Red Hat offices in Mountain View provided a class-
room that sat 30, but the room was full to the point that some of
us were sitting in folding chairs at the front or back. Ric Wheeler
(Red Hat) moderated the workshop.

Unlike the one Linux Kernel Summit I attended, the focus of this
event was strictly on file systems and related topics. Another
difference was that—instead of having mainly industry in
attendance making requests of kernel developers—file system
researchers, mostly students and some professors, were there to
make requests for changes in how the kernel works.

The workshop began with Ric Wheeler encouraging people
to submit changes to the kernel. He also explained the ker-
nel update process, where a release candidate will come up
and be followed by multiple RCs that, outside of the first two
RCs, should only include bug fixes. Someone asked about rude
answers from Linus Torvalds, and James Bottomley (Paral-
lels) responded that sending in patches with new features late
in the RC process is a common way to get an angry response
from Linus. Also, the larger the patch set, the less likely it will
be accepted. Ted Ts’o (Google) pointed out that just getting a
response from Linus is a big deal and suggested seeing who is
responding to such a response and who is being ignored. He also
said that large intrusions to core infrastructure are less likely
to be accepted. Christoph Hellwig (freelance) pointed out that
changes to the core of the kernel are harder to validate and less
likely to be accepted, which makes it very hard to get very high-
impact changes made.

Ethan Miller (UCSC) wondered who would maintain the code
that a PhD contributes after they graduate, and Christoph
Hellwig responded that they want the code to be so good that the

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  77

REPORTS

candidate gets a job supporting it later. Ric Wheeler commented
on “drive-by” code drops, and said those are fine; if there is broad
community support for that area, like XFS or ext4, people will
review and support the change. James Bottomley said that it is
important to be enthusiastic about your patch. Ted Ts’o chimed
in saying that even if your patch is not perfect, it could be seen
as a bug report, or some portion of it might be successful. James
added that Google recruiters look for people who can take good
ideas and turn them into working implementations.

Jeff Darcy (Red Hat) asked where they find tests for patches, and
James said they could look at other file systems. xfstests go way
beyond XFS, and the VM crew has lots of weird tests.

Ethan Miller launched a short discussion about device drivers,
wondering who maintains them, and James Bottomley said that
any storage device that winds up in a laptop will be accepted into
the kernel. Ted Ts’o said that there were lots of device drivers
with no maintainer, and James Bottomley suggested that Feng-
guang Wu (Intel) runs all code in VMs for regression testing.
Andreas Dilger (Google) pointed out that his is just basic testing.
James said that SCSI devices might stay there forever, or until
someone wants to change the interface.

Ric Wheeler suggested covering how the staging tree for the ker-
nel works. James explained that there are about 300 core main-
tainer trees, and kernel releases are on a two- to three-month
cycle. Ted Ts’o said that RC1 and RC2 are where patches go in,
with patches accepted to RC3 being rare, and that by RC7 they
better be really critical patches, as that is just before a version
release. Ted also suggested that if you are a commercial device
builder, you want to test your device with RC2 to see if changes
have broken the driver for your device.

Erez Zadok (Stony Brook) asked for a brief history of the memory
management (MM) tree. Andrew Morton (Linux Foundation)
explained that MM had become a catchall tree where stuff also
falls through. Andrew collects these patches and pushes them up
to Linus.

After a short break, Ric Wheeler opened the discussion about
shingled drives. Ted Ts’o had suggested the ;login: article by
Tim Feldman (Seagate) and Garth Gibson (CMU) [1] as good
preparation for this part of the summit. Briefly, Shingled Mag-
netic Recording (SMR) means that written tracks overlap, like
shingles on a roof. These tracks can still be read, but writing
must occur at the end of a band of these shingled tracks, or a
band can be completely rewritten, starting at the beginning.
Random writes are not allowed. Vendors can make SMR drives
that appear like normal drives (managing the changes), partially
expose information about the drives (restricted), or allow the
operating system to control writing the drives (host-aware).

Ted Ts’o explained that he had proposed a draft interface for
SMR on the FSDEVEL list. The goal is to make the file system
friendly to having large erase blocks like flash, which matches
host-aware SMR behavior. If the device is restricted, you still

need the operating system to be aware that it is an SMR drive.
Ted suggested that this could be part of devmapper (if part of the
OS) and could begin as a shim layer.

Erez Zadok said that a group at Stony Brook had been working
with Western Digital and had received some SMR drives with
a firmware that does more and more, along with a vanilla drive.
One of his graduate students reports to Jim Molina, CTO of
Western Digital. Erez wanted to share what they’ve learned so
far with the Linux file system community.

First, the vendors will not let us put active code into drives. They
will provide a way of knowing when garbage collection (GC) is
about to start, and some standards are evolving. Vendors are
conscious of the desire for more visibility into the 500k lines of
code already in drives.

Because the drives come to Erez Zadok preformatted, Ric
Wheeler wondered what percentage remains random, as
opposed to shingled, bands. Erez said that the vendors wanted
less than 1% of SMR drives as random (traditional tracks)
because of the economics involved. They have already done some
work using NULLFS with the drives, and Jeff Darcy said he had
experimented with using a shim in the device mapper. Ted Ts’o
pointed out there was a real research opportunity here in build-
ing a basic redirection layer that makes a restricted drive appear
like a plain device.

James Bottomley thought that anything they wrote wouldn’t
last long, as the vendors would move the code into the drive. Eric
Reidel (Seagate) objected, saying that they need to determine the
boundary between the drive and some amount of software. That
boundary needs to take full advantage of the technology, cover-
ing the limitations and exposing the benefits. Eric encouraged
people to think about this envelope of some hardware and some
exposed interfaces.

Someone suggested using XFS’s block allocation mechanism.
Ted Ts’o said that if we could solve multiple problems at once
with Dave Chinner’s block allocation scheme, it would give us a
lot of power. Both ext4 and XFS have block allocation maps that
keep track of both logical and physical block addresses, but keep-
ing track of physical block addresses relies on getting informa-
tion back from drives.

Sage Weil (Inktank) wondered how many hints the drivers
would need to send to drives; For example, block A should be
close to B, or A will be short-lived. James Bottomley mentioned
that most people assume that the allocation table is at the
beginning of the disk. Erez Zadok replied that if we can produce
a generic enough abstraction layer, lots of people will use it. It
could be used with SMR, but also with raw flash.

Error messages are another issue. Erez said that some drives
produce an error if the block has not been written before being
read, and someone else said that the driver could return all
zeroes for initialized blocks. Erez said that currently, writing to

78    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

the first block in a zone automatically resets all blocks in that
zone, but is that the correct behavior? Bernard Metzler (IBM
Zurich) wondered whether it’s best to expose the full functional-
ity of this storage class, as was done with flash by Fusion-io. In
10 years, non-volatile memory (NVM) will replace DRAM, so
should we treat NVM like block devices or memory?

The mention of NVM quickly sidetracked the discussion.
Christoph Hellwig suggested that addressing NVM should not
be an either-or decision, while Ric Wheeler suggested that the
user base could decide. James Bottomley wondered about error
handling of NVM. Someone said they had tried using NVM as
main memory, but it was still too slow, so they tried it via PCI.
And they did try mmap, and the performance was not very good.
Christoph responded that what they have called mmap needs to
be fixed. The idea is to allow writes directly to a page in memory
and use DMA for backing store.

James Bottomley pointed out that putting NVM on the PCI bus
causes problems, because it makes it cross-domain. Ric Wheeler
said this was a good example of the types of problems we need to
know more about in that vendors can’t talk about what they are
doing, but then kernel developers and researchers don’t know
how to prepare for the new technology. Ted Ts’o said that he
knows that Intel is paying several developers to work on using
NVM as memory, and not on the PCI bus.

Erez Zadok said that this would be the first time we had a byte-
addressable persistent memory, with a different point in the
device space. He hoped it would not wind up like flash, where
there are very limiting APIs controlling access.

After another short break, two students from the University of
Wisconsin, Vijay Chidambaram and Thanumalayan Sanka-
ranarayana Pillai, along with Jeff Darcy (Red Hat), addressed
the group. They have a shared interest in new ways to flush data
from in-memory cache (pages) to disk, although for different
reasons. Vijay started the discussion by outlining the problem
they had faced when needing to have ordered file system writes.
The normal way of forcing a sync is via an fsync call on a partic-
ular file handle, but this has side effects. Sage Weil asked if they
were trying to achieve ordering in a single file, and Vijay said
yes. They had added a system call called osync to make ordered
writes durable and had modified ext4 and were able to do this in
a fairly performant way. Christoph Hellwig said that there really
was no easy way of doing this without a sync, and that no one
actually had written a functioning fbarrier (write data before
metadata) call. Vijay said that they had created a new mode for a
file, and Ted Ts’o asked if, when they osync, it involves a journal
command. Vijay responded that the osync wraps the data in a
journal command but does not sync it.

Jeff Darcy, a lead programmer for Gluster, said that he just wants
to know what ext4 has done, because they need the correlation
between user requests and journal commits. Christoph said they
could easily do that in the kernel because each time they commit,

there is a log sequence number. They could wait for the return
from disk and use the log sequence number to implement osync.
Ted said that it’s the name that’s the problem, like a cookie to
identify the osync write. Jeff said that getting a cookie back that
can be used to check if a write has been committed would be
enough for their purposes.

Vijay stated that their main concern was knowing when data
has become durable (not that different from Darcy’s concern).
Kai Shen (Rochester) said he liked the idea, but that it’s not easy
to use in comparison with atomicity. Kai had worked on a paper
about msync, for doing an atomic write to one file. Ric Wheeler
pointed out that Chris Mason (btrfs lead) has been pushing for
an atomic write, which has not reached upstream (submitted
for a kernel update) yet, but is based on work done by Fusion-io.
Vijay complained that with ext4, you have metadata going to the
journal and data going to the disk, but they need a way of doing
this atomically. Sage Weil pointed out that there is no such thing
as a rollback in file systems. Jeff Darcy said that all distributed
databases have the same problem with durability.

Thanumalayan finally spoke, saying that they had discovered
people doing fsync after every write and had been searching for
patterns of fsync behavior themselves. When they shared the
patterns they had uncovered with application developers, the
developers’ convictions about how things work were so strong
they almost convinced him. The room erupted in laughter. On
a more serious note, Thanumalayan asked, if he does a number
of operations, such as renames, do they occur in order? Andreas
Dilger said they don’t have to, but get bunched up. Ted Ts’o men-
tioned that an fsync on one file implies that all metadata gets
sync’d in ext4 and XFS, but not zfs or btrfs. However, that could
change, and we might add a flag to control this behavior later.

Ric Wheeler liked this idea and suggested having a flag for async
vs. fsync behaviors and being able to poll a selector for comple-
tion. Christoph Hellwig thought this wouldn’t buy you much with
existing file systems, but Ric thought it was worth something.
Ted Ts’o said they could add a new asynchronous I/O type, and
Christoph said that AIO sync has new opcode, IOCB_CMD_
FSYNC, exposed to user space, that is not “wired up.” Ethan
Miller said it would be nice if you could request ordered writes.
Greg Ganger (CMU) explained that there’s a good reason why
databases use transactions, and that they had tried doing this,
and it’s really difficult.

Erez Zadok commented that it’s interesting to listen to the com-
ments, as he has done 10 years of work on transactional storage,
worked with umpteen PhDs on theses, and so on. The simplest
interface to expose to users is start transaction/end transaction.
To do this, you must go through the entire storage stack, from
drivers to the page cache, which must be flushed in a particular
order. Once he managed to do all that, he found that people didn’t
need fsync. Vijay piped up with “that’s what we’ve been trying to
do,” and Sage Weil said they had tried doing this with btrfs and

www.usenix.org	   JUNE 2014  VOL. 39, NO. 3  79

REPORTS

wondered if they ever got transactions to work. Erez replied that
they had gotten transactional throughput faster than some, but
Thanumalayan jumped in to say they had run into limits on how
large a transaction could be. Vijay said that if you start writing,
then use osync—it works like a transaction.

Ric Wheeler then commented that this is where kernel people
throw up their hands and say show us how easy this is to do. Ted
Ts’o wondered why it couldn’t be done in user space (FUSE), and
Ric replied that they need help from the kernel. Sage Weil had
tried making every transaction checkpoint a btrfs snapshot, so
they could roll back if they needed to. Jeff Darcy said that if you
need multiple layers working together, you will have conflicting
events. Thanumalayan just wants a file system with as much
ordering as possible. He was experimenting with what hap-
pens to a file when a crash occurs, and said that POSIX allows
a totally unrelated file to disappear. Christoph Hellwig shouted
out that POSIX says nothing about crashes and power outages,
and Jeff agreed that POSIX leaves this behavior undefined.

Jeff claimed he would be happy if he could get a cookie or trans-
action number, flush it with waiting, and select on that cookie
for completion. Greg Ganger suggested he actually wanted more,
to commit what he wants first. Vijay explained that the NoSQL
developers they’ve talked to don’t need durability for all things,
but for some things, and that they have code, used for an SOSP
2013 paper, as an example. Jeff thought that NoSQL developers
make assumptions about durability all the time, and about how
fsync works. Ted Ts’o thought that all they needed to do was
add new flags, or perhaps a new system call. Christoph Hellwig
pointed out that there is sync_file_range, for just synchronizing
file data within the given range, but not metadata, so it isn’t very
useful.

Kai Shen suggested that perhaps fsync should work more like
msync, which includes an invalidate flag that makes msync
appear atomic. Christoph said that older systems didn’t have a
unified buffer, so you had to write from the virtual memory sys-
tem to the file system buffers. Ric Wheeler mentioned user space
file systems, and Sage Weil suggested that it would be nice if
you could limit the amount stored in the caches based on cgroup
membership. James Bottomley stated that the infrastructure is
almost all there for doing this with cgroups already.

Sage brought up another problem: that when a sync occurs, the
disk gets really busy. Because of this, they (Inktank) actually
try to keep track of how many blocks might be dirty so they can
guess how long a sync might take. Jeff Darcy concurred, saying
that they do something similar with Gluster. They buffer up as
much as they can in the FUSE layer before pushing it into the
kernel via a system call. James said that the Postgres people
want the ability to manage write-ahead as well. Christoph
clarified this, saying that they want to use mmap for reads, but
control when to commit data (write) when it changes. They don’t

want the kernel storing the data on its own, but rather they want
a backing store in place. This would be like mmap private.

James Bottomley said that the problem is related to journal lock
scaling, when you want a lock for each subtree. You want to make
the journal lock scale per subtree. Ted Ts’o pointed out that the
last paper at FAST [2] covered this very topic. James pointed
out that this would be a problem for containers, which are like
hypervisors with only one kernel (like Solaris has in some form).

Kirill Korotaev (Parallels) then went to the front of the room to
introduce another topic: FUSE performance. Most people think
FUSE is slow, said Kirill, but they have seen up to 1 GB/s in real
life. After that, bottlenecks slow more performance gains. To
get past that, they need some interface to do kernel splicing and
believe that would be quite a useful interface. Copying using
pipes is very slow because pipes use mutex locks, and pipes don’t
work with UNIX sockets. What they basically need is the ability
to do random reads of data with these buffers and to send them
to a socket. Kirill also questioned why there’s a requirement that
data must be aligned in memory. Andrew Morton said that was
a very old requirement for some devices, and James Bottomley
said that’s why there is a bounce buffer for doing alignment
under the hood.

Kirill wanted to revive IOBuff, where they could attach to pages
in user space, then send them to sockets. James pointed out that
except for DirectIO, everything goes through the page cache, and
moving data from one file to another is hard. Ric Wheeler asked
if the interface was doable, and Kirill said that they think it is.
Andrew Morton wondered if this was different from sendfile,
and Sage Weil thought perhaps splice would work as well, but
Kirill responded that neither work as well. Sage thought the
problems could be fixed, but Kirill ended on the note that if it
were easier, it would have been done before.

George Amvrosiadis (University of Toronto) introduced the
topic of maintenance and traces. For durability, storage systems
perform scrubbing (background reads) and fsck for integrity, but
today those things need to be done online. The issue becomes
how to do this without disturbing the actual workload. For
scrubbing in btrfs, you get an upper bound on the number of
requests that can be processed during scrubbing. Ric Wheeler,
who worked at EMC before moving to Red Hat, asked how often
do you want to scrub, and how much performance do you want to
give up, and for how long.

George Amvrosiadis wanted to monitor traces and then use the
amount of activity to decide when to begin scrubbing during
what appeared to be idle time. Ric Wheeler said that while he
was at EMC, he saw disks that were busy for years, and the only
“idle time” was when the disks performed self-checks. Andreas
Dilger asked if there was an idle priority, and George said they
wanted to do this for btrfs. The problem is that all requests look
the same, as maintenance requests look like other requests. Ric
responded that they need a maintenance hint. Ted Ts’o said you’d

80    JUNE 2014  VOL. 39, NO. 3 	 www.usenix.org

REPORTS

need to tag the request all the way down to the block device layer,
orthogonal to priority. George then stated that all they want to
do is optimize when to schedule scrubbing. James Bottomley
said they already have a mechanism for increasing the prior-
ity of requests, and perhaps they could also support decreasing
priority. Ric replied that this sounded like the “hints” stuff from
last year’s Linux Filesystem Summit. If the file system supports
it, although we can’t guarantee it, we can at least allow it, so this
sounds easy.

Ethan Miller wondered if you have devices with built-in intel-
ligence, do you really want both the device and the kernel doing
scrubbing? Ric answered that you want to scrub from the
application down to the disk, checking the entire path. George
Amvrosiadis then asked if scrubbing could cause more errors or
increase the probability of errors. Ethan said that scrubbing has
no effects; it’s just reading. But Eric Reidel pointed out that all
disk activity has some small probability of causing a problem,
like smearing a particle on a disk platter. These probabilities are
small, compared to the MTBF for a drive.

George Amvrosiadis still wanted some hint from the file system
that work was about to begin. This brought up a tangent, where
Ric Wheeler pointed out that batching up work for a device has
caused problems in the past. Andreas Dilger explained that if
just one thread were writing, you could get 1000 transactions
per second, but if the application were threaded, and two threads
were writing, the rate would go down to 250 per second. The
problem occurred because the file system would wait a jiffy (4 ms
at the time) trying to batch writes from threaded applications.

Greg Ganger said that there is a temptation to do all types of
things at the SCSI driver level so it can do scheduling, and Ric
Wheeler responded that the storage industry has been looking
at hints from the file system for a long time. James Bottomley
replied that the storage industry wanted hints about everything,
a hundred hints, and Ted Ts’o added, not just hints, but 8–16
levels for each hint.

George Amvrosiadis then asked about getting traces of read/
write activity, and Ethan Miller agreed, saying that they would
like to have interesting traces shared. Ric Wheeler said that peo-
ple have worked around this using filebench, and Greg added that
it would be nice to have both the file and block level trace data.

Erez Zadok, the co-chair of FAST ’15, said that USENIX is
interested in promoting openness, so for the next FAST, when
you submit a paper you can include whether you plan on sharing
traces and/or code. Christoph Hellwig said just include a link to
the code, and Ted Ts’o added that could be done once a paper has
been accepted. Ethan Miller said that anonymization of traces
is really hard, and they had experience working with NetApp on
wireshark traces for a project in 2013. Erez pointed out that HP
developed a standard, the Data Series format, and also developed
public tools for converting to this format. He continued saying
that EMC plans on releasing some traces they have been collect-

ing for several years, and that a past student, Vasily Tarasov, had
spent a week at their datacenters collecting statistics.

Several other topics were covered during the final hour: RDMA,
dedup, and scalability, but your correspondent missed this in
order to catch a flight to SCaLE 12x in Los Angeles.

I did appreciate getting to watch another summit in progress,
and was reminded of evolution. The Linux kernel evolves, based
on both what people want, but even more on what contributors
actually do. And, as with natural evolution, most steps are small
ones, because changing a lot at once is a risky maneuver.

References
[1] Tim Feldman and Garth Gibson, “Shingled Magnetic
Recording: Areal Density Increase Requires New Data Man-
agement,” ;login: vol. 38, no. 3 (June 2013): https://www.use-
nix.org/publications/login/june-2013-volume-38-number-3
/shingled-magnetic-recording-areal-density-increase.

[2] Junbin Kang, Benlong Zhang, Tianyu Wo, Chunming Hu,
and Jinpeng Huai, “MultiLanes: Providing Virtualized Stor-
age for OS-level Virtualization on Many Cores”: https://www
.usenix.org/conference/fast14/technical-sessions
/presentation/kang.

