®
o ®
THE MAGAZINE OF USENIX & SAGE
, ‘ February 2001 e volume 26 e number 1

inside:

CONFERENCE REPORTS

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild




This issue’s reports is on the First
Workshop on Industrial Experiences
with Systems Software

(WIESS 2000).

OUR THANKS TO THE SUMMARIZER:

Alan Messer

February 2001 ;login:

conference reports

First Workshop on Industrial
Experiences with Systems
Software (WIESS 2000)

Octoeer 22, 2000

SaN Dieco, CaLiForNIA, USA
Summarized by Alan Messer

KEYNOTE ADDRESS

James Gosling, Sun Microsystems
James Gosling presented the keynote
address on his experiences with getting
the design principles behind creating the
Java language out into the real world.

Despite its fairly recent rise to fame, the
project which led to Java was begun 10
years ago. Several consumer electronic
companies were trying to define software
models for their future products to solve
portability, interface, and programmabil-
ity problems. Instead of trying to tackle
each of these problems head on, the proj-
ect looked for a simple, overarching solu-
tion.

Despite its aims for a Write Once, Run
Anywhere paradigm, today Java is mostly
a Learn Once, Work Anywhere language
due to the proliferation of different Java
versions and profiles adapted to particu-
lar environments.

In Java’s progression from research proj-
ect to commercial language, many fea-
tures got dropped (bad ideas, deadlines,
etc.). However, in this process most of
the really good ideas managed to stay,
along with a few “features.” Of those that
stayed, the garbage collector is probably
one of the nicest features for developers
to use on a day-to-day basis, along with
features like array subscript checking.

But even today there are many requests
for new features to be added to the lan-
guage. A fairly elegant proposal to incor-
porate generics (type polymorphism) has
been made. There are also proposals to
adapt good features from other lan-
guages, such as function invariants (Eif-
fel) and assertions (C, C++). And there
are always requests for some of those

features that never made it from C, such
as enumerated types, not to mention
many new APIs for particular domains
such as real-time.

Those features which require actual lan-
guage extensions present a problem,
especially if they also require changes to
the underlying virtual machine. Thank-
fully, the virtual machine has managed to
stay mostly the same, ensuring compati-
bility at the interface level, and important
features slowly make it, when necessary,
into the language itself.

REFEREED PAPERS
SESSION: SYSTEM ARCHITECTURE

OPERATIONAL INFORMATION SYSTEMS:
AN EXAMPLE FROM THE AIRLINE INDUSTRY

Van Oleson, Delta Airlines; Karsten
Schwan, Greg Eisenhouer, Beth Plale,
and Carlton Pu, Georgia Institute of
Technology; and Dick Amin, Delta
Airlines

Van Oleson spoke on Delta Airlines’
experiences in cooperation with Georgia
Tech in adding enhanced information
systems to Delta’s operational informa-
tion system.

The project started as a skunkworks proj-
ect in Delta after a previous project failed
to bring the required additional infra-
structure to support next-generation air-
line information services (e.g., gate
information).

Existing infrastructure is antiquated at
best and large scale (cluster of IBM
S/390s), with WAN links (up to ATM) to
outlying airports serving 10,000+ flight
displays across the country. Adding an
order-of-magnitude more displays and
enhanced services (connection direc-
tions), at low cost, to an operational sys-
tem presents a challenging task.

This project took the approach of tap-
ping the existing system and deriving
event notifications from the existing
infrastructure. This enabled them to pro-
vide the enhanced services required plus



tackle the scalability and availability
issues of the existing system.

Using the tapping approach, a secondary
piggyback system provides support for
the enhanced services and uses modern
techniques such as weak multicast and
fail-over UNIX clusters to meet the scala-
bility and high availability requirements
of the system. To make use of existing
network infrastructure in the presence of
a large quantity of data, just-in-time
XML transcoding was used to compress
and translate data from the servers to the
flight displays.

This project not only presents many
interesting problems similar to those
solved by distributed middlewares, but
also shows how real-world problems
require both integration with existing
systems and mind-sets able to meet new
requirements in operational systems.

Question: Is Delta collaborating with
other airlines on this project?

Answer: This is looked on as a business
advantage by Delta, so at this stage there
is no interaction with other airlines.

EXPERIENCES IN MEASURING THE RELIABILITY
OF A CACHE-BASED STORAGE SYSTEM

Dan Lambright, EMC

Dan Lambright described work at EMC
in measuring the software reliability,
maintainability, and availability of a disk
cache. What happens when one of the
cache lines fails or a software error causes
a line to be unreliable?

The problem with such questions is that
the limitations in existing tools make fail-
ures hard to detect. With this lack of
good detection tools, such failures are
also typically slow to fix. While this may
be less of a problem for small systems,
large systems these days have large quan-
tities of cache which can account for up
to 32Gb of space. Clearly, with so much
caching, availability is a key concern, but
how do you measure, detect, and under-
stand it?

This project took the approach of using
software fault injection tools to help
determine the effect of errors on the sys-
ten’s availability, maintainability, and
performance. Errors were injected into
the cache maintenance data structures to
discover the consequences of those errors
and the ability to detect those errors.

This work found that typical existing
diagnostic tools were fairly ineffective,
since they stopped at the first error
detected. Also, existing QA were initially
resistant to fault injection techniques.
Lastly, they discovered that several errors
lead to system unresponsiveness rather
than to errors affecting maintainability.

Question: Did you consider data errors
too?

Answer: No, this was not considered for
this study.

Question: Since programmers always
think tests are error free, is coverage lim-
ited with programmer-designed tests?
Answer: Yes. Developers are good, but
development-group-based tests (testing
each other) are better. Also, developers
get feedback (pagers) on software/test
problems.

HP ScALABLE COMPUTING ARCHITECTURE
Arun Kumar and Randy Wright, HP

Arun Kumar presented his experiences in
moving computer architecture from its
embodiment at the Convex Exemplar to
the HP V-class when they were acquired
by HP. The HP Scalable Computer Archi-
tecture was proposed to extend the scala-
bility of the V-class through a cross-bar
to link four V-class nodes together in a
large SMP machine. The V-class presents
both local private memory (e.g., kernel)
and a shared global memory (e.g., user
applications).

Moving to and integrating with this
complex architecture presented many
problems, including existing hardwired
hardware paths in the system configura-
tion, lack of MP safety in existing

semaphores, clock synchronization, TLB
purging problems, cache coherency prob-
lems, and scalability.

Each problem had to be resolved without
disturbing the existing architecture (soft-
ware and hardware) too much, in order
to integrate with existing solutions. For
example, paths are used to reference
resources in the HP-UX configuration.
Previous configurations didn’t include
node IDs. While it is simple enough to
add these, it is also important to still
function when there is only one node. To
solve the real-world system software
engineering problem, relative paths were
introduced, allowing existing node ID-
less paths to function with node ID
paths.

Similar solutions were used for other
problems: software RPC to provide
global TLB purge; clock drift software
monitoring; limiting access to disallow
simultaneous write and execute permis-
sions on a page. Combined, these solu-
tions allowed the architecture to meet
existing product software requirements
while forging ahead with hardware archi-
tectural enhancements.

Question: Have there been scalability
studies of the system?

Answer: Yes, for aspects like locking gran-
ularity issues. We now have a much bet-
ter understanding.

Question: How do HP-UX and Mach
compare in performance, since Exemplar
hardware is similar to V-class?

Answer: Mach was more scalable initially.

Question: What sort of applications is
this system aimed at?

Answer: Best scalability is for scientific
workloads; commercial workloads have
less scalability right now.

Vol. 26, No. 1 ;login:



SESSION: PERFORMANCE

STtuB-CODE PERFORMANCE IS BECOMING
IMPORTANT

Andreas Haeberlen and Jochen Liedtke,
Karlsruhe University; Yoonho Park, IBM
Watson; Lars Reuther, Dresden Univer-
sity; and Volkmar Uhlig, Karlsruhe Uni-
versity

Andreas Haeberlen and Jochen Liedtke
presented research into the performance
of stub code generated by the Flick com-
piler from the L4 IDL interfaces. Since
the IDL compiler uses conservative
knowledge of the interfaces, the stubs
generated can have similar performance
to cross-domain calls that must pass
through the optimized L4 kernel.

To overcome these problems the com-
piler was modified to copy the stack
directly and to use indirect string refer-
ences (since the same address space is
known). Doing so increases performance
significantly and halves the size of the
stub code (less marshaling).

The aim of this work is to feed back into
the Flick compiler to support enhance-
ments in more IDL primitives and to
produce an order-of-magnitude
improvement in intra-domain calling
performance.

Question: Could I use the OS to make an
addressing alias to avoid copying?
Answer: Yes, you can do this with L4, but
this is not Linux semantics.

HP CALIPER: AN ARCHITECTURE FOR
PERFORMANCE ANALYSIS TOOLS

Robert Hundt, HP

This work presented the Caliper perfor-
mance analysis tool, which is being devel-
oped for upcoming IA-64 architecture
systems such as Itanium. Caliper presents
a comprehensive performance analysis
tool to replace the limited tools being
phased out and to support the complex
functionality of the IA-64 architecture.

One of the biggest problems with exist-
ing tools is the need to recompile source
code and relink or insert intrusive moni-

February 2001 ;login:

toring sequences. By this intrusion in the
compilation or run-time process, such
tools are used sparingly in large projects.

Caliper aims to overcome this by using
support from the IA-64 processor to
dynamically insert instrumentation (or
in fact other types of program control/
monitoring) callbacks into executing
applications. These callbacks then call
into a shared library to pass information
to the front end. Doing so reduces the
intrusion and improve performance,
since monitoring code is only executed/
added when needed.

The IA-64 architecture presents many
complexities for such a tool. Currently
the IA-64 implementation only supports
a 25-bit branch, with 64-bit branch emu-
lated, so callbacks have to be carefully
integrated in order to overcome the emu-
lation performance hit. Likewise, excep-
tions are complex in [IA-64 (see the talk
“C++ Exception Handling for IA-64,”
below), which makes tracing C++ com-
plex.

As a result of this approach, since only
12-40% of functions are reached, good
performance can be had of between 1%
and 80% overhead depending on work-
load. Performance monitoring, however,
is only one of the possible uses of the
tool; the hope is to extend its uses with
support for pthreads, debugging, mem-
ory checking, and software fault injec-
tion.

Question: Do you need to stop threads
for instruction/write updates on a bun-
dle?

Answer: Currently yes, but we plan on
developing an enhanced approach using
templates to place breakpoints at the
start of the bundle.

Question: IA-64 is very sensitive to code
performance. How does this tool help?
Answer: Yes, compilers aren’t perfect, but
they have improved over time. The out-
put of Caliper can be used by the opti-
mizer to improve performance.

Question: What is the effect on debug-
ging tools?

Answer: We control the whole machine
and effect execution. We want to add
debugging facilities to our system to
allow enhanced debugging too.

Question: How does this compare to
DEC’s Atom?

Answer: I believe that was only static, not
dynamic.

INVITED TALK
INTERACTION WITH TV IN 2003

Simon Gibbs, SONY Distributed Systems
Lab

This talk and demonstration investigated
the possibility for interactive television
by the year 2003. Simon initially outlined
the kind of system support we might
have in 2003 to enable interactive TV
services. In addition to the multi-channel
content, such systems will have data con-
nections in both directions. Return chan-
nels will use modems or broadband
connections, depending on client cost.

With this environment, what form of
interactive services might we see? A lot of
services are enhancements to existing
production facilities with multiple video
feeds or data, such as sporting events,
quizzes, news, etc. In such situations,
existing data can be leveraged rather than
making custom interactive TV produc-
tions.

During the talk the following potential
service ideas were demonstrated in the
context of a motor sport event:

= statistics that follow the cars’ posi-
tions, velocities, etc., and the ability
to view a statistic of choice rather
than being force-fed

= multiple-player interactive sport
quizzes

= use of real car data to offer real com-
petition in motor sport racing games

= superimposed racing of a computer-
ized car against the real video
footage, allowing competitive inter-

CONFERENCE REPORTS




action and correct, realistic race car
graphic integration

The promise of interactive TV has been
with us for a while. This talk outlined the
possible infrastructure and interaction
ideas that may well find their way into
your living room soon, if they can appeal
to enough consumers.

REFEREED PAPERS: TOOLS
INCREMENTAL LINKING ON HP-UX

Dmitry Mikulin, Murali Vijayasundaram,
and Loreena Wong, HP

This work covered a team’s experience
with providing incremental linking on
HP-UX to improve link times in the
development cycle of large applications.
Incremental linking works by initially
linking the application together and then
being able to relink changes without
completely relinking the binary.

Incremental linking has several prob-
lems. First, the padding areas must be
correctly sized and placed to allow the
best use of space for relinking. There may
also be many symbols which are defined
in several places and contexts (weak and
strong symbols). Finally, changes
required by the relink must be integrated
and relocated as appropriate.

The approach taken in this work is to pad
on a per function basis, with two copies
(old and new) kept when relinking sym-
bols to help resolve multiple symbols.
The result is a linker capable of linking to
produce a 3—11x performance increase,
with a slightly slower initial link phase.

Question: Have you considered padding
functions rather than object code
padding?

Answer: Yes, HP-UX already puts func-
tions in separate sections. It is a balance
between padding and time saved, ulti-
mately.

Question: What are the performance
penalties of the approach?

Answer: Slower due to size increase and
therefore increased cache misses, etc. But

this is only used for development/debug-
ging cycles.

AUTOMATIC PRECOMPILED HEADERS:
SPEEDING UP C++ APPLICATION BuILD TIMES

Tara Krishnaswamy, HP

Tara Krishnaswamy introduced interest-
ing work on the correct precompilation
headers needed to speed up application
time, since typically 50-95% of compila-
tion time involves header processing in
nightly builds. Some compilers
(Microsoft) perform caching already, but
they work on a per function basis, caus-
ing problems if dependence changes are
made to avoid the header inclusion.

This work tries to overcome these prob-
lems by attempting to identify the initial
part of each source file which is responsi-
ble for C preprocessor definitions. It then
takes this region and precompiles it into
a separate file. At build time, a checksum
is used to determine whether the file has
been updated. With no update the pre-
compiled information is loaded into the
compiler directly.

Problems exist in identifying this pre-
compile region, since the C preprocessor
has global scoping, and compilation flags
can affect preprocessing too. These are
overcome by identifying the configura-
tion when precompiling and comparing
configuration as well as checksums.

The result of this approach is a 20-80%
speedup over normal compilation, at the
cost of wasted space on processing dupli-
cate inclusions. You must be careful when
using version control systems, however,
since the caches should not be shared
and thus should not be in the control
system.

Question: Can you use this to compile all
sources?

Answer: Yes. We have a means to over-
ride, if needed. We haven’t had any prob-
lems.

Question: Can you determine when a
header is not needed?

Answer: No, youd need a feedback-
driven system.

C++ ExcepTiON HANDLING FOR |A-64
Christophe de Dinechin, HP

This talk covered the problems of imple-
menting C++ exception handling for IA-
64 architecture processors. C++
exceptions present several problems to
solve in order to get good performance.

First, it is possible to throw any type,
leaving the compiler to find the right
implementation. Second, exceptions can
be rethrown at runtime. Last, exception
lifetimes aren’t attached to the object
scope. While these problems apply to all
C++ compilers on IA-64, compiler opti-
mization of these problems is important,
since there is a 20x performance
difference between -O0 and -O2 opti-
mizations. Problems which the compiler
must consider are: explicit parallelism,
speculation (with alias problems), predi-
cation, register stack manipulations,
memory state ordering, and register
selection constraints. However, with
exception processing, execution flow can
take any code anywhere.

All told there is too much complexity to
track all exception possibilities, so instead
the compensation code is generated to
give the compiler more freedom restor-
ing visible state, copying registers, updat-
ing memos, etc., along with providing
cleanup code to tidy up after exceptions.

The result is an exception implementa-
tion with little speed penalty, but with
around a 30% overhead from cleanup
and compensation code. This compares
favorably to the PA-RISC implementa-
tion, but without the size overhead.

Vol. 26, No. 1 ;login:



PANEL SESSION: SYSTEMS SOFTWARE
RESEARCH AND TECHNOLOGY
TRANSFER

Andrew Tanenbaum, Vrije Universiteit,
Amsterdam; Rob Pike, Bell Laboratories;
Marshall Kirk McKusick, author &
consultant; and Rob Gingell, Sun
Microsystems

Each panelist was asked to give his opin-
ion on the subject.

RobG: Does it work? Yes and no. Social
problems make it fail in the transfer step.
Cooperation is difficult, research dies in
the transfer. It is important to match tim-
ing and problem constraints and then be
willing for it to take a long time.

Kirk: Open source is good for technology
transfer, but the problem is money. There
are many ways, not only the RedHat ser-
vices approach. IBM, for example, seems
to manage it well. In addition to transfer
it can bring the costs down by an order of
magnitude.

RobP: It’s a catch-22 situation we have
seen several times with Blit, UNIX, and
Inferno. Success depends on being differ-
ent from and the same as the market. You
need to communicate, since colleagues
will know more about work in compa-
nies other than your own. So you must
use buzzwords to get attention and be
prepared to transfer outside the company
to get it back into the company again.
Also, interns are a good way to transfer
research.

Andy: Experience with Amoeba was not
good — despite a book and a deal with a
UNIX company, the product was expen-
sive and no free trial was available. The
UNIX company blamed the failure on
giving it away. Given this experience the
only way that seems to work is to transfer
from research through students to com-
panies.

Question: How to avoid research not
looking too far out?

Andy: You should do what is innovative
and see what comes out.

February 2001 ;login:

Kirk: Transfer takes a long time, so you
should look far enough ahead.

Question: Are startups a good, quick
path?

RobP: Companies don’t understand how
to keep employees from startups.

Question: Don’t universities lack tech-
nology transfers?

WIESS in session

Andy: Not necessarily true. A lot of uni-
versities are doing good transfers, plus
patents. But for some the tie is too close
(e.g., UC Berkeley).

RobP: MIT gets a lot of their money
from old patents.

Question: Is a good mechanism for
transfer between companies to buy them?

RobP: Yes, but some are successful, or
not. There are two reasons to buy: either
to better the company or to stop the
other company. The culture shift on
acquisition is the biggest problem.

Question: Would Amoeba have trans-
ferred better if it had been given away?

Kirk: Yes.

Andy: I don’t believe there is a future in
free software. There’s no free hardware or
free books.

Question: Is shareware better?

Andy: I think this is just a marketing
technique.

Kirk: Free software isn’t really free. Inte-
gration is the key motivation too.

Question: We know what doesn’t work.
What does?

Andy: If you stay with the idea, e.g.,
Ethernet.

RobP: I agree, staying with the idea seems
to work, e.g., C++. Luck is very impor-
tant, or pigheadedness, but it takes a long
time.

Kirk: You need a destination for the idea.
The software development community
(open source) is one such destination.

Question: How important is getting
source into people’s hands?

RobP: Very important. We get lots of
UNIX folks these days. But UNIX wasn’t
free, it came from the community.

Question: Why are free UNIXes doing
better at fracturing than commercial?

Andy: There are many free UNIXes!
Linux is one man and nobody has tried
to fracture it yet.

RobG: Linux is 1386 and there was no
other real 1386 UNIX. The real test will
come when new ideas are needed and
seeing how they coordinate.

Question: Any good counter examples to
go with?

RobP: Internal startups seem to work.
Most transfer failures are the result of
social problems.

RobG: They can work when research and
ideas are not disruptive, but they need
effort to transfer.

Question: If you could do a transfer
again, what would you do?

Andy: Give Amoeba away.
RobP: Kill lawyers.
RobG: Help Rob Pike.

Conclusion

Andy: It seems that transfer from univer-
sities works best only when you can
transfer it through students.

RobP: I agree with Andy; ideas move best
with people and there must be a drive to
succeed.

CONFERENCE REPORTS




10

Kirk: Open source does work, but not in
all areas.

RobG: Transfer can work depending on
the disruption caused. Big ideas cause
problems. Have realistic time frames.

INVITED TALK
SURFING TECHNOLOGY CURVES
Steve Kleiman, Network Appliance, Inc.

In this talk, Steve gave an overview of the
technology “waves” which Network
Appliance saw and used, in order to fur-
ther their business. Steve identified five
particular waves:

= Filers — commodity storage appli-
ances became possible. Standard
components and protocols used in
devices to achieve a small subset of
reliable functions.
Memory-to-memory interconnec-
tion and fail-over — commodity high
availability support using dual
ported disks and memory-to-mem-
ory interconnect to provide seamless
fail-over.

The Internet — cache appliances to
move services to edge. Again, the
aim of providing a simple set of reli-
able functions (Web and stream
caching) in a server appliance.
SnapMirror — traditional backup
storage became too small or too slow
for modern needs. But by using high
density backup disks and fast data
channels, good availability could be
achieved.

Local file sharing — direct access to
storage through the VI Architecture
using Fibre Channel, Infiniband, and
the like. This enabled storage to be
dissociated from machines, increas-
ing scalability.

Each wave came as the possibilities of
software and hardware brought new ways
of looking at traditional problems, such
as the move to appliances rather than
monolithic systems.

In order to respond to these changes the
structure of the system software needed
to compensate. For example, no longer
were general-purpose operating systems
the slow choice. Instead, in order to get
really good performance, specialized or
refined system software — e.g., the
DataOnTap architecture — is much more
appropriate.

This led to the use of a small-message-
passing operating system with no pre-
emptive scheduling in Network
Appliance. This allowed for low latency,
high bandwidth operations with applica-
tion-controlled resource allocation.

Question: Are there any problems com-
ing up when we have a 10 Gigabit Ether-
net?

Answer: No, there will be many small
disks to distribute the load. I don’t think
it will really affect the architecture of
storage servers.

Question: Are disks going to run out?
Answer: No. This has been a prophecy for
ages. I don’t think it will happen.

Question: Does memory speed scale?
Answer: It seems bandwidth is okay, but
perhaps latency will be a problem.

Vol. 26, No. 1 ;login:



