®
o ®
THE MAGAZINE OF USENIX & SAGE
, ‘ February 2001 e volume 26 e number 1

inside:

RIK FARROW:
MUSINGS

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

64

by Rik Farrow

Rik Farrow provides
UNIX and Internet
security consulting
and training. He is
the author of UNIX
System Security and
System Administrator’s
Guide to System V.

<rik@spirit.com>

musIings

Thinking outside the box. That is how security exploits get created, and
what software writers most often forget about. Several months ago, tracer-
oute, a set-user-id root program, was exploited by calling the source route
option flag twice. Who would have thought that anyone would use the same
command line option twice? Certainly not the author of traceroute, who was
really concerned about creating a tool that could show the route to a desti-
nation, or where the route prematurely ended.

Thinking outside the box doesn’t have to be particularly deep thinking. Web sites that
include the purchase price of items in the URL make it easy to change the price, simply
by editing the URL (almost point-and-click). Also exploitable are firewalls that include
a backdoor for vendor support and use sniffable passwords for root access. No one was
supposed to know about port 3000, and besides, popular password sniffers only lis-
tened to low-numbered ports. This particular hole was fixed many years ago — it just
still amazes me that a well-known (at the time) firewall vendor would do such a thing.

Another way of thinking outside the box is through “misuses” of networking protocols.
Now, really, there is no such thing as a misuse of a protocol. Protocols are conventions
that permit communication, usually between consenting clients and servers. For exam-
ple, when you use a Web browser, it obeys the conventions found in either RFC 1945 or
RFC 2068 to communicate with the Web server (HTTP versions 1 and 1.1). Essentially,
the Web browser sends a request that includes a simple header to the server, and the
server sends back a simple header that includes as its first item a result code, and possi-
bly the requested item.

You can do more than request Web pages. You can execute code on the Web server
through CGI, ASP, server-side includes, and other mechanisms, like Java servlets. But
let’s think outside the box for just a minute. Most organizations that have firewalls per-
mit their users to roam the Web. In some instances, certain sites are blocked based on
their names (and because these sites contain information not pertinent to work or in
compliance with accepted morals at the organization). We can assume that with the
exception of these cases, you can use a Web browser to connect to remote Web servers.

Well, then you can also use HT'TP to tunnel through your firewall. For example, sup-
pose your firewall does not permit you to telnet to your home computer. You could
then download the HTTPTunnel (<http://www.nocrew.org/software/httptunnel. html>),
forward the remote end to port 23, where your telnetd is listening, and use the client
side of this tunnel (htc) to forward a local telnet connection through the tunnel. The
data will be formatted as valid HTTP PUT requests and responses, and your firewall
will happily let you use telnet — as long as it is embedded within the HTTPTunnel.

Before Checkpoint changed their defaults (with version 4.1), a fun thing to do was to
set up a server listening at port 53, such as netcat that executed a shell, and connect to
it through the firewall. Although port 53/TCP is supposed to be used for DNS, most
firewalls do nothing to enforce the actual use of DNS, so you can connect to a shell,
enter commands, and have the results sent back. This is almost too trivial. Only appli-
cation gateways (sometimes called proxy servers, or, in the case of Checkpoint, security
servers) actually check to see if the appropriate protocol is being used on a particular
port. The HTTPTunnel will pass most application gateways, as it conforms to protocol
specs in the RFCs for HTTP headers.

Vol. 26, No. 1 ;login:

http://www.nocrew.org/software/httptunnel.html>

There is an even cuter trick someone wrote. You can use DNS requests to tunnel com-
mands to a remote server. A posting on Slashdot describes a “new protocol” NSTX
(Nameserver Transport) that permits you to use a special client to send compliant
nameserver requests to a special server that can then execute commands and send back
the results as if they were actual DNS replies (<hup://slashdot.org/articles/00/09/10/2230242.shtml>
and <http://nstx.dereference.de/> for the code). Unlike HTTPTunnel, NSTX is no longer
under development.

Of course, the Web trick that has a lot of people upset these days comes from
Microsoft. I think what caused the uproar was a paper on an MS Web server that
described SOAP (Simple Object Access Protocol) as “a way to slip through firewalls.”
Unlike HTTPTunnel, SOAP is less a way to slip through firewalls, and more a new pro-
tocol for supporting remote procedure calls. SOAP requires a new header in the HTTP
request line, SOAPMethodName, that includes as its argument a URN (Universal
Resource Name). The name found here must also match the first sub-item found in the
XML (Extensible Markup Language) sent as the body of the request. In SOAP, XML is
used for data representation.

And, if anything has annoyed me more lately, it is XML. Such a squirrelly language, it
can morph into anything the designer wants, while appearing to be harmless. Someday
we will begin seeing XML exploits, but not yet. The day is closer, however, as Microsoft
and VeriSign have announced PKI extensions for XML, XKMS.

If you really want to understand more about SOAP, you can read “A Young Person’s
Guide to XML” at <http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp>.

And if you ever have occasion to read Bugtraq these days (<http://www.securityfocus.com>,
Forums), you will have heard of Ofir Arkin. Ofir has been studying the small differ-
ences in the ways that vendors implement ICMP, and has written a paper describing his
researches (<http://www.sys-security.com>). Ofir has been digging at this for over a year
now, and has forced the security community to pay more attention to ICMP. His rec-
ommendation is to block all ICMP packets at your firewall (presuming you have one),
something that members of the IETF might shudder thinking about. Read his paper
and you will begin to understand why.

Not just because of the ping of death, either, or the floods generated by smurf DoS
attacks. Ofir has discovered ways of fingerprinting hosts even if you block ICMP pack-
ets going to those hosts (you must permit other IP packets to the target host). ICMP
Time Exceeded errors can be used to identify certain operating systems by sending only
one part of a fragmented packet.

But there is another reason why you might want to block ICMP — if you are paranoid
enough. After all, people can use HTTP to tunnel out through your firewall, so why
worry about ICMP? Because ICMP has also been used to tunnel information through
firewalls.

I first encountered an ICMP tunnel through the gift of a friend who works at a univer-
sity. The tools were called pinsh and ponsh, one a client, the other a server, and both
communicated using ICMP ECHO_REPLIES (what you would normally receive in
response to an ECHO_REQUEST, as generated by ping). ICMP ECHO packets may
include an optional payload, and pinsh/ponsh used this payload to carry commands
and the output of the commands back and forth.

You can use DNS requests to
tunnel commands to a remote

SErver.

February 2001 ;login: MUSINGS

SECURITY | PROGRAMMING | NETWORKING | COMPUTING

65

http://slashdot.org/articles/00/09/10/2230242.shtml
http://nstx.dereference.de/
http://msdn.microsoft.com/msdnmag/issues/0300/soap/soap.asp
http://www.securityfocus.com
http://www.sys-security.com

66

If you permit any
communications at all
between your network and
other networks, your network

can leak data like a sieve.

This idea was not new, as daemon9 had already written about it in Phrack issue 49.
Loki v2 (<http://www.2600.com/phrack/p51-06.html>) adds encryption and digital sig-
natures to further disguise the tunneled data and to authenticate the requests (wouldn’t
want the wrong people using our tunnel). The code found here only works with Linux
systems, and has not been maintained. But you get the idea.

That is, if you permit any communications at all between your network and other net-
works, your network can leak data like a sieve. Note that this usually requires the active
participation of some internal user — unless you are using Windows. In that case, you
might fall victim to a virus-installed Trojan, such as Subseven, that provides a simple
way to remote control your Windows NT box. As most firewalls block all incoming
connections, some Windows Trojans make an outgoing connection to an IRC server,
join a particular channel, and wait for commands. This technique has also appeared in
agents for DDoS attacks (Trinity, which you can read about in Sven Dietrich’s paper in
the LISA 2000 proceedings). At the very least, block outgoing connections to port 139
(used by SMB and Samba), because Microsoft OSes consider shared files as part of the
trusted security context. In other words, an attacker can provide code that your system
will run on a remote file share, and it will be trusted. You can prevent this by updating
IE (often), and by blocking port 139/TCP outgoing.

Holy networks! Is there no end to this? Actually, I’d like to mention a very old hack by
Marcus Ranum, performed to illustrate the leakiness of networks in general. Marcus
tunneled NFS over UUCP (using email) just to make a point about leakiness of net-
works. If you really want to prevent data leaking from networks, you can neither con-
nect them to any other network nor permit anyone to use modems. Oh, and you might
also want to include a degaussing magnet, a la Neal Stephenson’s Cryptonomicon,
although you’ll want to warn people using pacemakers, and wipe clean magnetic media
as it leaves your site. Anyone have a writable CD handy?

Vol. 26, No. 1 ;login:

http://www.2600.com/phrack/p51-06.html

