
THE MAGAZINE OF USENIX & SAGE
December 2000 • volume 25 • number 8

{

#
inside:
OVERVIEW:

NEEDLES IN THE CRAYSTACK:

WHEN MACHINES GET SICK

The Advanced Computing Systems Association &

The System Administrators Guild

&

●
O

V
ER

V
IE

W

Part 1: In Sickness and in Health: The
Three Laws
In the early days of science fiction it was popular to write stories about how

computers would go mad and destroy the world. To many computers users

today, this prophesy apparently comes true on a daily basis, at least on a

small scale. The fact that computers have taken over the world is, in a com-

pelling sense, clear. Computers pervade our society from the kitchen to the

supermarket. They are in our washing machines, our cars, our supermarket

checkouts. They are responsible for monitoring and communicating the

movements of a global economy, which, to a large extent, is stylized by the

very computer technology it uses. They are in our televisions as well as our

PCs, in video games and wristwatches. Soon we shall be wearing them and

most likely even implanting them.

The fact that computers go mad and wreak destruction is also self-evident to anyone
who works with them regularly. Computer programs are imperfect and they crash with
astonishing regularity, destroying work and disrupting our lives. The word “mad,”
which is probably more sensational than necessary, is perhaps no more than a quaint
metaphor, but the basic gist of this fictional vision has a wry truth to it.

The invention and proliferation of computers in our world has not merely simplified
many difficult and mundane tasks. It has also changed the way society works. In spite
of the now-comical prediction by IBM’s Thomas Watson in 1945 that the world would
only need five large computers, today it seems that they are as commonplace as plastic.

The fact that we rely on computers for so many of our daily activities has changed the
way we live. Email is replacing pen and paper, secretaries are disappearing, we pay for
items with plastic cards, we order goods from foreign countries just as easily as we do
from the corner shop. We arrange our schedules according to which particular machine
we have to wait for, and so on.

Because computer programs have limited capabilities, we often have to adapt ourselves
to the software we depend upon. We change our work habits and reassess our wishes
on the basis of what a computer can or is willing to do for us; we even work around
faults (bugs) that we know to exist, bending over backwards for the machine. In a sub-
tle but pervasive way, our use of computers controls us every bit as effectively as we are
able to control them. In this sense, computers really have taken us over. It is not an evil
computer intelligence that controls us, but rather something far more pernicious: we
are self-styled slaves to our own almost religious use of The Machine.

Then there is the madness. Computers crash, they amplify small mistakes into huge
mistakes, they do not always behave predictably, sometimes they work slowly for no
apparent reason. As one popular email signature proclaims: computers allow us to
make mistakes faster than any other invention in history. Sometimes they even seem
stubborn in their refusal to do what we would like. They produce meaningless answers

5December 2000 ;login: NEEDLES IN THE CRAYSTACK ●

needles in the
craystack: when
machines get sick

by Mark Burgess

Mark is an associate
professor at Oslo
College, and is the
program chair for
LISA 2001.

<Mark.Burgess@iu.hioslo.no>

to apparently sensible questions. Surely the behavior of something not entirely in pos-
session of all of its marbles.

But enough of the melodrama. What is this all about? Why do computers not just con-
tinue to work like vacuum cleaners or ovens? They are, after all, just appliances, mar-
ginally more delicate, but machines nonetheless. Why indeed do cars break down, peo-
ple get sick? Why do plagues upset nature, storms wreak havoc? Are there any lessons to
be learned from these parallels? Why does anything stop working the way it is supposed
to? Does it have to do with foreign invaders? Bacteria and viruses? Things jammed in
the works? Bits that fell off? Sabotage by enemies of the state? If so, what are these dis-
rupters and why do they exist? Is there a corresponding gremlin that invades computer
systems, causing them to fail? One thing is certain: computer viruses are not the whole
story.

In this series of essays, I want to take a broader, more reflective view of what it means
to build and maintain our information systems. I mean to show that many of the prob-
lems we face in running the world’s computer systems are not new, even though we
seem to be learning the details now for the first time. As many of my physics colleagues
often complain of their research: everything has been done before; every problem has
occurred and has usually been solved in some other context. There are lessons to be
learned from the past, from analogous situations and also from the writings of scien-
tists and thinkers in many contexts. It is time to revisit these ideas and reflect on their
virtues, as we wobble on the springboard of the new millennium, poised to launch
forth through our hand-held mobile monoliths and be reborn as masters of it all . . .
or not?

Why should anyone bother to make these connections? There are two reasons for this
indulgence: one is that we might actually gain a greater understanding of the specific
problems we grapple with on a daily basis and see solutions through a wider perspec-
tive. We are creatures of association, and the illusion of understanding is usually
enhanced by our ability to appreciate the same idea in several contexts. The other rea-
son is that reading about things we recognize in a new context can be inspirational and
lead us in new directions. “My god, it’s full of wildcards!”

Naturally, no one should be looking to copy blindly from analogs in nature or history.
Cheats flunk their exams, and shallow comparisons lead us only into blind alleys.
Visionary monoliths are not summoned forth by beating our computers over the chas-
sis with Lucy’s favorite thighbone (though the sentiment is sometimes compelling);
and, whatever Clarke and Kubrick had in mind with their 2001 monolith, it was surely
more than just a mobile phone, or a CPU with the pins broken off . . . but that does not
mean that we cannot take a good idea and reinvent it.

Part of the reason that we do not immediately recognize old problems when they stare
us in the face is that they are embedded in a novel context: wolves in sheep’s clothing,
or perhaps electric sheep on our Deckard’s lawn, posing as red herrings. Displaced
ideas must be adapted. The key to understanding and solving associative problems is
abstraction: to distill the general principles from the specific instances and retain the
lessons which they convey. These may then be molded into new forms.

There are two sides to be addressed to this interaction between humans and computers.
We would control our computers, and yet our computers control us. We are locked in
this loop. Our preferred approach to managing information systems is somewhat hap-
hazard, though only a little more haphazard than our general approach to managing
governmental and civic functions, or our daily lives for that matter. We strive for order,

6 Vol. 25, No. 8 ;login:

In this series of essays, I want

to take a broader, more

reflective view of what it

means to build and maintain

our information systems.

through control, but this control is based on skeletal procedures, often without a suffi-
cient regard for the whole. Usually we wait for failure, if we even plan for it at all, and
then attempt to diagnose. At the same time, our practices are defined by the computers
we would like to control.

Human dependency on computers is a weakness, which makes us vulnerable to their
failures. When a key system fails, the machine stops, it no longer performs its function
and the loop is shattered. Not only are humans dependent on computers, but comput-
ers are dependent on humans. Recently the dangers of dependency have been consid-
ered much more seriously in connection with the possibility of computer warfare. All
one needs to do to paralyze a society is to cripple its computer systems. We have built a
tower of cards, based on fragile machinery, ill-equipped to face even simple threats
from the environment. This mutual dependency must be broken if one is to find a
more secure relationship with machines.

Interestingly, as is often the case, partial answers have already been explored by people
who think up ideas for a living: science-fiction writers. During the 1940s, biochemist
and science-fiction writer Isaac Asimov began to consider what kinds of problems
would result from a society dependent on machines. Asimov’s machines were robots,
mobile computers with great physical strength, some of which had a human appear-
ance. Asimov’s future society was extremely reliant on robots. He quickly realized that
machines would have the capacity to do great damage unless they were constrained
with a tight leash. Asimov’s answer to this problem was to endow automatons with a set
of rules that curbed their behavior and prevented them from harming humans – in a
sense, a theoretical immune system for humans against machines. Asimov and his edi-
tor, John Campbell Jr., together invented the Three Laws of Robotics. The laws went
like this:

■ A robot may not injure a human being or through inaction allow a human being
to come to harm.

■ A robot must obey the orders given to it by human beings, except where such
orders would conflict with the First Law.

■ A robot must protect its own existence as long as such protection does not conflict
with the First or Second Law.

Asimov’s laws were supposed to protect humans from complex machinery in unpre-
dictable circumstances. It was clear to Asimov that people could quickly become
dependent on machines, and thus there was a need to be able to trust them implicitly.
Of course, he also knew that this can never be: no matter what kinds of rules one cre-
ates, there are always unforeseen circumstances which probe for loopholes in a set of
rules, and many of his robot stories were based on the mysteries arising from these
loopholes.

The main threat to any system working on a set of programmed instructions is that the
complexity of its surroundings tests it in every conceivable way, picking at the locks
until every door is opened. Sooner or later, the system will break under the pressure. As
the character in Jurassic Park says, “Nature will find a way.” My rule of thumb is: when
the complexity of its environment exceeds the complexity of a system, the system will
not be completely predictable. Nevertheless, a set of rules can, clearly, greatly reduce the
risk of aberrant behavior in a mechanism.

Apart from protective protocols, like Asimov’s laws, which protect quality of service,
security against loss of service is easily secured by a strategy that is very familiar in
Nature: redundancy. “Redundancy is the last avenue of our survival,” wrote Robert

7December 2000 ;login:

Not only are humans

dependent on computers, but

computers are dependent on

humans.

NEEDLES IN THE CRAYSTACK ●

●
O

V
ER

V
IE

W

Silverberg of his post-biowar novel Shadrach in The Furnace, where the lead character is
“system administrator” for Genghis Mao’s biological system. In the biological world,
simple mechanisms like single-celled creatures are not well suited to survival in com-
plex environments, unless they exist in huge numbers. The only strategy a single-celled
organism has against total and final death is to reproduce very quickly and maintain
large numbers, before something steps on it. If one is destroyed, there will always be a
backup to continue the execution of their simple program: copy thyself. For computer
systems, one makes backups of data to prevent loss, uses multiple servers to secure
failover capacity. The general rule is that we use parallelism rather than serial architec-
tures to increase the assurance of delivery. This strategy is particularly important in
complex environments, because environments (by their size and nature) exert a higher
level of parallelism against the system than the system is capable of producing to pro-
tect itself.

Two key strategies, then, should drive computer management: mechanisms that protect
against loss of service and mechanisms that protect quality of service. The extent to
which such mechanisms exist varies. Certainly no off-the-shelf computer systems have
such systems as a part of their basic design. Software and hardware design is obsessed
with speed and convenience, not safety and reliability. The Volvo of computer systems
has yet to be sold in showrooms, though it can be put together as a kit, with a little
dedication. Since the mid-1990s several researchers, including myself, have argued for
(and even built) experimental systems that take on different aspects of this problem.

Computers have come a long way since the punch-card looms from which they
evolved. In a compelling sense, they are now very much like primitive organisms or
societies. To understand why they are so unpredictable, one needs to piece together an
understanding of how they work and of the nature of their environments. This is an
involved story, but as a piece of commonplace technology, it is part of our cultural her-
itage and so it has earned the right to a few chapters of explanation. To understand why
computers get sick, one needs to ask why they even work at all. Clearly something that
never changes cannot get sick. So the first step is to answer the question: how do com-
puters change? The journey there is not a difficult one but it is surely complex and fas-
cinating.

The next part of this story will take us into the realm of technological development and
our attitudes toward it.

8 Vol. 25, No. 8 ;login:

To understand why computers

get sick, one needs to ask

why they even work at all.

