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T h e  a d v e n t  o f  m a n y c o r e  s y s t e m s 
requires that programmers understand 
how to design, write, and debug parallel 
programs effectively. Writing and debug-
ging parallel programs has never been easy, 
but there are many tools that can help with 
this process. In this article I provide a survey 
of useful tools and resources for multi-
threaded applications.

Multiple threads are said to execute concurrently 
when they are interleaved on a single hardware re-
source, which limits the overall maximum perfor-
mance gains from threading. When multi-threaded 
applications run simultaneously on different hard-
ware, threads in an application are said to execute 
in parallel. To achieve software parallelism, hard-
ware must be able to support simultaneous and in-
dependent execution of threads [1].

Performance gains through parallelism are propor-
tional to effective partitioning of software work-
loads across available resources while minimizing 
inter-component dependencies. Performance is im-
pacted by issues such as communication overhead, 
synchronization among threads, load balancing, 
and scalability as the number of cores changes.

It is recommended that performance bottlenecks 
which impact both serial and parallel applications 
be removed prior to parallelizing an application. 
This includes optimizing existing serial applica-
tions for the multicore memory hierarchy prior to 
parallelization.

A number of tools can be used to assist with the 
migration of sequential applications to multicore 
platforms. This article focuses on tools for C and 
C++ programming languages in Windows and 
Linux environments. Most of the tools noted here 
are open source or built on top of open source 
tools. The discussion is intended to be a start-
ing point and is not comprehensive of all available 
tools. Figure 1 provides a high-level view of various 
categories of tools and the workflow between them 
[2]. Tool categories identified in the figure are dis-
cussed in this article.

Threading APIs

First, I include a brief discussion of threading APIs, 
as the choice of APIs may affect the selection of 
tools. A number of open source multi-threading 
programming APIs are available for both shared 
memory and distributed memory systems.
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F i g u r e  1 :  C at e g o r i e s  of   t ool   s  a n d  t h e  w o r k flo   w  b e t w e e n  t h e m

multi-threading apis for shared memory systems

OpenMP (Open Multi-Processing) is a multi-threading API, which consists 
of a set of compiler directives, library routines, and runtime environment 
variables, and is available for C, C++, and Fortran. Data may be labeled as 
either shared or private. The OpenMP memory model allows all threads to 
access globally shared memory. Private data is only accessible by the own-
ing thread. Synchronization is mostly implicit, and data transfer is transpar-
ent to the programmer. OpenMP employs a fork-join execution model and 
requires an OpenMP-compatible compiler and thread-safe library runtime 
routines [3], [4].

Pthreads (POSIX Threads) is defined in the ANSI/IEEE POSIX 1003.1-
1995 standard. It is a set of C language programming types and proce-
dure calls which do not require special compiler support. The header file 
pthread.h needs to be included. Pthreads uses a shared memory model, that 
is, the same address space is shared by all threads in a process, making in-
ter-thread communication very efficient. Each thread also has its own pri-
vate data. Programmers are responsible for synchronizing access to globally 
shared data. Pthreads is now the standard interface for Linux, and pthreads-
win32 is available for Windows [5].

GNU Pth (GNU Portable Threads) is a less commonly used POSIX/
ANSI-C–based library. It uses non-preemptive, priority-based scheduling 
for multi-threading in event-based applications. All threads execute in the 
server application’s common address space. Each thread has its own pro-
gram counter, signal mask, runtime stack, and errno variable. Threads can 
wait on events such as asynchronous signals, elapsed timers, pending I/O on 
file descriptors, pending I/O on message ports, customized callback func-
tions, and thread and process termination. A Pthreads emulation API is also 
optionally available [6].

Threading Building Blocks (TBB) is a C++ template library that consists of 
data structures and algorithms for accessing multiple processors. Operations 
are treated as tasks, by specifying threading functionality in terms of logi-
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cal tasks, as opposed to physical threads. TBB emphasizes data parallel pro-
gramming [7].

multi-threading on distributed memory systems

Message Passing Interface (MPI) is a library specification for message pass-
ing on massively parallel machines and workstation clusters which supports 
point-to-point and collective communication. Operations in MPI are ex-
pressed as functions. The MPI standard originally targeted distributed mem-
ory systems, but now MPI implementations for SMP/NUMA architectures are 
also available. The programmer is responsible for identification of parallel-
ism and its implementation using MPI constructs. Objects called “communi-
cators” and “groups” define communication between processes [8] [9].

platform-specific multi-threading apis

Open Computing Language (OpenCL) is a C-based framework for pragmas 
for general-purpose parallel programming across heterogeneous platforms. It 
is a subset of ISO C99 with language extensions. The specification includes 
a language for writing kernels and APIs for defining and controlling a plat-
form, and it provides online or offline compilation and build of compute 
kernel executables. It includes a platform-layer API for hardware abstraction 
and a runtime API for executing compute kernels and managing resources. 
It uses task-based and data-based parallelism, and implements a relaxed-
consistency, shared memory model [10].

Compilers and Compiler-Based Instrumentation

A number of C and C++ compilers are available to programmers for compil-
ing applications using OpenMP and Pthread APIs. Information about se-
lection of appropriate options for OpenMP and Pthreads and inclusion of 
appropriate include files can be obtained from their documentation.

Figure 1 illustrates various stages of compiler-based instrumentation. Code 
may be modified by the compiler for generating trace information. Instru-
mentation may be source-to-source, static binary, or dynamic. Source-to-
source instrumentation modifies source code prior to pre-processing and 
compilation. In static binary instrumentation the compiled binary code is 
modified prior to execution [11].

Static Code Analyzers

Static code analyzers help detect issues beyond the limits of runtime coverage 
which may not have been reachable by functional test coverage. Static code 
analysis is done on the source code without executing the application, re-
quiring any instrumentation of the code, or developing test cases. Potential 
errors are detected by modeling software applications using the source code. 
These models can be analyzed for behavioral characteristics. Static analy-
sis exhaustively explores all execution paths, inclusive of all data ranges, 
to ensure correctness properties, such as absence of deadlock and livelock. 
Static analyzers cannot model absolute (wall-clock) time but can model rela-
tive time and temporal ordering. A directed control flow graph is developed, 
built on the program’s syntax tree. The constraints associated with vari-
ables are assigned to the nodes of the tree. Nodes represent program points, 
and the flow of control is represented by edges. Typical errors detected by 
using analysis based on a control flow graph include: illegal number or type 
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of arguments, non-terminating loops, inaccessible code, uninitialized vari-
ables and pointers, out-of-bound array indices, and illegal pointer access to 
a variable or structure. Due to the large number of possible interleavings in 
a multi-threaded application, model checking is computationally expensive 
and limited in its applicability [11].

The use of static code analyzers helps maintain code quality. Their integra-
tion in the build process is recommended to help identify potential issues 
earlier on in the development process.

Berkeley Lazy Abstraction Verification Tool (BLAST) is a software model 
checker for C programs. It is used to check that software satisfies the be-
havioral properties of its interface. It constructs an abstract model, which 
is model checked for safety properties. Given a temporal safety property for 
a C program, BLAST attempts to statically prove that it either satisfies the 
safety property or demonstrates an execution path that is in violation of the 
property. It uses lazy predicate abstraction and interpolation-based predicate 
discovery to construct, explore, and refine abstractions of the program state 
space. BLAST is platform independent and has been tested on Intel x86/
Linux and Intel x86/Microsoft Windows with Cygwin. BLAST was released 
under the Modified BSD license [12].

Debuggers

Enhanced complexity of multi-threaded applications results from a number 
of factors, such as non-deterministic thread scheduling and preemption, and 
dependencies between control flow and data [11]. Non-deterministic execu-
tion of multiple instruction streams from runtime thread scheduling and 
context switching generally stems from the operating system’s scheduler. The 
use of debuggers themselves may mask issues caused by thread interactions, 
such as deadlocks and race conditions. Factors such as thread priority, pro-
cessor affinity, thread execution state, and starvation time can affect the re-
sources and execution of threads.

A number of approaches are available for debugging concurrent systems, in-
cluding traditional debugging, and event-based debugging. Traditional de-
bugging, or breakpoint debugging, has been applied to parallel programs, 
where one sequential debugger per parallel process is used. These debug-
gers can provide only limited information when several processes interact. 
Event-based or monitoring debuggers provide some replay functionality for 
multi-threaded applications, but can result in high overhead. Debuggers may 
display control flow, using several approaches, such as textual presentation 
of data, time process diagrams, or animation of program execution [13].

The use of a threading API may impact the selection of a debugger. Using 
OpenMP, for example, requires the use of an OpenMP-aware debugger, 
which can access information such as constructs and types of OpenMP vari-
ables (private, shared, thread private) after threaded code generation.

Dynamic Binary Instrumentation (DBI)

Dynamic binary instrumentation analyzes the runtime behavior of a binary 
application by injecting instrumentation code which executes as part of the 
application instruction stream. It is used to gain insight into application be-
havior during execution. As opposed to static binary analysis, which ex-
haustively exercises all code paths, DBI explores only executed code paths. 
DBIs may be classified as either lightweight or heavyweight. A lightweight DBI 
uses architecture-specific instruction stream and state, while a heavyweight 
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DBI utilizes an abstraction of the instruction stream and state. Lightweight 
DBIs are not as portable across architectures as heavyweight DBIs. Valgrind 
[22], which is discussed later, is an example of a heavyweight DBI, and Pin 
[24], also discussed in this article, is an example of a lightweight DBI.

Profiling and Performance Analysis

Profilers are useful for both single- and multi-threaded applications. They 
facilitate optimization of program decomposition and efficient utilization of 
system resources by inspecting the behavior of a running program and help-
ing to detect and prevent issues that can impact performance and execution. 
Issues encountered in multi-threaded applications include:

Large number of threads, leading to increased overhead from thread startup ■■

and termination [1].
Overhead from concurrent threads exceeding the number of hardware ■■

resources available [1].
Contention for cache usage resulting from the large number of concurrent ■■

threads attempting to use the cache [1].
Contention for memory use among threads for their respective stack and ■■

private data structure use [1].
Thread convoying, whereby multiple software threads wait to acquire a ■■

lock [1].
Data races occurring when two concurrent threads perform conflicting ac-■■

cesses and no explicit mechanism is implemented to prevent accesses from 
being simultaneous [14].
Locking hierarchies causing deadlocks, which result in all threads being ■■

blocked and each thread waiting on an action by another thread [11].
Livelocks (similar to deadlocks except that the processes/threads involved ■■

constantly change with respect to one another, with neither one being able 
to progress) can occur with some algorithms, where all processes/threads 
detect and try to recover from a deadlock, repeatedly triggering the dead-
lock detection algorithm [1].

Approaches to profiling can be identified as either active or passive. Com-
piler-based probe insertion is an example of active profiling, where execu-
tion behavior is recorded using callbacks to the trace collection engine. In 
passive profiling, control flow and execution state are inspected using ex-
ternal entities, such as a probe or a modified runtime environment. Passive 
profiling may require specialized tracing hardware and, in general, does not 
require modification of the measured system [11].

Data may be gathered by a profiler using a number of methods. Event-based 
profilers utilize sampling based on the occurrence of processor events. Sta-
tistical profilers use sampling to look into the program counter at regular 
intervals, using operating system interrupts. Instrumenting profilers insert ad-
ditional instructions into the application to collect information. On some 
platforms, instrumentation may be supported in hardware using a machine 
instruction. Simulator or hypervisor-based data collection selectively collects 
data by running the application under an instruction set simulator or hyper-
visor.

Profilers may also be classified based on their output. Flat profilers show av-
erage call times, with no associated callee or context information. Call-graph 
profilers show call times, function frequencies, and call chains.

Profilers can provide behavioral data only for control paths that are actually 
executed. Execution of all relevant paths requires multiple runs of the appli-
cation, with good code coverage. Code coverage can be improved using care-
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fully selected input data and artificial fault injection. Fine-grained behavioral 
data from a running system can be coupled with offline analysis.

Profilers may not be portable across architectures, as they may require spe-
cial hardware support. Others may focus only on user-space applications. A 
profiler may be designed to focus on analyzing the utilization of one or more 
system resources, such as call stack sampling, thread profiling, cache profil-
ing, memory profiling, and heap profiling. Profilers can include aspects of 
absolute (wall-clock) time in their analysis [11].

OProfile is a profiling and performance monitoring tool for Linux on a 
number of architectures, including x86, AMD Athlon, AMD64, and ARM. 
It provides system-wide profiling, with a typical overhead of 1% to 8%, and 
includes a number of utilities. It consists of a kernel driver and a daemon for 
collecting sample data. OProfile uses CPU hardware performance counters 
for system-wide profiling, which includes hardware and software interrupt 
handlers, kernel and kernel modules, shared libraries, and applications [15].

DTrace is a dynamic tracing framework created by Sun Microsystems. It is 
now available for a number of operating systems, including Linux. It can be 
used to get an overview of the running system and is used for tuning and 
troubleshooting kernel and application issues on production systems, in real 
time. It allows dynamic modification of the OS kernel and user processes to 
record additional data from locations of interest using “probes.” A probe is a 
location or activity with which DTrace can bind a request to perform a set of 
actions: for example, the recording of a stack trace. The source code for this 
tool has been released under the Common Development and Distribution 
License (CDDL) [16].

GNU Linux Trace Toolkit next generation (LTTng) is a static and dy-
namic tracer that supports C and C++ on Linux (and any language that can 
call C). It is supported on x86, PowerPC 32/64, ARMv7, OMAP3, sparc64, 
and s390. LTTng is available as a kernel patch, along with a tool chain (ltt-
control), which looks at process blocking, context switches, and execution 
time. It can be used for performance analysis on parallel and real-time sys-
tems. LTTV is a viewing and analysis program designed to handle huge 
traces. Tracers record large amounts of events in a system, generally at a 
much lower level than logging, and are generally designed to handle large 
amounts of data [17].

CodeAnalyst by AMD is a source code profiler for x86-based platforms with 
AMD microprocessors that is available for Linux and Windows environ-
ments. It has been built on top of the OProfile Linux tool for data collection, 
and provides graphical and command line interfaces for code profiling, in-
cluding time-based and event-based profiling, thread analysis, and pipeline 
simulation [18].

Data Visualization

Visualization of profile data facilitates the comprehensibility of data and en-
hances its usability. A number of tools provide a standard interface for vi-
sualization of different types. Gnuplot is a portable, command-line–driven, 
interactive data and function plotting utility. It is copyrighted but can be 
freely distributed [19]. Graphviz is open source graph visualization software, 
which can be used to represent structural information as diagrams of ab-
stract graphs and networks [20].
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Dynamic Program Analysis

Dynamic program analysis is done by executing programs built either on 
actual hardware or on a virtual processor. Dynamic analysis checks program 
properties at runtime, and it generally identifies the problem source much 
faster than extensive stress testing does. Issues can be detected much more 
precisely, using code instrumentation and analysis of memory operations. 
These tools are generally easy to automate, with a low rate of false positives. 
For dynamic testing to be effective the test input has to be selected to exer-
cise proper code coverage.

Valgrind is an instrumentation framework for building dynamic analy-
sis tools. It is available for x86/Linux, AMD64/Linux, PPC32/Linux, and 
PPC64/Linux. Work on versions of Valgrind for x86/Mac OS X and AMD64/
Mac OS X is currently underway. The Valgrind framework is divided into 
three main areas: core and guest maintenance (coregrind), translation and 
instrumentation (LibVex), and user instrumentation libraries [21]. Valgrind 
tools are used for detecting memory management and threading issues, and 
for application profiling [22]. Helgrind, Memcheck, Cachegrind, and Massif 
are some of the tools included in Valgrind’s tool suite:

Helgrind is a thread debugger to detect data races in multi-threaded ap-
plications. It detects memory locations accessed by multiple Pthreads that 
are lacking consistent synchronization.

Memcheck is used to detect memory management–related issues for C 
and C++.

Cachegrind provides cache profiling and simulation of L1, D1, and L2 
caches. Callgrind extends Cachegrind to provide visualization informa-
tion about callgraphs.

Massif performs detailed heap profiling by taking regular snapshots of 
a program’s heap, to help identify parts of the program contributing to 
most memory allocations.

DynInst allows dynamic insertion of code in a running program. It uses dy-
namic instrumentation to allow modification of programs during execution, 
without re-compilation, re-linking, and re-execution. DynInst was released 
by the Paradyn Parallel Tools Project and has been used by applications such 
as performance measurement tools, correctness debuggers, execution drive 
simulations, and computational steering. The recent release of DynInst sup-
ports PowerPC (AIX), SPARC (Solaris), x86 (Linux), x86 (Windows), and 
ia64 (Linux) [23].

Pin from Intel is a framework for building program analysis tools using dy-
namic instrumentation. It is an example of dynamic compilation targeting 
a VM which uses the same ISA as the underlying host [11]. It is an open 
source tool and does runtime binary instrumentation of Linux applications, 
whereby arbitrary C/C++ code can be injected at arbitrary places in the ex-
ecutable. Pin APIs allow context information, such as register contents, to be 
passed to the injected code as parameters. Any registers overwritten by the 
injected code are restored by Pin. It also relocates registers, in-lines instru-
mentation, and caches previously modified code to improve performance. 
The Pin architecture consists of a virtual machine (VM), a code cache, and 
an instrumentation API, which can be invoked by custom plugin utilities 
called Pintools. The VM consists of a Just-in-Time (JIT) compiler, an emula-
tion unit, and a dispatcher. Instructions, such as system calls, which cannot 
be executed directly are intercepted by the emulator. The dispatcher checks 
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for the next code region in the code cache. If it is not present in the code 
cache, it is generated by the JIT compiler [24], [25], [26].

Active Testing

Active testing consists of two phases. Static and dynamic code analyzers are 
first used to identify concurrency-related issues, such as atomicity violations, 
data races, and deadlock. This information is then provided as input to the 
scheduler to minimize false positives from the concurrency issues identified 
during the static and dynamic code analysis. The tool CalFuzzer uses this 
approach.

CalFuzzer provides an extensible active testing framework for implement-
ing predictive dynamic analysis to identify program statements with poten-
tial concurrency issues, and it allows implementation of custom schedulers, 
called active checkers, for active testing of concurrency-related issues [27].

System-Wide Performance Data Collection

In addition to problem partitioning and load balancing, programmers need 
access to systemwide resource usage data, as well as the ability to relate it 
to application performance. Availability of standardized APIs can facilitate 
access to such low-level system data by profilers and performance analyz-
ers. PAPI is one such attempt at an API for accessing hardware performance 
counters.

The Performance Application Programming Interface (PAPI) project at the 
University of Tennessee defines an API for accessing hardware performance 
counters, which exist as a small set of registers for counting events. Moni-
toring the processor-performance counters enables correlation between ap-
plication code and its mapping to the underlying hardware architecture and 
is used in performance analysis, modeling, and tuning. Tools that use PAPI 
include PerlSuite, HPCToolkit, and VProf. PAPI is available for a number of 
environments and platforms, including Linux, on SiCortex, Cell, AMD Ath-
lon/Opteron, Intel Pentium, Itanium, Core 2, and, for Solaris, UltraSparc [28].

Conclusion

The increased complexity of multi-threaded parallel programming on mul-
ticore platforms requires more visibility into program behavior and neces-
sitates the use of tools that can support programmers in migrating existing 
sequential applications to multicore platforms. This article presents a survey 
of different categories of tools, their characteristics, and the workflow be-
tween them. Most of the tools discussed are open source, or built on top of 
open source tools, for C and C++.
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