DAVID N. BLANK-EDELMAN

practical Perl tools:

scratch the webapp itch with

CGl::Application, part 2

David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O'Reilly book
Automating System Administration with

Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA o5 confer-
ence and one of the LISA 06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

;LOGIN: OCTOBER 2009

LAST TIME, WE HAD THE PLEASURE OF
exploring the basics of a Web applica-

tion framework called CGl::Application
(CGl::App). | appreciate this particular pack-
age because it hits a certain sweet spot in
terms of its complexity/learning curve and
power. In this column we'll finish up our
exploration by looking at a few of the more
powerful extensions to the framework that
can really give it some oomph.

Quick Review

Let’s do a really quick review of how CGIL:App
works, so that we can build on what we've learned
so far. CGIL::App is predicated on the notion of “run
modes.” When you are first starting out, it is easi-
est to map “run mode” to “Web page” in your head.
You write a piece of code (i.e., a subroutine) that
will be responsible for producing the HTML for
that page and returning it as a scalar value.

To switch from one run mode to another using the
classic CGL:App method, the first run mode pro-
duces an HTML page containing a form or a URL
to follow. This form or link provides the name of
the destination run mode in a hidden field (for
POSTs) or as a parameter (for GETs). CGL::App
looks at the incoming request and determines
which run mode to call based on that info. If this
sounds too cumbersome or too Web 1.0-ish, you
can improve on this method by using the module
CGIL::Application::Plugin::Dispatch. We won't see an
example here, but C::A::P::Dispatch lets you encode
the run mode in the path used to call the script
using clean, REST-y URLs.

Constructing a Web application using CGlL:App
consists of:

1. Writing a bunch of run mode subroutines to
generate Web pages.

2. Placing them in a file to be loaded as a Perl
module (with a little OOP pixie dust sprinkled
on top).

3. Writing a separate three-line instance script that
loads this module and sets things in motion (this
is actually the script that gets called by the Web
server directly).

If the CGL::App basics seem easy to grasp, then
the mental model CGI::App presents is working
for you. Other Perl frameworks like Catalyst seem,
at least at first glance, to be more complex (al-
though Dave Rolsky’s excellent blog post at http://
blog.urth.org/2009/07/what-is-catalyst-really.html

PRACTICAL PERL TOOLS: CGI::APPLICATION, PART 2 49

50

shows this is mostly a PR problem), so perhaps something with this level of
simplicity will appeal to you. If it does, then read on, because we're going
to show a few features/plugin modules that can pump up the volume while
mostly leaving this simplicity intact.

Working with Templates

The first and perhaps the most significant feature is the support for templat-
ing available in vanilla CGIL:App. If you've ever had to construct a Web site
or webapp that involved several pages, you've probably already done at least
a basic form of templating, because you needed all of the pages to have some
common elements such as headers and footers. Perhaps your code looked
something like:

$webpage = $header;
$webpage =. generate_the_actual_content();
$webpage =. $footer;

Perl has had various template modules of varying complexity available since
the Mesozoic era. Most are predicated on the notion that you'll write content
that includes some special tokens or markup which is later replaced with
real data by the templating engine. For example:

<html>
<head><title><TMPL_VAR NAME=PAGETITLE></title></head>
<body>
<p>Dear <TMPL_VAR NAME=FULLNAME>:</p>
<p>Get it <a href="<TMPL_VAR NAME=BOOKURL>">here!l</p>
</body>
</html>

The right Perl code, when called with that document, will spit out the docu-
ment with all of the <TMPL_VAR NAME={something}> mentions replaced
with the contents of the named variable. The good news is that CGL:App
has this code built in. Out of the box it supports HTML: Template, which
uses templates like the one above. It can also use other templating engines
(e.g., Template Toolkit), but for this column we’ll stick with the built-in sup-
port.

To use HTML:: Template from within a CGL::App application, you first tell it
where to find the templates it will use. This is most commonly done in one
of the global initialization subroutines for an application like cgiapp_init:

sub cgiapp_init{
my $self = shift;
$self->tmpl_path('/path/to/your/templates’);
}

Once the webapp knows where to find templates, it can load them for pro-
cessing using the load_tmpl() method. Once loaded, we can replace the
<TMPL_VAR> tokens with their values using a set of param() method calls
and then produce the final result using output(). Here’s an example run
mode showing all of these steps:

sub welcome_doc : Runmode {
my $self = shift;

die_on_bad_params set to 0 tells HTML::Template to avoid getting huffy
if we attempt to replace a parameter that doesn’t exist in the template.

This will come in handy in the next section of this column.

my $template = $self->load_tmpl(‘begin.tmpl’, die_on_bad_params => 0);

;LOGIN: VOL. 34, NO. 5

;LOGIN: OCTOBER 2009

$template->param (PAGETITLE => 'Welcome Page’);
$template->param(FULLNAME => '"Mr. Mxyzptlk');
$template->param(BOOKURL=>

‘http://oreilly.com/catalog/9780596006396/');
return $template->output();

This is easier and more flexible than the method we saw in the first column
of using CGL.pm methods to construct pages. As a related aside, I should
point out that there is nothing (the name notwithstanding) that requires you
to generate HTML using HTML:: Template templates. In the last sizable we-
bapp 1 built, I used the built-in HTML::Template support to have the webapp
generate custom shell scripts that could be run separately from the webapp.
At some point you start to realize that all the world’s a template.

CGl::App Plugins

Now let’s move into the territory of CGIL::App enhancements provided by
various plugin modules. I'd like to highlight three of them and then finish
up with a small example that demonstrates everything we've talked about in
these two articles. CGL::Application::Plugin::ValidateRM is the first plugin I'd
like to mention.

CGI::APPLICATION::PLUGIN::VALIDATERM

Any decent Web application will validate its input. If your form asks for a
phone number, the users need to be told they’ve done something wrong

if they type in a set of letters (PEnnsylvania 6-5000 notwithstanding).

You can block input errors via JavaScript before they are submitted, but

for Perl programmers without JavaScript experience, it's probably easier

to validate the input server-side with a module like Data::FormValidator.
C:A:P:ValidateRM lets you hook Data::FormValidator into CGI:App in a
relatively easy-to-use fashion. First we’ll look at how Data::FormValidator is
called and then at how C::A:P::ValidateRM lets us use it in a CGI::App con-
text.

Data::FormValidator expects to receive an “input profile.” The input profile
specifies which fields are optional/required, any constraints on the field, fil-
ters to run on the input before checking, and what to do about errors. Here’s
an example input profile:

{ required=> [qw(inputfirstname inputlastname)],
filters => ["trim’],
constraint_methods => {
inputfirstname => qr/A[A-Z]+[A-Za-z-".1{1,25}$/,
inputlastname => qr/A[A-Z]+[A-Za-z-".1{1,25}$/,
|8
msgs => {
any_errors => ‘err__',
prefix => ‘err_’,
|8
}

Before validation is attempted, all fields are filtered, so leading and trail-

ing whitespace is trimmed using a built-in filter (Data::FormValidator has a
number of others). This profile expects there to be two required fields. Those
fields have to be composed of one to twenty-five alpha characters (plus a few
punctuation characters), specified here as regexps. We are using a custom
constraint here, but Data::FormValidator::Constraint has a number of preset

PRACTICAL PERL TOOLS: CGI::APPLICATION, PART 2 51

52

» o«

constraints such as “ip_address,” “email,” and “american_phone” you could
use—you don't need to roll your own.

And, finally, in the input profile, we specify how validation results (mes-
sages, or msgs for short) will be reported. In the example above, we ask that
something called err__ be set if there are any validation errors at all and that
the error messages for each failed validation be returned using the conven-
tion err_{fieldname} (i.e., err_inputfirstname and err_inputlastname). Look-
ing at how these validation results are used is a good segue to how forms are
validated within CGI::App.

With C::A::P::ValidateRM, we use a method called check_rm():

use CGI::Application::Plugin::ValidateRM
(qw/check_rm check_rm_error_page/);

in some run mode subroutine...
my $results = $self->check_rm(
‘get_basic_info’,
{required=> [gw(inputfirstname inputlastname)],
... # same stuff as above
1

) || return $self->check_rm_error_page();

The check_rm() method takes a “return run mode” and an input profile. If

the input profile turns up any validation errors, the return run mode speci-
fied in the first argument will be called to produce an error page. This error
page is returned instead of any HTML the run mode would normally gener-
ate.

The parts of the validation handling are starting to come together, so let’s re-
view and see what we are missing. When CGI::App enters a run mode, vali-
dation code checks that the input sent to that run mode (e.g., posted from a
form) is valid. If it isn't, CGL:App calls the return run mode (usually the run
mode we just came from) and asks it to produce an HTML error page so that
the user can try resubmitting. How does a run mode actually generate an
error page? That's the last part we have to cover.

First, each run mode is passed a hash reference as a second argument if it
is being called as a return run mode. This hash reference contains the vali-
dation error messages mentioned earlier. To make use of them via the tem-
plating already discussed, we add a line to each run mode to insert the
validation results into the document being generated:

sub welcome_doc : Runmode {
my $self = shift;
my $errs = shift;

... # do the stuff for this run mode including load_tmpl()
$template->param($errs) if ref $errs;
}

The bold line above inserts the error information into our template. We'll
need a slightly more sophisticated template to incorporate these error mes-
sages:

<html>
<head><title><TMPL_VAR NAME=PAGETITLE></title></head>
<body>

<!--TMPL_IF NAME="err__" -->

<p> Some data in your form was missing or invalid. </p>

<!l-- /TMPL_IF -->

;LOGIN: VOL. 34, NO. 5

<form method="POST">
<input type="hidden” name="rm"value="next_runmode” />
First Name: <input type="text" size=30 name="inputfirstname"/>
<TMPL_VAR NAME="err_inputfirstname">

Last Name:</label> <input type="text" size=30 name="inputlastname”/>
<TMPL_VAR NAME="err_inputlastname”>
<input type="submit” name="submit” value="Submit" />

</form>

</body>
</html>

This sample introduces the TMPL_IF syntax from HTML: Template. If the
named parameter is present it will output the contents of the tag. In our
validation input profile we specified that we wanted err___ set if any er-
rors were encountered. Here’s where that pays off. The other addition to our
standard template is the use of TMPL_VAR NAME="err_{fieldname}”
tags. These will get replaced with field-specific error messages (by default,
CSS-styled in bold red text). The end result of all this fuss is that your we-
bapp will accept input via a form, validate that input using a pretty powerful
specification (worse case: written in Perl itself), and automatically spit out an
error form with the valid information still filled in and any validation errors
flagged with pretty error messages. All of that can be done with much less
code than you'd normally need if you were writing it yourself.

That’s the (considerable) positive side of using C::A::P::ValidateRM. The hid-
den negative side of using this plugin that isn't explicitly mentioned in any
of the documentation is the increased complexity validation like this can
add to each of your run mode subroutines. Before, your code path might
have been super simple—you enter each run mode, do your work, and move
on to the next run mode—but now you might have a second entry path into
each run mode to handle validation errors. If you've written the run mode
code to expect to run only once per session/user, any situation where the
webapp doubles back on itself can complicate lots of things. It certainly can
make debugging the application a little harder. Caveat coder.

CGIl::APPLICATION::PLUGIN::SESSION

The next plugin we are going to see requires considerably less background to
cover. CGlL:Application::Plugin::Session lets you use the handy CGl::Session
module easily from within CGI::App. Because HTTP is a stateless proto-

col, a Web programmer has to do a bit of work in concert with the user’s
browser to present the illusion that the user is operating within a “session.”
CGI::Session handles all of the behind-the-scenes plumbing for that (cook-
ies, session caches and expiry, etc.). Using all of this power becomes really
easy thanks to CGl::Application::Plugin::Session:

use CGl::Application::Plugin::Session;

sub run_mode_A : Runmode {
my $self = shift;

$self->session->param(’some_parameter’ => ‘some value to store’);
}

sub run_mode_B : Runmode {

my $self = shift;

$some_value = $self->session->param(’some_parameter’);
}

;LOGIN: OCTOBER 2009 PRACTICAL PERL TOOLS: CGI::APPLICATION, PART 2 53

In the example above, the two run modes share a piece of information called
“some_parameter” by storing and retrieving it as a session parameter. Nei-
ther run mode has to know just how that magic takes place behind the
scenes. You can tweak just how this is done, e.g., what database is used for
persistent storage, via CGI::Session setup arguments called from the plugin.

CGI::APPLICATION::PLUGIN::DBH

Our last CGL::App plugin for this column is another door opener.
CGI::Application::Plugin::DBH makes it easy to bring the power of Tim
Bunce’s fundamental database-independent interface (DBI) package into your
webapp. If your webapp needs to work with data found in an SQL database,
C:A:P:DBH provides an efficient way to do it. The key efficiency this plugin
provides is “lazy loading”; the plugin is smart enough not to spin up a data-
base connection unless the specific run mode in play needs it.

To use C::A:P:DBH, you describe the DBI connection in the CGI:App ini-
tialization routine:

use CGl::Application::Plugin::DBH (gw/dbh_config dbh/);

sub cgiapp_init {
my $self = shift;

$self->dbh_config({standard DBI connect() arguments});
}

If you'd prefer to keep the configuration information in your instance script,
arguably a better place for it, there’s an alternative syntax mentioned in the
documentation.

With your database configuration specified, the other run mode subroutines
can make use of a DBI database handle:

sub lookup_data {
my $self = shift;

my $data = $self->dbh->selectrow_arrayref(qg{SELECT name,uid
FROM users});
... do something with $data->[0] and $data->[1]
}

C::A::P::DBH lets you use named DBI database handles if your webapp has a
need for connections to multiple databases.

Sample Code

So let’s put this all together into a toy webapp that demonstrates everything
we've talked about in both parts of this series. We're going to look at the
code in an outside-in fashion. The first piece of code a user executes is the
instance script. This is the script that is called when we go to http:/www
server.com/LoginExample.cgi:

use strict;
use lib ‘/path/to/webapps/lib’;

use LoginExample;

my $app = LoginExample->new();
$app->run();

;LOGIN: VOL. 34, NO. 5

;LOGIN: OCTOBER 2009

This super-simple script just spins up the application module and its run
mode subroutines. That’s a fairly sizable file (LoginExample.pm). Here it is
in its entirety:

use strict;

package LoginExample;

use base 'CGl::Application’;

use CGI::Application::Plugin::AutoRunmode;

use CGI::Application::Plugin::Session;

use CGl::Application::Plugin::DBH (qw/dbh_config dbh/);

use CGl::Application::Plugin::ValidateRM (gw/check_rm
check_rm_error_page/);

use Data::FormValidator::Constraints (qw/FV_length_between email/);

Configure the database connection and the location of the templates
sub cgiapp_init {
my $self = shift;
$self->dbh_config(“dbi:SQLite:dbname=loginex.sqlite”, "", ");
$self->tmpl_path(‘templates’);
}

The initial run mode displays a form and handles another pass
through the form should it not be filled out correctly. It also
stashes the time the script was first run by the user in a session object
sub get_userinfo : StartRunmode {
my $self = shift;
my $errs = shift;

$self->session->param(‘starttime’ => time)
unless $self->session->param(’starttime’);

my $template = $self->load_tmpl(‘getuser.tmpl’,
die_on_bad_params => 0);

if we're showing errors from validation
$template->param($errs) if ref $errs;

return $template->output();
}

First test to make sure it has received valid output. If it has, query a
database and the session object for other fields and display the info
via a simple template

my $self = shift;

Validate input from getuser_info's form
my $results = $self->check_rm(
‘get_userinfo’,

{ required => [qw/fullname email/],
filters => ["trim’],
constraint_methods => {
fullname => FV_length_between(1, 50),
email => email(),

1

msgs => {
any_errors => ‘err__,
prefix => ‘err_,

1

}

) || return $self->check_rm_error_page();

PRACTICAL PERL TOOLS: CGI::APPLICATION, PART 2

55

56

my $template
= $self->load_tmpl(‘showuser.tmpl’, die_on_bad_params => 0);

my $email = $self->query->param(‘email’);

my $idnumber = $self->dbh->selectrow_array(
qo{SELECT idnumber FROM users WHERE email = \" $email\"});

$template->param(FULLNAME => $self->query->param(‘fullname’));
$template->param(EMAIL => $email);
$template->param(IDNUMBER => $idnumber);
$template->param(
STARTTIME => scalar localtime $self->session->param(’starttime’));

$self->session->deletel);
$self->session->flush();

return $template->output();
}

1;

After the modules are loaded, we perform all of our initialization work by
configuring the database handle and template directory. Next come the two
run modes for this module: get_userinfo and show_userinfo. The first run
mode uses a template to display a two-field form (we'll see the template in
just a moment) to collect information from the user. In the process, it makes
note of the time the run mode was first entered by squirreling away that
value in a session object. This run mode also handles a redisplay of that
form should the user not provide valid information.

The second run mode, show_userinfo, checks the input it has been passed
from get_userinfo. If the input is not valid, it creates an error page by call-
ing get_userinfo again. If the input is valid, it retrieves info from the form
parameters ($self->query->param()), an SQLite database (via DBI), and
the session object ($self->session->param()). This information is inserted
into a template, the session object is disposed of, and CGL::App is handed
output to display.

To see what is displayed for each run mode, let’s look at the two templates.
Here’s getuser.tmpl:

<html>
<head><title>Login Example </title></head>
<body>

<!--TMPL_IF NAME="err__" -->
<p> Some data in your form was missing or invalid. </p>
<!--/TMPL_IF -->

<form method="POST">

<input type="hidden” name="rm" value="show_userinfo” />
Full Name: <input type="text" size=30 name="fullname"/>
<TMPL_VAR NAME="err_fullname">

Email: <input type="text" size=30 name="email"/>
<TMPL_VAR NAME="err_email">

<input type="submit” name="submit” value="Submit” />
</form>

</body>

</html>

;LOGIN: VOL. 34, NO. 5

and here’s showuser.tmpl:

<html>
<head><title>Login Example </title></head>
<body>
Full Name: <TMPL_VAR NAME=FULLNAME>

Email: <TMPL_VAR NAME=EMAIL>

ID: <TMPL_VAR NAME=IDNUMBER>

Started: <TMPL_VAR NAME=STARTTIME>
</body>
</html>

Leftovers

We're very out of room (it's amazing how fast you can use up 140 charac-
ters), so let me just say that there are a number of CGI::App plugins you'll
definitely want to explore if you decide to start building Web applications
with it. The best place to start is to look at the “bundled” version being pro-
duced (search CPAN for “Titanium”) to have all of the current “best prac-
tices” CGL::App plugins at your fingertips. Beyond that, search CPAN for
“CGIL:Application::Plugin” for a plethora of choices. Have fun writing web-
apps (perhaps for the first time) with CGIL:Application. Take care, and I'll
see you next time.

3

Save dhe Daq.ef

: Solaris Security Summit

Tuesday, November 3, 2009 - Baltimore, MD

Join us in Ba D'en Novembef'3, 2009, for a free one day event
for the'l test in how 1o Make System Security Work for You!
The sum - gd with the .\,; 'Senix LISA conference.

for up to date in ‘o presentations, and demonstrations of the latest in
Solaris security solutions, OpenSolaris and other Open Source security projects,
and virtualization and cloud security initiatives.

Dee Yoo ™ Baletmorel,

FREE registration at http://wikis.sun.com/display/secsummit09

;LOGIN: OCTOBER 2009 PRACTICAL PERL TOOLS: CGI::APPLICATION, PART 2 57

