
68	 ; LO G I N : VO L . 3 4 , N O. 5

D a v e J o s e p h s e n

iVoyeur: packet-level,
per-user network access
control and monitoring

Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

W e wat c h t h e l o g s s c r o l l b y, u s e r s
in the offices surrounding us using VPN to
access specific ports on the specific serv-
ers they need in the server room based on
business roles that apply to them. My mind
shifts down one level. The gateway device
allows them access to the Internet, where
they loop back to the public VPN endpoint
for this building. PKI and LDAP Bind authen-
ticate them to the VPN endpoint, and it
creates packet filter rules for them based
on the outcome of LDAP queries, loads their
rules to the VPN users’ PF anchor, and hands
them routes to privileged internal subnets.
This is the kind of interaction that makes
my frontal lobes buzz. Lots of pieces, lots
of layers. Physical, logical, human, abstract;
lots of things to understand—no, lots of
ways to understand, and we do, because we
built it.

It all fits so well together that it’s hard to see the
pieces now—like these unrelated projects were in-
tended to be subsystems of the whole we’ve cre-
ated. The best systems I’ve built work this way; the
ones that are going to stick to the wall. I imagine
that real scientific discovery feels something like
this. When it’s done and you step back and look at
it, you know that you’ve found the answer to this
particular question, and that when you move on
it will remain. This answer is right, it is truth, and
anything else is a compromise...a kludge.

We sit in silence, lost in thought, mulling details;
routing, schema extensions, NAT, tunnels. What
if . . . no, that’s accounted for. But then what if . . .
no, the design takes care of that too.

Finally my cohort blinks and shakes his head.
“Whose idea was this?”

All I can do is chuckle and shrug. I honestly can’t
remember. The design has been haunting me for
what feels like years, but I can’t say for sure it orig-
inated in my brain. It was a progression. An artifact
of our collective familiarity with these tools, our
familiarity with each other, and our daily carpool
brainstorms. Having a need for a network access
control system probably didn’t hurt, but in reality it
wasn’t much of a catalyst either. Solutions like this
build themselves when they are ready to be built,
and which of us is to blame isn’t important, even

; LO G I N : O c to b e r 20 0 9	iVo y eu r : pack e t- le v e l n e t wo rk access con trol and moni to ring	 69

if it were answerable. This thing scrolling away before us is a product of our
“us-ness,” and also, it’s awesome.

“It’s a pretty good idea,” he says.

“Yeah, not bad,” I reply.

I should pause here for a short disclaimer: The thing I hate and dread about
writing implementation articles is sharing my code. Easy there, Captain
Open Source, I’m not being proprietary corporate guy. The thing I hate
about sharing my code is inviting you, dear reader, into my brain. It’s far
easier to stay on the English composition side of this equation, where a well-
placed semicolon or two might disguise the blathering idiot I truly am (un-
likely, but possible). Sharing source code with the readership of ;login:, on
the other hand, is something like showing up naked to a photography con-
vention. It’s not something to be done lightly if you value the respect of your
peers, and, being painfully aware of that, I wanted to make sure you knew
the code herein is mine. My cohort is innocent in that regard, his kimono
firmly closed as it were.

So, when did this idea coalesce? I don’t know that either, but the imple-
mentation started with a fortuitous network redesign. We moved our head-
quarters in April, which provided us with the opportunity to redesign the
network from the ground up. New numbers, new segments, new provid-
ers—the whole deal. A big part of the redesign was this VPN-based access
control scheme we’d already been kicking around. The idea was that instead
of having an “internal” subnet for our employees, we’d have an untrusted
segment officially referred to as “public.” University administrators are prob-
ably pretty familiar with this idea: I’ve sometimes heard them call it “the hea-
then zone.”

It’s assumed that bad things happen in the heathen zone as a matter of
course, and that the systems within it should be allowed relatively unfettered
(but NATed) access to the Internet and not much else. In our new corporate
network, if a heathen wants to use services that don’t have public external
addresses (POP, printers, etc.), they should do what they’d do at Starbucks—
no, not pretend to read while hoping someone will talk to them, but VPN
in. When they do that, we can give them access to the exact services on the
specific systems they need, and we can tie their traffic to a UID and moni-
tor/log it. The new network was designed with this in mind.

The next step was figuring out an access control scheme (language?). LDAP
was the obvious choice as a database, but how to implement it? We knew we
wanted a very flexible role-based scheme that would scale and make it easy
to optimize for performance during searches by limiting the search base.
We also wanted to be able to consolidate a few other LDAP systems into it
for things like FTP and mail authentication, and even asset control and ma-
chine inventory. I’ve done a lot of things in my professional career, but get-
ting LDAP right the first time isn’t one of them. In fact, I have rarely gotten
a design that I like for more than a few weeks. I’ve also never found a design
that I could move from one company to another. In this case, I think on the
third or fourth try we got something that stuck.

We modified the schema to add a few objects of our own, for things like net-
works, servers, and a role object, with a socket-style “grant” attribute that
specifies host/service tuples. The easiest way to give you a feel for how it
works is to show you what the VPN endpoint does when an employee logs
into it.

Step 1. Given a unique UID, look up the user’s DN:

70	 ; LO G I N : VO L . 3 4, N O. 5

ldapsearch (uid=dave) dn

This yields something like:

uid=dave,ou=foo,ou=bar,dc=dbg,dc=com

Step 2. Given a user’s DN, look up what it’s been granted access to:

ldapsearch (&(member=uid=dave,ou=foo,ou=bar,dc=dbg,dc=com)
(objectclass=dbgRole)) dbgGrants

This returns a list of server/service tuples that look like this:

fooserver.dbg.com:login

Step 3. For each tuple, resolve the IP address and port number:

ldapsearch (&(cn=a.ig05.dc4.dbg.com)(objectclass=dbgNetwork)) dbgAddress

One or more IP addresses in CIDR notation may be returned.

At the moment, there is no service object in LDAP that maps the service to a
port number. This is because the service definition is arguably relative, given
that future consumer programs might use a different port for the same ser-
vice name or might not want them mapped to TCP port numbers at all, and
anyway creating 30,000+ LDAP objects that mostly won’t ever be used just
seems wrong. At the moment, I think it’s better that the consumer applica-
tion interpret the service name (“login” in this example) for itself. On the
VPN gateway we do this with a slightly modified copy of the /etc/services
file.

The VPN endpoint runs OpenBSD, with OpenVPN and the PF (Packet Fil-
ter) firewall. There are three OpenVPN configuration parameters that make
this design possible. The first is actually optional: --auth-user-pass-verify al-
lows us to authenticate the user via LDAP, which saves us from having to
issue new certs every time a heathen forgets its password.

The next two go hand-in-hand: --client-connect and --client-disconnect.
These allow us to call a script of our choosing when a client connects and/or
disconnects, and are pretty much the bailing wire holding this all together.
I wrote a shell script I call VPLDPF (VPN-LDAP-PF) that gets the user’s UID
from OpenVPN as $1, along with a bunch of other interesting variables.
VPLDPF’s job is to perform the necessary LDAP queries to figure out what
hosts/ports the heathen gets access to, translate these into PF rules, and fi-
nally load them into PF. The script is available linked under this article at
http://www.usenix.org/login/2009-10/.

PF’s “anchor” feature makes this sort of automated dynamic firewall configu-
ration safe and easy. Anchors are named sets of filter rules that can be main-
tained and loaded separately from the main PF rule set. VPLDPF uses LDAP
searches to create PF filter rules for every user who logs in and then stores
them in a file named after the user in /etc/pfanchors/vpnusers. Once we’ve
told PF that we’ll be using an anchor called vpnusers by adding anchor ‘vp-
nusers/*’ to /etc/pf.conf, VPLDPF can load, for example, Bob’s rule set:

pfctl -a vpnusers/bob -f /etc/pfanchors/vpnusers/bob

Going into it, I thought the initial population of LDAP was going to be
time-consuming, but the “roles” scheme we came up with didn’t take much
effort,and has made it pretty easy to get very granular permissions on an in-
dividual employee basis. How granular? Let’s take a look at “Bob,” a pretend
employee modeled after a real project manager.

Bob’s DN is:

uid=bob,ou=projectManagement,ou=staff,dc=dbg,dc=com

; LO G I N : O c to b e r 20 0 9	iVo y eu r : pack e t- le v e l n e t wo rk access con trol and moni to ring	 71

Running an ldapsearch for object class dbgRole with Bob’s DN in the mem-
ber attribute, we find that Bob has three roles assigned to him:

dn: cn=employee,ou=roles,dc=dbg,dc=com
dn: cn=HQVPNUser,ou=roles,dc=dbg,dc=com
dn: cn=PM,ou=roles,dc=dbg,dc=com

The employee role contains the following dbgGrants attributes:

dbgGrants: fileServ1.dbg.com:login	 # a fileserver
dbgGrants: fileServ1.dbg.com:http
dbgGrants: fileServ1.dbg.com:https
dbgGrants: mail.dbg.com:http	 #an email server
dbgGrants: mail.dbg.com:https
dbgGrants: mail.dbg.com:pop3
dbgGrants: mail.dbg.com:smtp
dbgGrants: mail.dbg.com:xmpp-client	 #this is the jabber port

The HQVPNUser role contains the following dbgGrants:

dbgGrants: ns.hq.dbg.com:domain

And the PM role contains the following dbgGrants:

dbgGrants: pm.dbg.com:http	 # the project management server

Using the server name as a CN to resolve the IP address and looking in the
services file for the port, VPLDPF created the following PF rules for Bob:

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = ssh flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = https flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = www flags S/SA
keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = https flags S/
SA keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = www flags S/
SA keep state

pass in inet proto udp from 10.253.21.10 to <__automatic_adb98624_0> port
= domain flags S/SA keep state

pass in inet proto tcp from 10.253.21.10 to 10.21.1.4 port = www flags S/SA
keep state

The first thing to note is that the “login” service was translated to port 22.
A different LDAP client program might have used RDP, or “login” might
have been used as a requirement in something like nsswitch.conf if we were
doing LDAP Auth on a Linux box, for example. This is why we choose to in-
terpret the service name in the app instead of in LDAP.

Next, note the weird-looking PF destination address for the DNS rule:
<__automatic_adb98624_0>. This is a dynamic table that was generated for
us by PF. The server object whose CN is ns.hq.dbg.com has multiple address
attributes associated with it. This caused VPLDPF to generate a slew of PF
rules, one per destination address for that server object. When those rules
were loaded into PF, PF saw that everything but the destination address was
redundant, so it optimized these rules down to a single rule by creating a
table for all of ns.hq.dbg.com’s destination addresses. If we wanted to see the
contents of this table, we could ask PF with the command:

pfctl -a vpnusers/bob -t __automatic_adb98624_0 -T show

72	 ; LO G I N : VO L . 3 4, N O. 5

To make it easy to track the current state of things, I wrote another shell
script that parses OpenVPN’s status log for the currently connected users
and runs the pfctl commands necessary to dump the PF details on each of
them. This script, called vpninfo.sh and also available linked under this ar-
ticle at http://www.usenix.org/login/2009-10/, gives the following output for
Bob:

################# bob ######################
localIP: 10.253.21.10, remoteIP: 67.16.87.60:13771
Connected since: Sat Jul 25 17:24:19 2009

PF Rules for user bob
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = ssh flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = https flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.2 port = www flags S/SA

keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = https flags S/

SA keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.64.101 port = www flags S/

SA keep state
pass in inet proto udp from 10.253.21.10 to <__automatic_adb98624_0> port

= domain flags S/SA keep state
pass in inet proto tcp from 10.253.21.10 to 10.21.1.4 port = www flags S/SA

keep state

PF Dynamic Table Contents for user Bob:

__automatic_adb98624_0
	 10.21.0.1
	 10.21.16.1
	 10.21.32.1
	 10.21.48.1
	 96.26.18.66

Since users each get their own set of firewall rules, we can associate every
packet they send with their username by, for example, tagging their packets
with their name or logging them to a special pflog interface. We can moni-
tor and otherwise collect usage information on particular heathens with ac-
cess to sensitive systems (Holt-Winters forecasting anyone?), and we get the
happy side effect of encrypting all traffic in the heathen zone that’s destined
for privileged networks, whether the protocols in use are encrypted or not.
These are the sorts of things that make auditors go all giggly. The impact on
our users, most of whom were already used to using VPN from home, was
pretty minimal, and I’m far happier with this than any of the real NAC solu-
tions we’ve tried, though that’s arguably apples and oranges.

As far as caveats go, there are two that spring to mind: First, I wish PF had
an iptables-style log-prefix feature. That would make auditing far easier
(time to delve into PF’s source code perhaps). Second, this solution makes
it somewhat tricky for systems in the privileged networks to reliably initiate
connections to heathen workstations, which may or may not be a problem
in your environment. We have a few people who forward their mail from the
mail system to the smtp daemon on their workstation by way of a .qmail file,
and we’re having to find some workarounds for that. Otherwise, it’s been all
smiles and giggly auditors for us. Whoever’s idea this was, it was not bad at
all.

Take it easy.

