
62    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

COLUMNS

iVoyeur
7 Habits of Highly Effective Monitoring Systems

D A V E J O S E P H S E N

Dave Josephsen is
the sometime book-
authoring developer
evangelist at Librato.
com. His continuing

mission: to help engineers worldwide close the
feedback loop. dave-usenix@skeptech.org

Having recently returned from Monitorama [1], I can attest that it is
exactly what it sounds like: a collection of people so enamored of the
technical discipline that has been my obsession for the better part of

the last decade that they literally fly from the far corners of the world in order
to shut themselves up in a single room and geek out about it for days. There
are drunken diatribes about RabbitMQ in the context of metric transmis-
sion, hallway arguments about whether CPU percentage or load average is
the superior metric of computational stress, and diabolical plots to compress
time series data by converting it to frequency space. My point is, this confer-
ence could not be more custom-tailored to please me were we gathering in a
fellowship quest to craft the ultimate bacon, lettuce, and tomato sandwich.

If there was a theme that permeated the event, I think it was to be found in the contrast
between two very specific kinds of talk. The first type is the kind given by someone attempt-
ing to apply mathematical (usually statistical, but sometimes signal processing) techniques
to detect aberrant behavior in time series data. These are always technical and, with a few
notable exceptions [2], do not attempt to practically apply their findings via a tool the rest
of us can experiment with. They customarily provide an overview of relevant mathematical
techniques, usually beginning with simple thresholds, moving through standard deviation
and various types of exponential moving averages like Holt-Winters, and winding up some-
where in the vicinity of forward decaying priority sampling. At this point, they usually throw
up their hands, mutter something about domain-specific knowledge and monitoring data
being a non-Gaussian distribution, and ask for questions.

The second type of talk is the kind given by an engineer who has implemented a monitor-
ing system that seems to be working for them at the moment. It is often a tenuously wired
together Frankenstein’s monster that will almost certainly look different the next time we
see it (which is fine if it’s solving their problems). To be clear, I greatly enjoy both of these
kinds of talks. If there were a cable channel that brought me only this content, I would never
leave the house.

Automated fault detection is absolutely worth pursuing, I’m excited about it, and I have no
doubt there will be breakthroughs as we get more eyes on it. Further, it’s always fascinat-
ing to hear about the real-life trials and tribulations of my fellow plumbers who are holding
things together in their respective corner of the Internet. Their every success is a ray of glori-
ous hope that brightens my day.

Being repeatedly subjected to these two types of talks back to back, however, was, I have to
admit, a little disheartening. The contrast between the cold mathematical certainty prom-
ised by the former type compared to the banal reality of the latter really got me thinking
about the current state of monitoring as I’ve personally witnessed it. Aren’t there real-life
monitoring systems out there that are purposefully designed, elegantly engineered, and that
meet 100% of the needs of every engineering team in their respective organization? Yes, as
a matter of fact, I happen to know that there are well-engineered monitoring systems that
world-class IT shops are happy with: Systems that sure would benefit from automatic fault

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  63

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

detection, but wouldn’t be defined by it. Systems that are worlds
away from the cobbled together collections of tools from the
second kind of talk—the kind, I might add, that the preponderant
quantity of attendees I spoke to are running. And yet, the moni-
toring systems I’m talking about are often composed of those
same pieces, but somehow manage to become more than the sum
of their parts.

I like to think I’ve done a good job of resisting the urge to pon-
tificate about the state of monitoring in general in this column,
focusing instead on interesting tools and techniques. It just
seems presumptuous of me to tell you what to install and how,
but Monitorama has left me with both a burning desire to spout
off at the mouth about monitoring theory and the feeling that I
may have been remiss in avoiding it in the past. So, I give you my
take on the current state of how to monitor well, organized into
seven habits that summarize what the good systems are doing
right today.

Habit 1: It’s About the Data
Were I in a darker mood, I might have titled this “Stop Looking
for an Ubertool.” Awesome monitoring systems value data over
tools—they understand that a monitoring tool is merely a means
to obtain data. They treat metrics and telemetry data as first-
class citizens and rarely leave it to rot within the tool that col-
lected it. Rather, they send the data “up” to be processed, stored,
and analyzed together with all of the other data collected by all
the other tools, on all the other systems, organization-wide.

When you make the data a first-class citizen, you wind up with
data-centric tools that enable you to correlate measurements
taken from any layer of the stack. You can, for example, quantify
the effect of JVM garbage collection on service latency, or if the
number of calls to the foo() function in your application across
three different nodes correlates to the odd behavior in the byte
counter that resides on the switch they are all connected to. You
know you are doing it right when you can “tee” off a subset of
your monitoring data at will and send it as input to any new tool
you might decide to use in whatever format that tool expects.

Now that I’ve made a big deal about it not being about tools, let’s
talk about the kinds of tools that let data thrive, beginning with
an example of what not to do. I’ll go ahead and pick on Nagios for
this, since that’s so in-vogue these days. Nagios was designed
for a very specific job, namely, to collect availability data on
services and hosts on the order of minutes (usually about every
five minutes).

This is useful data to collect, and Nagios is, in my opinion,
the best tool for accomplishing this task. It also makes some
annoying assumptions about how you want to process the data
it collects, and those assumptions make it more difficult than
it should be to get data out of Nagios and into other tools. This

is evidenced by the plethora of single-purpose tools that have
sprung into being for no other purpose than to take data from
Nagios and place it in X, where X is some other monitoring tool
from which it is usually even more difficult to extract the moni-
toring data.

And so it is that we devolve into this anti-pattern of implementing
the tool we think we need, and then more tools to connect our
tool to yet other tools in an attempt to make up for some deficiency
in the one we thought we wanted. The complexity of our moni-
toring efforts grows quadratically as our chosen tool bogs down
with every new tool we bolt onto it. God help us if we ever want
to connect a tool to the tool that’s connected to the original tool,
because our data just gets more and more specific, ever-increas-
ingly locked-in to the toolchain we’ve painted ourselves into.

If, however, we recognize that Nagios is merely one of many data
collectors and place a transmission layer above Nagios that is
designed to accept metrics data from any sort of data collector so
that it can be processed and persisted in a common data format,
our tools no longer depend on each other, and we have a single
source of telemetry data that we can wire to any tools that make
sense. Obviously, I think this is a fantastic idea, and I even began
to implement it myself [3] before Riemann [4] and Heka [5] did a
much better job of it.

Habit 2: Use Monitoring for Feedback
Who is choosing your metrics? Are you using a turnkey agent
that collects umpteen hundred metrics from every node that
you install it on? How many of those metrics do you track? How
many do you alert on? Great monitoring systems are driven by
purpose. They are designed to provide operational feedback
about production systems to people who understand how those
systems work—people who have chosen what to monitor about
those systems based on that knowledge.

Monitoring isn’t a “thing”; it does not stand on its own. It is not
a backup system or a disaster recovery plan, or any other sort
of expensive and annoying burden heaped on Ops to satisfy the
checklist requirements of a regulatory body or an arbitrary quar-
terly goal. It is not a ritual that grown-ups tell us to follow—like
keeping our hands and arms inside the vehicle at all times—a
habit we all must perform to stave off some nameless danger that
no one can quite articulate.

Monitoring is an engineering tool. It exists to provide closed-
loop feedback from engineering systems. It is the pressure meter
on your propane tank. Through monitoring, we gain visibil-
ity into places we cannot go, and we prevent explosions from
happening in those places. The engineers in your organization
should understand the metrics you monitor, because each should
have been configured by an engineer to answer a specific ques-
tion or provide a concrete insight about the operational charac-
teristics of your service.

64    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

Habit 3: Alert on What You Draw
When an engineer in your organization receives an alert from a
monitoring system, and moves to examine a graph of monitoring
data to analyze and isolate the problem, it’s critically important
that the same data was used to generate both the alert and the
graph. If, for example, you’re using Nagios to check and alert,
and Ganglia to draw the graphs, you’re raising the likelihood of
uncertainty, stress, and human error during the critically impor-
tant time of incident response.

One monitoring system or the other could be generating false
positives or negatives; they could each be monitoring subtly dif-
ferent things under the guise of the same name, or they could be
measuring the same thing in subtly different ways. It actually
doesn’t matter, because there is likely no way to objectively tell
which system is correct without a substantial effort, and even if
you do figure out which is lying, it’s unlikely you will be able to
take a meaningful corrective action to synchronize the behavior
of the systems.

Ultimately, what you’ve done is shifted the problem from
“improve an unreliable monitoring system” to “make two unreli-
able monitoring systems agree with each other in every case.”
The inevitable result is simply that your engineers will begin to
ignore both monitoring systems because neither can be trusted.

Great monitoring systems require a single source of truth. In
the current example, the most expedient way to achieve this
is to configure Nagios to monitor thresholds in Ganglia’s data
[6] (because Ganglia has the best resolution). The concept of
a single source of truth is a fundamental requirement to good
systems monitoring. It’s also another great argument in favor of
focusing on data rather than tools.

Habit 4: Standardize Processing, but Emancipate
Collection
I’ve run into business consultants who were convinced that the
proper way to implement monitoring solutions was to first create
a plan that lists every possible service that you could ever want
to monitor and then choose a tool that meets your data collection
list. In my experience, great monitoring systems do the opposite.
They plan and build a substrate—a common, organization-wide
service for processing telemetry data from monitoring systems—
like the ones I described above in Habit #1. Then they enable and
encourage every engineer, regardless of team affiliation or title,
to send monitoring data to it by whatever means necessary.

Awesome monitoring systems standardize the metrics process-
ing, storage, analysis, and visualization tools, but they declare
open season on data collectors. One shop whose engineers I’ve

spoken with (apologies, I’ve forgotten which) has the motto “new
metrics in minutes.” Every engineer should be free to implement
whatever means she deems appropriate to monitor the services
she’s responsible for. Monitoring new stuff should be hassle-free.

Habit 5: Let the Consumers Curate
Another popular notion about monitoring systems in the corpo-
rate world is that they should provide a “single pane of glass,” by
which I assume they mean the monitoring system should have
a single, primary dashboard that shows a high-level overview of
the entire system state.

That’s great and I’m not necessarily arguing against it, but the
best monitoring tools I’ve seen focus instead on enabling engi-
neers to create and manage their own dashboards, thresholds,
and notifications. If you’re doing it right, you should have a dash-
board for every service that your team supports or contributes
to, curated by your team members. Effective monitoring systems
don’t just allow non-ops engineers to interact with the system,
they demand it.

Great monitoring systems are timely, open, and precise. They
represent a single source of truth that is so compelling and easy
to interact with that the engineers naturally rely on them to
understand what’s going on in production. When they want to
track how long a function takes to execute in production, they
should naturally choose to instrument their code and observe
feedback using the monitoring system. When they have an out-
age, their first thought should be to turn to the dashboard for
that service before they attempt to ssh to one of the hosts they
suspect is involved.

A monitoring system that requires coercion for adoption isn’t
solving the right problems. So, if your engineers are avoiding the
monitoring system, or ignoring it, or rolling their own tools to
work around it, then you have an impedance problem, and you
should ask yourself why they prefer the tools they do over yours,
and focus in on making it easier for the consumers of the system
to use it to solve their problems.

Habit 6: Evolve by Tiny Iterations
Healthy monitoring systems don’t need a semi-monthly main-
tenance procedure. They stay relevant because they’re con-
stantly being iterated by the engineers who rely on them to solve
everyday problems. New metrics are added by engineers who
are instrumenting a new service or trying to understand the
behavior of some misanthropic piece of infrastructure or code.
Measurements are removed when they’re no longer needed by
the team that put them there—because they’re superfluous and
cluttering up the dashboards.

www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  65

COLUMNS
iVoyeur: 7 Habits of Highly Effective Monitoring Systems

By focusing on the data, relying on the accuracy of the results,
and enabling everyone to iteratively fix the pieces they rely
on, your monitoring system will evolve into exactly what your
organization needs it to be, rather than a complicated ball of
cherished tools tenuously strung together that everyone ignores
except the dude holding the string.

Habit 7: Instrumentation != Debugging
Monitoring is unit testing for operations. For all distributed
applications—and, I’d argue, for a great deal of traditional ser-
vices—it is the best if not the only way to verify that your design
and engineering assumptions bear out in production.

Further, instrumentation is the only way to gather in-process
metrics that directly correspond to the well-being and perfor-
mance of your production applications.

Therefore, instrumentation is code. It is a legitimate part of
your application—not extraneous debugging rubbish that can be
slovenly implemented with the implicit assumption that it will
be removed later. Your engineers should have libraries at their
disposal that enable them to thoughtfully and easily instrument
their application in a way that is commonly understood and
repeatable. Libraries like Coda Hale Metrics [7] are a fantastic
choice if you don’t want to roll your own. In the same way your
feature isn’t complete until you provide a test for it, your applica-
tion is not complete until it is instrumented so that its inner
workings can be verified by the monitoring data stream.

As always, I hope you found something helpful in this diatribe.
As the DevOps revolution continues to utterly confound and
mystify the IT managementosphere, I think we have a golden

opportunity to reinvent monitoring. My hope is that we can
expand it from a thing that operations does because: comput-
ers, and replace it with a commons—supported by Ops—that
welcomes measurements from every type of engineer and
encourages them to define their own interactions, no matter how
convoluted their title. To the extent we achieve this, I believe we
will improve the transparency of both our services and infra-
structure, increase our understanding of the systems we sup-
port, and carry with us quieter pagers.

Good luck!

References
[1] The Monitorama conference: http://monitorama.com.

[2] Abe Stanway, Jon Cowie: “Bring the Noise,” Velocity
Santa Clara 2013: https://www.youtube.com/watch?v
=3nF426i0cBc.

[3] Hearsay: https://github.com/djosephsen/Hearsay.

[4] Riemann: http://riemann.io/.

[5] Mozilla, Introducing Heka: http://blog.mozilla.org
/services/2013/04/30/introducing-heka/.

[6] Monitoring Ganglia data from Nagios: https://github.com
/ganglia/monitor-core/wiki/Integrating-Ganglia-with
-Nagios.

[7] Coda Hale Metrics: http://metrics.codahale.com/.

https://github.com/ganglia/monitor-core/wiki/Integrating-Ganglia-with-Nagios
https://github.com/ganglia/monitor-core/wiki/Integrating-Ganglia-with-Nagios
https://github.com/ganglia/monitor-core/wiki/Integrating-Ganglia-with-Nagios

