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T e r a f l o p s  a n d  OVER     1 0 0  G B / SE  c  
memory bandwidth do not only realize 
gamer dreams of “better”-looking mon-
sters, they also attract developers of other 
performance-hungry applications. While 
the hardware specifications of high-end 
graphics processors (GPUs) with hundreds 
of cores make multicore CPUs look like toys, 
the complexity of leveraging these exotic 
hardware platforms for general-purpose 
applications puts a high price tag on ap-
plication development. Even though new 
development environments allow C-style 
programming, efficient implementations 
still require extensive knowledge of com-
puter architecture as well as analytical and 
debugging skills, going beyond standard 
tools. In this article, I would like to share my 
experiences in programming video cards 
for database operations over the last three 
years. 

In the past, using video cards for non-graphics ap-
plications has been considered one of the “black 
arts” of computer programming, practiced only 
by a handful of hackers and researchers. The pro-
grammer needed to fool the GPU into thinking it 
would draw a scene to display, while it was in fact 
performing a general-purpose computation. This 
required mapping data to graphics objects de-
scribed by floating-point vectors and ensuring that 
results were “drawn” within visible screen space; 
otherwise they were no longer accessible or not 
even computed. CPU results did not necessarily 
match GPU results, since for the dominant appli-
cation, that is, games, speed was more important 
than accuracy, and most video cards did not imple-
ment 32-bit floating-point precision. Despite the 
difficulties, the impressive performance of early 
prototypes started a wave of general-purpose GPU 
applications [7]. 

Until two years ago, implementing general-purpose 
applications required using Graphics APIs such as 
OpenGL and Cg. In early 2007, our first prototype 
implementation of parallel search used the color 
information of each pixel in an image to store data. 
Using a 24" screen with a resolution of 1920×1200 
pixels, the biggest possible data set that it could 
handle with this method was 9.2 million charac-
ters or 8.8MB. However, the physical size was four 
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times as much, since each 8-bit character had to be stored as a 32-bit float-
ing-point value. 

New software development environments such as NVIDIA’s Compute Uni-
fied Device Architecture (CUDA) greatly simplify programming GPUs for 
non-graphics tasks [10]. It is no longer necessary to use graphics data types 
and drawing primitives or to limit data-set sizes to the maximum screen 
resolution. Besides a few additional instructions and function type qualifiers, 
which determine the degree of parallelism and where a piece of code is ex-
ecuted (GPU or CPU), CUDA allows standard C-style programming. 

The programming obstacles removed, commercial software developers 
started evaluating GPUs for computationally intense tasks, as an alternative 
to clusters. With data centers reaching their physical limitations in terms of 
space, power consumption, and cooling, alternative solutions with higher 
computational performance per watt and per square foot become very ap-
pealing. Using GPUs with more than one teraflop of compute performance 
each, a 100 teraflop data center could be realized with less than 100 GPUs 
[2]. To achieve the same with conventional PC/server hardware would re-
quire more than 1400 CPUs, 70 gigaflops each. Assuming a power con-
sumption of roughly 200 watts per GPU and 130 watts per CPU, a GPU 
solution would require only a tenth of the power required by CPUs. Includ-
ing the power consumption of other components required for each machine 
will favor a GPU solution even more, since it requires only 25 machines with 
four video cards each. 

Besides teraflops, the latest GPUs feature up to 4GB of memory and memory 
throughput beyond 100GB/sec, which makes them attractive for data-inten-
sive applications, e.g., databases. Over the past few years, the growth rates 
of main memory size have outstripped the growth rates of structured data in 
the enterprise, particularly when ignoring historical data. Gartner predicts 
that in-memory analytics will soon become feasible even for large data-ware-
housing applications [11]. Databases also offer plenty of opportunity for par-
allel execution, as they usually handle many queries simultaneously. 

However, GPU hardware development continues to be driven by the mass 
market for games and multimedia, and implementing general-purpose appli-
cations, which do not necessarily resemble graphics applications, remains a 
challenge. The non-uniform memory architecture between CPU and GPU re-
quires explicit data copies and address translation, and the PCI-express bus 
turns out to be a bottleneck, making it difficult to leverage the GPU for data-
intensive applications. Overall, the subset of applications that can potentially 
benefit from using the GPU as a co-processor has to be parallelizable and 
complex enough to not be dominated by data transfers between main and 
video memory. 

After a brief introduction of the GPU architecture, I will use search as an 
example to describe the hoops to jump through in order to achieve good 
performance on GPU applications. Whether performance gains of GPU im-
plementations justify excessive development efforts has to be answered for 
the individual application. On the other hand, the trend towards increas-
ingly parallel architectures requires rethinking traditional serial applications 
all the way down to the algorithmic level, and exploring alternative parallel 
architectures provides opportunities to get a head start. 

GPGPU

When computers were mostly used for scientific applications and account-
ing, there was no need to develop a processing unit devoted to graphics. 
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With the evolution of hardware, software, and users’ taste, many applica-
tions—especially computer games—started using graphical output. At the 
beginning of the computer graphics era, the CPU was in charge of all graph-
ics operations. Mainly driven by the growing demand for more realistic com-
puter games, more and more complex operations were offloaded to the GPU. 
A standard graphics pipeline would perform a fixed geometrical transforma-
tion on graphics data, vertices of triangles, followed by coloring. 

F i g u r e  1 :  T h e  g r a p h i c s  p i p e l i n e

GPUs kept evolving in two directions. First, memory sizes increased, sig-
nificantly more than required for the frame buffer, the part of memory which 
maps directly to the screen. Second, the programmable graphics pipeline 
model (Figure 1) became the sequence of a vertex processor, to perform geo-
metric transformations of vertices in 3D space; a rasterizer, to transform geo-
metric primitives (such as lines or triangles) into actual pixels based on the 
screen resolution; and a fragment processor, to color the pixels. While the 
rasterizer’s function has been fixed, the vertex processor and the fragment 
processor are now effectively programmable. Moreover, while the initial 
graphics pipeline would simply stream the data through once, the program-
mable pipeline can access the larger memory in a more flexible way, stor-
ing multiple images (textures) and intermediate-rendering passes of complex 
computations. Modern GPUs comprise multiple vertex and fragment proces-
sors executing the same programs on different primitives in parallel. When, 
thanks to their massively parallel architecture, GPUs started becoming more 
powerful than CPUs, some programmers began exploring them for non-
graphics computations, leading to the birth of the General-Purpose Graphics 
Processing Unit (GPGPU). 

However, programming the GPU was not simple, given the rigid limitations 
in functionality, data types, and memory access. Both the hardware and 
the software support were geared exclusively toward graphics computation. 
Graphics APIs like OpenGL and Cg required mapping variables to graph-
ics objects such as textures, and algorithms to geometric and color transfor-
mations. Textures are two-dimensional arrays of four-wide single-precision 
floating-point vectors storing color information for each pixel in terms of 
red, green, blue, and opacity (rgba). Vertices are stored as four-wide floating-
point vectors for x-,y-,z-coordinates and w for normalizing coordinates. 

While the vertex processor allowed writing results to any coordinate, i.e., 
memory scatter, it could not read data from multiple locations, i.e., memory 
gather, limiting the input for computation to an individual data point. On 
the other hand, the fragment processor could gather data from up to eight 
different textures but did not support scatter, thus could only write results 
to a single fixed memory location, determined by the current pixel position. 

Using graphics APIs, the following steps were necessary to invoke GPU 
computation: One had to organize the data into a two-dimensional array. 
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This array was mapped to the physical screen as one pixel per element, re-
ferred to as screen-sized viewport. Then one had to load a fragment program 
that was to be executed on each data element or pixel and, finally, pretend 
to “draw” the screen-sized image to actually run the code on each pixel. If 
the results were graphical in nature, one could just leave them displayed on 
the screen, but in the general case, one would copy the results (i.e., content) 
from the frame buffer on which the “image” was rendered back to another 
texture or main memory. 

F i g u r e  2 :  A r c h i t e c t u r e  of   a n  N V IDI   A  G e F o r c e  8  s e r i e s  GPU 

NVIDIA’s CUDA, allowing people to program the GPU directly, was a major 
leap ahead [10]. Instead of dedicated hardware for each stage, CUDA-capa-
ble GPUs are based on flexible programmable processors, capable of any of 
the steps performed by a conventional graphics pipeline. At the top level, 
a CUDA application consists of two parts: a serial program running on the 
CPU, and a parallel part, called a kernel, running on the GPU. 

The kernel is organized as a number of blocks of threads, with one block run-
ning all of its threads to completion on one of the several streaming multi-
processors (SMs). When the number of blocks as defined by the programmer 
exceeds the number of physical multiprocessors, blocks are queued auto-
matically. Each SM has eight processing elements, PEs (Figure 2), which ex-
ecute the same instruction at the same time in Single Instruction-Multiple Data 
(SIMD) mode [5]. 

To optimize SM utilization, the GPU groups threads within a block follow-
ing the same code path into so-called warps for SIMD-parallel execution. 
Due to this mechanism, NVIDIA calls its GPU architecture Single Instruction 
Multiple Threads (SIMT). Threads running on the same SM share a set of reg-
isters as well as a low-latency shared memory located on the processor chip. 
This shared memory is small (16KB on the G80) but about 100x faster than 
the larger global memory on the GPU board. A careful memory access strat-
egy is even more important on the GPU than it is on the CPU, because cach-
ing on the GPU is minimal and mainly the programmer’s responsibility. 

F i g u r e  3 :  Co  m p a r i s o n  of   s c h e d u l i n g  t e c h n i q u e s .  E v e n t - b a s e d 
s c h e d u l i n g  o n  t h e  GPU    m a x i m i z e s  p r o c e s s o r  u t i l i z a t i o n  b y 
s u s p e n d i n g  t h r e a d s  a s  s oo  n  a s  t h e y  i s s u e  a  m e m o r y  r e q u e s t, 
w i t h o u t  w a i t i n g  fo  r  a  t i m e  q u a n t u m  t o  e x p i r e ,  a s  o n  t h e  CPU   .
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To compensate for the lack of caching, GPUs employ massive multi-thread-
ing to effectively hide memory latency. The scheduler within an SM decides 
for each cycle which group of threads (warp) to run, such that warps with 
threads accessing memory can be suspended at no cost until the requested 
data is available. The seamless multi-threading is made possible by thou-
sands of registers in each SM; each thread keeps its variables in registers and 
context switching is free. Effectively, this approach implements what I would 
naively describe as event-based scheduling (Figure 3) and benefits large, la-
tency-bound workloads. 

On the other hand, CPUs employ large caches but rely on a single set of reg-
isters, requiring context switches to preserve the state of execution of the 
current thread before loading the next. As context-switching is expensive 
and schedulers are implemented in software, CPU scheduling is based on 
time quanta; in case of a cache miss a thread sits idle until the memory re-
quest returns or its time quantum expires. 

These characteristics make the GPU an interesting platform to explore for 
parallel database processing. 

Programming GPUs

Before taking the plunge into video card programming using search opera-
tions, I would like to briefly discuss the corresponding CPU implementa-
tion, to show the differences. 

Implementing search on text indexes—in the simplest case, sorted lists—
may not require much more than “stitching” together a few standard library 
calls to produce the desired results. For example, searching for all docu-
ments containing the word “Flughafenbahnhof” (the lengthy German word 
for a train station at the airport) in the ideal case requires only a few lines of 
code. 

char searchkey[16]= “Flughafenbahnhof”; 
result = bsearch(	 (void*)&searchkey,index, numentries,  
								        sizeof(char)*maxwordlength, 
								        (int(*)(const void*,const void*)) strcmp); 

Although standard library functions like string comparison and binary 
search have been around for decades and are highly optimized, on modern 
multi-core CPUs there is still plenty of room for optimizations. 

Large-scale database servers may handle more than thousands of queries 
per second, of which many can be served simultaneously by using multiple 
threads. A multi-core CPU can execute up to #cores of those queries in 
parallel. Even for memory-bound operations like index search it is impera-
tive to employ multi-threading, as a single core cannot achieve maximum 
memory performance [8]. Since search by itself involves no data manipula-
tions, a multi-threaded implementation is straightforward and does not re-
quire special caution. 

German, which happens to contain many long words, is not the only lan-
guage for which comparing strings character by character seems subopti-
mal in terms of memory performance. In fact, performance of byte-wise vs. 
multi-word (vector) memory accesses can differ by more than an order of 
magnitude [8]. On x86 CPUs we can leverage the SSE vector unit to load 16 
bytes with a single instruction, but in turn it requires implementing a vector 
string comparison. On earlier processor generations this involved consider-
able assembly programming, whereas the recently released Core i7 imple-
ments specific instructions for string comparisons. 
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gpu programming with graphics apis

Our first prototype implementation of parallel search in early 2007 used the 
OpenGL and Cg graphics APIs, which required mapping string data to two-
dimensional textures and writing vertex and fragment programs. Although 
the basic approach presented here does not yield competitive performance, it 
illustrates the effort necessary to leverage GPGPU during its early stages. As 
a comprehensive description of all necessary steps to invoke GPU computa-
tion would go beyond the scope of this article, I will only highlight critical 
ones. For obvious reasons, the following examples require a 1:1 pixel-to-tex-
ture element (texel) ratio, unless you prefer Scrabble results. 

F i g u r e  4 :  Ma  p p i n g  i n d e x  d a t a  t o  a  t e x t u r e

A simple way to store character data in a texture is to map the ASCII char-
acter set to floating-point values between 0.0 and 255.0 and use the rgba 
color information of each pixel to store up to four characters (Figure 4). 
Strings are null-terminated (0.0), and their starting point is marked as well 
(0.1). The marking is necessary to make sure we do not report partial string 
matches, since parallelism is transparent, meaning pixels are processed in-
dependently. Dependent on string length, this approach might result in 
numerous idle processors due to the GPU’s SIMD operation (see “GPGPU” 
section, above). 

float* data = malloc(sizeof(float)*1200*1200*4); 
... 
data[pos++] = 0.1; 
data[pos++] = *(float*)&docindex; 
for (i=0;i<=strlen(currentString);i++) { 
		  data[pos++] = (float)currentString[i]; 
} 
... 
glTexSubImage2D(GL_TEXTURE_RECTANGLE_ARB, 
	 0,0,0, // detail level, x-, y- offset 
	 1200, 1200, // size 
	 GL_RGBA, // texture format 
	 GL_FLOAT, // data format 
	 data); // data pointer 

Although this encoding requires four bytes per character and an additional 
four bytes for marking the beginning of a string, it greatly simplifies the 
identification of an individual string and implementation of string compari-
son. Floating-point numbers can be directly compared using “=”, and string 
boundaries are aligned with the colors of a texel or pixel. Given the small 
range of numbers and that “string” comparisons performed during a search 
operation do not require data manipulation, errors due to lack of precision 
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or rounding are not a concern. To further simplify the implementation of 
a search algorithm, the beginning of a string can be aligned with the pixel 
boundaries, which in the worst case wastes another three bytes of space per 
string. While character strings required an explicit mapping in order to be 
comparable, the document index pointer docindex, referencing a list of doc-
uments containing this search key, is only required for the result. Therefore, 
copying its bit pattern using some pointer gymnastics is sufficient. 

F i g u r e  5 :  S t r i n g  s e a r c h  o n  t h e  GPU    u s i n g  t e x t u r e s

With the search key and the data stored in a texture, a naive search can be 
implemented as a two-step process, using two fragment programs. The first 
fragment program looks for a match with the search key and marks it (Fig-
ure 5), while the second one performs a reduction such that only the marked 
value is returned (Figure 6). Although this sounds fairly straightforward, the 
implementation requires some explanation: 

float4 search(	float2 coords: WPOS, 
						      uniform samplerRECT texCgFrag) : COLOR { 
		  float2 data_coords = coords; 
		  float2 searchkey_coords = float2(0.5,0.5); 
		  float4 data = texRECT(texCgFrag, data_coords ); 
		  float4 searchkey = texRECT(texCgFrag, searchkey_coords); 
		  float done =0.0; 
		  if (data.r == 0.1) { 
			   if (done == 0.0) { 
				    if (data.b != searchkey.b) done = -1.0; 
				    if (data.b == searchkey.b) 
					     if (data.b== 0.0) done = 1.0; 
			   } 
			   if (done == 0.0) { 
				    if (data.a != searchkey.a) done = -1.0; 
				    ... 

In order to avoid handling multiple textures, we placed the search key at the 
beginning of the texture, which has the coordinates (0.5,0.5), the center of 
the first texel. This might appear odd for conventional arrays, but for graph-
ics this actually makes sense, since a texel does not necessarily mean a pixel 
on the screen, e.g., when scaling images. Although the comparisons between 
search key and data elements appear repetitive, they are inevitable, since 
logical operators and else constructs did not work reliably. If the red color 
marks the beginning of a string (0.1), this code successively compares the 
other colors for a match or a terminal symbol (0.0). To support longer strings 
it can be placed in a while loop that adds coordinate offsets and needs to 
handle line wraps. In case we find a match, we mark the beginning of the 
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word with another magic number, e.g., red=0.9 and store the index pointer 
as subsequent color, e.g., green. 

F i g u r e  6 :  R e d u c i n g  t h e  s e a r c h  r e s u lt  t o  a  s i n g l e  r e t u r n  v e c -
t o r ,  c o n t a i n i n g  t h e  i n d e x  p o i n t e r

In order to execute the search function described above, we actually have to 
draw the scene, which is accomplished by drawing a rectangle (quad) of the 
texture size: 

drawQuad(1200,1200); 

Since the fragment processor does not support memory scatter, i.e., writ-
ing the results to a computed location, we implement a reduction function, 
which after multiple iterations yields a 1x1 texture (Figure 6). In graphics 
terms a reduction consists of multiple rendering passes, which are simply 
repeated calls of the same function while reducing the texture size, in this 
case by a factor of two. 

numPasses = (int)(log((double)width)/log(2.0)); 
for (i=0; i<numPasses; i++) { 
		  ... 
		  outputWidth = outputWidth / 2; 
		  drawQuad(outputWidth,outputWidth); 
		  ... 

For the fragment program this means comparing four pixels whose coordi-
nates are multiples of the current one, in which results are always gathered 
in the top left fourth of the texture. For fragment programs, the return value 
is stored at the current coordinate, preferably in another texture to avoid 
overwriting the original data. On a side note, multiple return points are not 
supported such that we need another local variable for the result. 

float4 reduce (float2 coords: WPOS, 
	 uniform samplerRECT texCgFrag2) : COLOR { 
		  float2 topleft = ((coords-0.5)*2.0)+0.5; 
		  float4 val1 = texRECT(texCgFrag2, topleft); 
		  float4 val2 = texRECT(texCgFrag2, topleft+float2(1,0)); 
		  float4 val3 = texRECT(texCgFrag2, topleft+float2(1,1)); 
		  float4 val4 = texRECT(texCgFrag2, topleft+float2(0,1)); 
		  float4 result = (0.0,0.0,0.0,0.0); 
		  if (val4.r == 0.9) result = val4; 
		  if (val3.r == 0.9) result = val3; 
		  if (val2.r == 0.9) result = val2; 
		  if (val1.r == 0.9) result = val1; 
		  return result; 
}

Eventually, the search result will be located in the top left pixel and can be 
read back using glReadPixels(0,0,...). 
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F i g u r e  7 :  P e r fo  r m a n c e  of  

F i g u r e  7 :  a  GPU    s e a r c h  i m p l e m e n t a t i o n  u s i n g  g r a p h i c s  A PI  s 
w i t h i n  B e r k e l e y  DB  .  ( a )  E x e c u t i o n  t i m e  of   1 0 k  i n s e r t / d e l e t e 
o p e r a t i o n s ,  e a c h  r e q u i r i n g  a n  i n d e x  s e a r c h .  ( b )  B r e a k d o w n 
o f  G P U  e x e c u t i o n  t i m e . 

All things considered, the poor performance of this approach does not come 
as a surprise. Searching for 10,000 values in a few megabytes of data is 60% 
more time-consuming than computing the same results on the CPU (Fig-
ure 7a). Considering that more than 40% of the total GPU execution time is 
spent on copying data between main and video memory (Figure 7b), a more 
efficient mapping from data to textures will significantly improve trans-
fer times. For example, we could map substrings to floating-point values or 
pack multiple characters into one floating-point value. While the former ap-
proach might run into issues with rounding errors, in particular on GPUs 
not implementing full 32-bit precision, the latter requires bit masking and 
all comparison operations to be performed on bit masks, since floating-point 
values like “not a number” cannot be compared directly. 

While debating with my colleagues how to improve the performance of this 
first prototype, CUDA 1.0 was released, allowing us to program the GPU 
directly, natively supporting integer data types. This made any attempts to 
map data to graphics objects and computation to drawing operations obso-
lete. Given the poor performance of this implementation and that any new 
code using graphics APIs for general-purpose implementations would be 
doomed legacy very soon, we decided to start over with a CUDA implemen-
tation. 

gpu programming with cuda

As opposed to graphics APIs, CUDA allows programming the GPU directly, 
using mostly standard C constructs, with all the strings attached. The pro-
grammer is in charge of memory management, mode of execution, parallel-
ism, etc. 

Since GPU and CPU do not share the same memory address space (see 
“GPGPU” section, above), CUDA adds a memory copy function, cudamem-
copy(), that allows copying data to and from the video memory. The GPU 
does not (yet) support dynamic memory allocation at runtime, and cuda-
malloc() has to be invoked on the CPU(host) side to allocate memory before 
copying data and/or calling a GPU function accessing data. 

Function type qualifiers determine where the code is executed: global de-
notes functions that provide an entry point to GPU code, callable by any 
CPU code, and device functions are only accessible from GPU code. Variable 
type qualifiers determine their location: device denotes variables residing 

A B
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in global memory accessible by all GPU code, while shared variables are lo-
cated in shared memory (Figure 2), private to each thread block. 

An execution configuration, placed between function name and parameter list 
of a call to a GPU function, determines the level of parallel execution. The 
main configuration options are grid and block dimension. While they are 
three-dimensional vectors, in the simplest case using only one dimension, 
they represent the number of thread blocks launched and the number of 
threads within each block. For example, to run 240 search queries, we could 
partition them using 30 blocks with block size of 8 to leverage all 30 SMs 
with 8 PEs each, on a GTX285. 

dim3 Dg = dim3(30,0,0); 
dim3 Db = dim3(8,0,0); 
searchGPU< < < Dg,Db > > >(... 

Besides a little extra memory set-up and copying data, implementating a 
basic search application with CUDA is fairly straightforward: First, we have 
to allocate memory for data and for search keys, and, since there is no dy-
namic memory allocation, also for the results. Then we can transfer the data 
and search keys to the video card. 

cudaMalloc((void**)&dataGPU, sizeof(char)*wordlength*words); 
cudaMemcpy(dataGPU, dataCPU, sizeof(char)*wordlength*words, 
	 cudaMemcpyHostToDevice); 
cudaMalloc((void**)&searchkeysGPU, ... 

Transferring larger amounts of data can take a while (e.g., copying the 
512MB data set we use for our experiments takes approximately 90ms). In 
case of read-only operations like search, this is only required at startup. 

Adding a global qualifier to the CPU search code above is not sufficient, as 
standard C library functions are not available. However, there is no short-
age of C source code for binary search and string comparison, which can 
be used without further modification, by simply adding a device prefix. For 
example, using the original BSD source, a GPU implementation of strcmp is 
as simple as: 

__device__ int strcmpGPU(const char* s1, const char* s2){ 
		  while (*s1 == *s2++) {
			   if (*s1++ == 0) return 0; 
		  }
		  return (*s1 - *(s2 - 1)); 
} 

Given the divided address space, pointers returned by a binary search opera-
tion refer to addresses in video memory. Using the base address of the data, 
they can be easily converted into an offset which is platform-independent. 
Alternatively, we can implement binary search with base-index addressing. 
In any case, GPU implementations have to be iterative, since the GPU does 
not support recursion. The GPU also does not support function pointers, so 
that function calls to strcmpGPU() have to be explicit. 

Retrieving results uses the same mechanism as copying data to the video 
card, except for the last parameter determining the direction of the memory 
copy, cudaMemcpyDeviceToHost. 

When comparing CPU and GPU query performance, for the GPU we include 
the time to copy the search keys to video memory and to retrieve the re-
sults, but not the time required to copy the data set. It can be reliably placed 
in video memory for the long term. Although there have been discussions 
about the absence of error correction [12], we did not experience any dis-
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crepancies between CPU and GPU query results across all our experiments, 
including long runs and large data sets. 

F i g u r e  8 :  P e r fo  r m a n c e  of   d i ff  e r e n t  o p t i m i z a t i o n s  of   GPU   
s e a r c h  i n  c o m p a r i s o n  t o  a  b a s i c  CPU    i m p l e m e n t a t i o n

Comparing the performance of this simple approach with a CPU implemen-
tation on recent hardware (Core i7 & GTX285) reveals that the GPU cannot 
keep up (Figure 8). Considering the impressive performance of other data-
base functions implemented on the GPU, e.g., sorting [6], the performance 
gains or, rather, losses of the above search implementation do not seem very 
promising. However, given the simple approach we chose for this first imple-
mentation, the poor performance is somewhat expected. 

Our research on memory performance [8] has shown that small memory ac-
cesses can significantly impact memory and, therefore, overall performance 
of memory-bound applications. Like most database operations, search falls 
into this category [1]. Without caching, all accesses to search key(s) and 
pivot element(s) incur full memory latency. This also pertains to consecu-
tive sub-string accesses, as there is no prefetching. Thus we expect that use 
of vector data types and “manual” caching will increase performance signifi-
cantly. 

Improving memory accesses. As on the CPU, vector data types on the GPU 
can be used to aggregate small, linear memory accesses. Unlike the CPU, 
the GPU does not offer byte-wise accessible vectors, but its 4x32-bit integer 
vectors can be used to load up to 16 bytes at once. For multi-byte words, 
for example 32-bit integers, the byte order or endianness is machine-depen-
dent. Little endian architectures like x86 and NVIDIA GPUs will reverse 
the byte order, so that integer comparisons applied to character strings pro-
duce incorrect results. For example, the character string “dcba” is alphabeti-
cally ordered after “abcd.” Loaded as a little endian 32-bit integer, an integer 
comparison would tell us that it is the other way round, 1633837924 < 
1684234849. While x86 CPUs provide the bswap instruction to reverse 
byte order, on the GPU we have to do this manually, e.g., by a macro: 

#define BSWP(x);\ 
temp = x << 24;\ 
temp = temp - ((x << 8) & 0x00FF0000);\ 
temp = temp - ((x >> 8) & 0x0000FF00);\ 
x = temp - (x >> 24); 

The macro can be applied on the fly as it will take only a few cycles, with x 
stored in a register. Unlike on the CPU, there are no hardware instructions 
available to directly compare vectors, such that we have to resort to a se-
quential approach: 
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__device__ int intcmp(uint4 *st1, uint4 *st2) { 
		  int r =1; 
		  if (BSWP((*st1).x) < BSWP((*st2).x) r=-1; 
		  else if (BSWP((*st1).x) == BSWP((*st2).x) { 
			   if (BSWP((*st1).y) < BSWP((*st2).y) r=-1; 
			   ... 

The individual components of a vector are compared with decreasing signifi-
cance until a decision can be made if one of them is larger than the other or 
if they are equal. Although these are CUDA integer vectors, they still use co-
ordinates addressing x, y, z, w. After de-referencing the pointers, the vector 
elements are stored in registers, such that even this branch-intensive com-
parison will only take a few cycles. 

Using this approach, we reduced the number of memory requests by a fac-
tor of four, at the cost of a few additional instructions to handle the data in 
integer format. As a result, performance increases by nearly a factor of four 
(Figure 8). 

Caching. Although the GPU does not employ caches in the traditional 
sense, its shared memory with only a few latency cycles can be used as a 
user-managed cache. For example, caching the search key and the pivot ele-
ment before calling the comparison functions further reduces the number of 
memory accesses by a factor of four to a total of two 128-bit global memory 
requests per search iteration. 

__shared__ uint4 cache[2*BLOCKSIZE] ; 
... 
cache[threadidx.x*2] = *searchkey; 
cache[threadidx.x*2+1] = *pivotelement; 
res = intcmp(&cache[threadidx.x*2], &cache[threadidx.x*2+1]); 
... 

While using shared memory as a cache to alleviate the memory bottleneck 
significantly increases overall performance (Figure 8), it comes with strings 
attached. The amount of local memory used by a thread block determines 
the number of blocks that can be handled by a single SM (occupancy). How-
ever, in our case the amount of shared memory required for caching is small 
enough (304 bytes/block) that it does not impact occupancy (Table 1) but re-
duces the number of global memory accesses by more than a factor of three. 

Algorithm Occupancy 
Shared Memory 
per Block 

Registers 
per Thread 

Global Memory 
Accesses 

strcmp 25%   48 bytes 19 7,012,536

intcmp 25%   48 bytes 19   688,046

intcmp cached 25% 304 bytes 19   200,476

inlined 33%   48 bytes 14   198,310 

Ta  b l e  1 :  CUD   A  p r of  i l e r  r e s u lt s  fo  r  d i ff  e r e n t  s e a r c h  i m p l e -
m e n t a t i o n s ,  r u n n i n g  6 5 k  s e a r c h  q u e r i e s  a g a i n s t  a  5 1 2 MB  
d a t a  s e t

Further optimizations. Although structuring code by using functions and 
pointers to reduce parameter overhead are good coding practices, they are 
not necessarily optimal from a performance point of view. Each function in-
vocation comes with a large overhead: allocating a new stack frame, saving 
registers, etc. Since the GPU does not implement dynamic memory alloca-
tion, each function invocation will use up additional registers, similar to the 
way shared memory impacts occupancy. Pointers intended to reduce register 
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usage are not very helpful in environments like the GPU with thousands of 
registers available. The absence of caching makes pointer resolution for con-
secutive addresses particularly painful due to repeated round trips to mem-
ory; the use of registers would eliminate this issue. 

The core functions of this application, binary search and string comparison, 
are small enough to inline them into a single global function with 35 lines 
total. This step eliminates any use of shared memory and decreases register 
usage and global memory accesses (Table 1). Since this approach also elimi-
nates function call overheads, it provides the best overall performance using 
well-known algorithms (Figure 8). 

F i g u r e  9 :  T i m i n g  b r e a k d o w n  fo  r  offloa      d i n g  b a t c h e s  of  
s e a r c h  o p e r a t i o n s  t o  t h e  GPU 

The poor performance for small workloads is the result of inefficient re-
source utilization and the overhead involved in starting GPU computation 
(Figure 9). Small workloads do not invoke sufficient threads to leverage the 
GPU’s seamless multi-threading to hide memory latency. To measure the ex-
ecution time of each individual step, we run exactly the same batch of que-
ries multiple times, each time adding another step in the offloading process. 
We obtain the time required for a step by computing the difference to the 
previous run. For example, the API launch time is determined by executing 
an empty program. The time for transferring a batch of queries to the GPU 
is determined by subtracting the time required to launch an empty program 
from the time required for launching the program and copying the queries 
to the video card, and so on. 

In order to achieve maximum performance on parallel architectures like 
video cards, not only in terms of throughput but also in terms of response 
time, parallel algorithms are required. For a parallel search algorithm I 
would like to refer the reader to our recent HotPar publication which intro-
duces p-ary search [9]. I am currently working on a p-ary search implemen-
tation for multi-core CPUs and expect a head-to-head race between similarly 
priced CPUs and GPUs. 

GPGPU: Quo Vadis?

To answer the question of where GPU programming, and parallel program-
ming in general, is heading, I would like to refer to the numerous presen-
tations by major chip manufacturers at HotChips ’08. While GPUs clearly 
evolve in terms of programmability, the core/thread count in CPUs is con-
tinuously increasing. For example, NVIDIA announced a CUDA debugger 
and a profiler [2], while Sun announced the Niagara successor, named Rock, 
with 16 cores, each of them supporting four hardware threads [4]. Intel’s 
Larrabee architecture represents the next logical step for CPU and GPU ar-
chitectures, combining many cores with x86 programmability [3]. 
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If you were to ask me what I would like to see next, I would say a fully inte-
grated, fully programmable, many-core chip—i.e., plugging into a standard 
CPU socket, sharing the memory with all other processors, and offering full 
OS support. As far as programmability is concerned, I am looking forward 
to evaluating OpenCL [13], which claims to be a transparent programming 
API for multi- and many-core environments and is backed by major manu-
facturers (e.g., Intel, AMD, IBM, NVIDIA). The two together could eliminate 
the bitter taste of explicit co-processor programming and distributed mem-
ory architectures. 
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