
56	 ; LO G I N : VO L . 3 4, N O. 4

D a v i d N . B l a n k - E d e l m a n

practical Perl
tools: scratch the
Webapp itch with
CGI::Application, part 1

David N. Blank-Edelman is the director of
technology at the Northeastern University
College of Computer and Information Sci-
ence and the author of the O’Reilly book
Automating System Administration with
Perl (the second edition of the Otter book),
available at purveyors of fine dead trees
everywhere. He has spent the past 24+ years
as a system/network administrator in large
multi-platform environments, including
Brandeis University, Cambridge Technology
Group, and the MIT Media Laboratory. He
was the program chair of the LISA ’05 confer-
ence and one of the LISA ’06 Invited Talks
co-chairs.

dnb@ccs.neu.edu

E v e r n e e d t o w r i t e a s i m p l e W e b
application but didn’t know the current
easy way to go about it (in the Perl world)?
Me too. I recently had to write something
that would query a small database I pre-
populated with user data, present the info
we had to that user for confirmation, and
then initiate a data migration process on
their behalf.

I knew that I wanted to present the information in
bite-sized chunks to the users so it would be easy
for them to walk through the process. That meant
the application would have to present several Web
pages in a row as the users completed each part of
a multi-page sequence. To show the users such a
set of connected pages meant my application would
(ideally) track sessions in order to retain a user’s
information from one HTTP POST to another.
Writing all of that low-level plumbing is certainly
possible in Perl, especially with the help of some
modules, but by this point it was clear I should
be hunting for somebody’s “been there, done that”
Web application framework to make my life easier.

I haven’t paid as much attention as perhaps I should
have to this corner of the Perl world, so I started
looking at some of the usual suspects. The first
stop was Catalyst (http://www.catalystframework
.org/), one of those Model-View-Controller thing
ees that Ruby on Rails has made so popular. But
the more I looked at Catalyst, the more it seemed
to be overkill for the job. I didn’t need to write
something that was particularly database-driven.
My app would only make one small query to its
database at the beginning; it didn’t really need an
object-relational mapper (ORM) to help make data-
base querying/manipulation easier. Catalyst looked
great but it had way too much firepower (and a bit
of commensurate learning curve) for this particular
task. I had a similar reaction to Mojo and Mojoli-
cious (http://mojolicious.org/).

Then I bumped into CGI::Application (http://www
.cgi-app.org/), which is (as of this writing) work-
ing its way toward becoming a package called Tita-
nium. CGI::Application was (to use a phrase often
misattributed to Einstein) as simple as possible but
no simpler. It offered a mental model that was im-
mediately easy to grok without having to pay atten-
tion to three-letter acronyms like MVC and ORM.
It had a bunch of plugins to handle the tricky parts
of the plumbing (such as session handling, lazy-

; LO G I N : Au gust 20 0 9	prac tical Perl tool s : scra tch th e We bapp itch , par t 1 	 57

loading of database handles, and data validation). CGI::Application was the
perfect fit for the meager needs of my small Webapp.

In this two-part column I’m going to take you through the basics of
CGI::Application in the hope that it may prove to be a good fit for your
needs too. As part of this I’ll be using a few of the plugins that are consid-
ered best practices these days (and hence are bundled with Titanium). We’ll
be sticking to largely just the ground floor of Webapp programming here; I’d
recommend going to http://www.cgi-app.org/ for the fancier stuff. One last
disclaimer: CGI::Application is object-oriented in nature, but you don’t have
to be object-oriented to make use of it. The OOP stuff in the column won’t
get much fancier than method calls. Feel free to treat anything you don’t un-
derstand as an incantation that can be used without full knowledge of how
the OOP works.

Defining Run Modes

With all of that out of the way, let’s talk about the main idea that underlies
CGI::Application. If you get this, you’ll have little to no trouble using the
framework. CGI::Application applications (sigh, let’s just call them cgiapps
for short) are composed of a number of run modes. The easiest way to think
of them is that every Web page in your cgiapp has its own run mode. Have
a page of instructions to display? That’s a run mode (maybe we’ll call it “dis-
play_instructions”). Have another page that collects the user’s personal info?
That’s another run mode (perhaps “get_personal”). And so on.

Each run mode has code associated with it, in the form of at least one
subroutine. That subroutine gets called when the cgiapp enters that run
mode, and it is responsible for producing the contents of the run mode’s
Web page. In case you are curious, I say “at least one subroutine” just be-
cause the subroutine that gets called for a run mode might have other sup-
port routines you’ve written to help it out. For example, the run mode
subroutine get_personal() might call query_personal_database() to get values
that will be displayed by this run mode.

The set of run mode subroutines for an application gets collected in an “ap-
plication module,” which is just a regular ol’ Perl module (i.e., usually named
with a .pm suffix, ends with “1;”, etc.). The module should define a subclass
of CGI::Application. As sophisticated as that sounds, it just means you will
start the file with:

package ColumnDemoApp;		 # or whatever you want to call your application
use base ‘CGI::Application’;

Toward the end of this column, I’ll show you how this application module
actually gets used. Before we get there, let’s figure out exactly what it con-
tains. After the two OOP mumbo-jumbo lines above, we’ll find the defini-
tions of the subroutines that will be used for each run mode and the code
that tells CGI::Application which run mode is associated with each subrou-
tine. Once upon a time, this association was provided using a special setup()
subroutine. The current best practice is instead to use a helper plugin called
CGI::Application::Plugin::AutoRunMode:

use CGI::Application::Plugin::AutoRunMode;

C::A::P::AutoRunMode (sorry, from this point on in the column I’m going to
start abbreviating the CGI::Application and CGI::Application::Plugin names
to save my aging fingers) provides a convenient shortcut syntax that allows
you to associate run modes with subroutines right at the point where the
subroutines are defined. For example:

58	 ; LO G I N : VO L . 3 4, N O. 4

sub display_instructions		 :		 StartRunMode { <code here> };
sub get_personal					 :		 RunMode { <code here> };
sub engage_warp_drive		 :		 RunMode { <code here> };

At this point we will have defined three run modes (display_instructions,
get_personal and engage_warp_drive) and the code that will be executed
for each. The first is designated as the “start mode,” which just means it is
the first run mode a cgiapp enters before any other run mode is explicitly
entered. We’ll talk in the very next section about how one moves from run
mode to run mode.

What Must Leave a Run Mode Subroutine

As I mentioned before, each run mode subroutine is responsible for provid-
ing the content for the Web page. It needs to return this information as a
scalar like any other scalar value returned from a subroutine, i.e.:

return $page;

Note that I say return and not print the output. CGI::Application will han-
dle getting the contents of that returned value to the Web server. Explicitly
printing the page output (or any other output) to STDOUT is a big no-no.
That being said, your program is responsible for making sure the contents of
the page is a valid HTML document complete with <html> and <body> tags,
i.e., the usual. There are at least a couple of ways to make creating this out-
put easier, and we’ll look at one of them in just a moment.

In general you can put anything you want into this valid HTML, but there
is one requirement for all the Web pages in your application that lead to
other Web pages. Each Web page must define an HTML form of some sort
that defines a mode parameter. The mode parameter contains the name of
the next run mode the application will move into once the form is submit-
ted. If you think about any multi-page Web application you’ve used recently,
it had some sort of “next” or “submit” button to take you to the next page.
You’ll need to include something similar in your HTML code that sets the
mode parameter. By default the mode parameter is rm (for run mode).

To make this more concrete, here’s a sample HTML form definition we could
have as part of the HTML returned by display_instructions() to switch the
user to the get_personal run mode:

<form method=”post” action=”http://server/columndemo.cgi”>
	 <input type=”hidden” name=”rm” value=”get_personal” />
	 <input type=”submit” name=”Continue” value=”Continue” />
</form>

This is the answer to the question, “How do you go from one run mode to
another?” To do so, the current run mode provides a form with an rm (or
equivalent—you get to change the default if you need to) form parameter set.
When that form gets POSTed, CGI::Application reads the mode parameter
and enters the indicated run mode.

CGI::Application also has a couple of plugins to allow you to change run
modes without having to wait for a form to be POSTed: C::A::P::Forward
and C::A::P::Redirect. The Forward plugin is useful if your application real-
izes it should be in a different run mode or displaying a different Web page.
For example, in the application I wrote, I created special error run modes
to handle fatal and non-fatal errors separately. If something fails (e.g., a da-
tabase lookup), it forwards out of the current mode into the right error run
mode. I also forward in those cases where the user’s input indicates I can

; LO G I N : Au gust 20 0 9	prac tical Perl tool s : scra tch th e We bapp itch , par t 1 	 59

skip past one of the Web pages in a sequence because the information on
that page no longer applies. This change of mode happens transparently to
the user; they never know the application had decided it belongs in a differ-
ent run mode.

Sometimes, however, you want the user (or, more precisely, the user’s
browser) to know it belongs someplace else. That’s when the Redirect plugin
comes into play. It gets used to hand an HTTP redirect back to the user’s
browser. This could come in handy if, for instance, the user’s session has
timed out and you need to punt them back to the initial login page before
they can continue. Returning the right headers to the client to make this
happen isn’t all that hard; this plugin just makes it really easy.

What Enters a Run Mode Subroutine

So far we’ve only talked about what a run mode should emit. But it gets
some support from CGI::Application for its work. Each run mode is fed the
current instance object from the application module’s class. If that sentence
didn’t parse for you, don’t sweat it, because I can safely rephrase it as “every
run mode subroutine gets passed an object containing a bunch of stuff about
the active application at that point.” For example, you can write:

sub get_personal		 :	 RunMode {
	 my $self = shift;

	 my $q = $self->query();
	 ...
}

and $q will have a CGI.pm object (CGI::Application is built on CGI.pm) hot
and ready to go for you. This means you could then write:

my $formparam = $q->param(‘lastname’);

to retrieve the “lastname” parameter that was filled in on the form that got
you to this run mode. The CGI.pm HTML construction methods are also
ready for your use, so you can write code like:

sub display_instructions		 :	 StartRunMode {
	 my $self = shift;

	 my $q = $self->query();

	 my $page = $q->start_html(-title => ‘Test Page’);
	 $page .= $A_BUNCH_OF_INSTRUCTION_TEXT;
	 $page .= $q->start_form();
	 $page .= $q->hidden(-name => ‘rm’, -value => ‘get_personal’);
	 $page .= $q->submit();
	 $page .= $q->end_form();
	 $page .= $q->end_html();

return $page;
}

Earlier in this article I mentioned that there were ways to make the con-
struction of a valid HTML page easier. Using CGI.pm methods like this is
one of them.

There are a number of other really useful method calls available from this
object beyond query(), especially if you start adding plugins to the mix.
We’ve already mentioned C::A::P::Forward and C::A::P::Redirect, which pro-
vide (you guessed it) $self->forward() and $self->redirect(). Other plugins

60	 ; LO G I N : VO L . 3 4, N O. 4

make it easy to pass around DBI database handles, Log::Dispatch dispatcher
objects, and so on. We’ll get to that stuff in part two of this column. I’ll also
show you the second method for easy page construction in the second part.

The Instance Script

You’ve probably guessed that the mention of the second part means we’re
approaching the end of this one. Before we part ways, it is pretty important
that I show you how all of your hard work in writing run mode subroutines
actually gets used. Here’s the last piece of the puzzle that is necessary for
actually constructing a running cgiapp. The script that gets called by users
(i.e., that they point their browser at) is called an instance script. It has this
name because its whole job is to load your application module, create an in-
stance of the object it defines, and then run that object. In code, this looks
like a file with a name like “columndemo.cgi” containing just these four
lines:

#!/usr/bin/perl

use ColumnDemoApp;
my $Webapp = ColumnDemoApp->new();
$Webapp->run();

If we place this file on a Web server that knows how to deal with Perl-
based CGI scripts (and has the CGI::Application modules installed), we
should be able to go to http://server/columndemo.cgi in a browser and re-
ceive the output from our display_instructions run mode code. In the sec-
ond installment of this column, we’ll see some more advanced capabilities of
CGI::Application and flesh out a simple Web application using them. In the
meantime, take care, and I’ll see you next time.

