
; LO G I N : Au gust 20 0 9	i Voy eu r : Wh o invi te d th e sale smen ?	 67

D a v e J o s e p h s e n

iVoyeur:
Who invited
the salesmen?
Dave Josephsen is the author of Building a
Monitoring Infrastructure with Nagios (Pren-
tice Hall PTR, 2007) and is senior systems
engineer at DBG, Inc., where he maintains
a gaggle of geographically dispersed server
farms. He won LISA ’04’s Best Paper award
for his co-authored work on spam mitiga-
tion, and he donates his spare time to the
SourceMage GNU Linux Project.

dave-usenix@skeptech.org

I s ig h i n wa r d ly a s I t ry to f i n d s o m e
meaning in the bullets of suit-speak. “Rapid
deployment to deliver immediate business
value and rapid application development
using pre-built components and lightweight
scripting!” exclaims the cheerful bullet-
point. “Do you promise?” I ask. It doesn’t
answer, and I continue to the next. With
each bullet the words seem to expand and
the meaning contract until I begin to sus-
pect an inversely proportional relationship.
“Is grammar an elective in techno-sales-
babble school?” I wonder. Then I hit the
really strange part: “A low cost, open source,
subscription model with minimal up-front
investment . . .”.

So strange and disorienting. Two or three years
ago, one could at least count on annoying corpo-
rate-ware to be pricey and proprietary. Those of
us trying to avoid being stuck with it could shout
“Total Cost of Ownership!” and stack the numbers
until the costs neared infinity. The open source
stuff, on the other hand, used to come with big
red warning labels, “DANGER, NO SUPPORT,”
“MIDDLE-MANAGER BEWARE! CAREER-END-
ING CONTENT WITHIN.” There were lines in
the sand, borders beyond which neither side dared
tread. Lately they seem to have disappeared, and in
their place have sprouted these weird hybrids.

I vaguely remember believing that open source li-
censes were going to remove the abstraction cre-
ated by the “sales” part of the software industry.
Companies would choose what they wanted to
use based on the geeky details, and then simply
pay for support if they wanted it. Although for a
time things seemed to be working this way, it now
seems silly to have expected that the selection pro-
cess was going to be geek-driven. Now that open-
source is moving into the corporate-ware realm,
the sales model doesn’t seem to have changed
much from that of proprietary software.

There’s no reason it should have. The distinc-
tion between a support license and a software li-
cense is moot to the salesmen and managers, so
rather than coming in under the radar by targeting
geeks, the “corporate” open-source tools have sim-
ply hired salesmen and followed their competition
in through the front door. For its part, the open-
source license has become a powerful sales tool
when competing with an entrenched high-dollar

68	 ; LO G I N : VO L . 3 4, N O. 4

proprietary competitor. Neither the salesmen nor the managers care one iota
about actually having the source, but in their own way, they’ve finally seen
the light (did we “win” without noticing, or have we been assimilated?).

Zimbra vs. Exchange, Alfresco vs. SharePoint—these open-source upstarts
with their suit-savvy pre-sales teams, “pay if you want” licenses, and geek-
friendly underpinnings are selling, and, despite the marketing-speak, they’ve
managed to build some tools I don’t mind working with all that much. Some
of them anyway . . . at least, compared to the alternatives . . . sorry, these
tools are good enough not to need those disclaimers. The fact that I can’t
help but write them is a deficiency on my part. It’s great that an open-source
Exchange even exists, let alone one that I’d actually consider using over
mutt, but it’s also very weird. I’ve been rolling my eyes for too long to start
raising my eyebrows now.

If you’ve played with more than one of the “corporate” open-source tools,
however, you may have noticed that they’re not all created equal. Especially
from a monitoring standpoint, some of them tend toward being black boxes
and others don’t, and this, in my experience, depends mainly on the tools
from which they’re constructed.

Zimbra [1], for example, is really just a glue layer that holds together a myr-
iad of tools most of us are familiar with: Postfix, SpamAssassin, ClamAV,
mySQL, Apache, OpenLDAP, etc. To this they’ve added an AJAX front end
and a boatload of Java glue-code. From a monitoring perspective, this is
pretty good news. If the designers haven’t provided a decent way to monitor
the whole, I might at least be able to get my hooks into the parts.

But, more importantly, this observation, that enterprise software can be
nothing but glue and a veneer for a gaggle of seemingly unrelated open
source tools, is fraught with portent. With all of these free, mature tools
lying around, why wouldn’t you pick them up and use them like Legos to
build something the suits will pay for? It also smacks of good design to me.
It’s philosophically compatible with UNIX, saves development time, lever-
ages existing geek know-how, and promises to be easier to troubleshoot,
debug, and monitor. All of that, of course, assumes that the tools being
glued together are themselves transparent.

Eric Raymond once observed that “a truly great tool lends itself to uses you
never expected” [2]. I agree, but I also predict that quite a few mediocre
tools, ones that don’t lend themselves to unexpected uses, will become parts
of much larger packaged solutions—packaged solutions that I will eventu-
ally have to deal with. Having a whole that is composed of some parts I can
monitor and others I can’t gives me pause and invites back my eye-rolling
wariness. Let me give you an example.

Java sucks—from a monitoring perspective, I mean. The JVM model makes
it difficult to monitor, and the more you have going on inside the JVM, the
harder it is to figure out what’s happening in there. (I wrote an article [3]
about it a while ago, in fact.) Worse, the monitoring hooks that are available
(JMX, Mbeans, etc.) all depend on a functional JVM to operate. If (when) the
JVM fails, in my experience the monitoring stuff is the first to go. Engineers
have a phrase to describe this sort of thing (you may be familiar with it):
they call it “in-band signaling.” Or, as my wife likes to say, “asking the devil
how hot it is in hell.”

Zimbra already has this problem. Most, if not all, of the glue runs in a JVM.
I don’t like this for the same reason I don’t like the concept of SNMP traps
(versus SNMP polling). If you’re asking the thing that might break to let you
know when it breaks, well, then you’re asking for it. With pretty much any-

; LO G I N : Au gust 20 0 9	i Voy eu r : Wh o invi te d th e sale smen ?	 69

thing else, I’d have a control channel separate from the data channel; net-
stat, iostat, top, ps, and strace all give me meaningful output. With the JVM,
if I’m not on a system that supports dtrace I’m screwed. Well, strenuously
inconvenienced at least. Anyway, if the Zimbra guys were married to the
idea of writing their glue with a portable object-oriented language, the moni-
toring guy in me wishes they had chosen Ruby or Python.

In fact, the monolithic enterprise glueware concept has quite a few worri-
some design considerations. Mostly, it tends to amplify the negative reper-
cussions of doing things Ken and Dennis warned us not to. When you build
something from open source tools, you inherit all of the bad habits of every
project you select as your building blocks. Coming up with examples isn’t
difficult.

Imagine an “enterprise content management” system that needs to choose
a tool to provide the revisioning subsystem. Three of their primary choices
will probably end up being CVS, Subversion, and Git. CVS and Git are great
choices. They’re both small and have good transparent back ends. I can op-
erate on CVS with file system tools if something goes horribly wrong and
Git provides shell tools that give me similar capabilities. Neither of them de-
pends on much and they’re both very fast. Subversion, on the other hand,
is a huge opaque beast with myriad dependencies, but it has cool factor.
Not unlike Java, it’s what all the cool kids are using, and for this reason it
wouldn’t surprise me in the least if it beat out Git and CVS to get bundled
into a corporate-ware content management system.

The things that Git and CVS do correctly are the old-school “Zen of UNIX”
pieces of wisdom that have been drummed into our heads for years. Do one
thing, keep things simple, use text protocols, etc. Subversion went quite the
opposite route, packing in all manner of non-essential complexity. Subver-
sion wants to be an end-user program. When it becomes the underpinnings
of a larger beast, things will get ugly. Interestingly, neither Git nor CVS was
designed to be driven by a larger parent program, but they lend themselves
to it because they were designed with UNIX sensibilities. It seems like every
time we think things are sufficiently advanced that we can afford bloat, in-
terdependencies, and more abstraction, unexpected use cases come along
to prove us wrong. If we ever take notice, we seldom seem to care. But I di-
gress.

There are security ramifications as well. Vulnerabilities are at least as easily
inherited as bad habits, and having to implement a protocol or two (a fa-
mously difficult thing to do correctly) is a likely problem for the glue code
to have to tackle. The Zimbra architects were sensitive to this, ensuring that
all of the pieces could talk to each other through TLS tunnels, but the devil
is always in the details and mistakes are easy to make. Even given a perfect
implementation, the admin still has to go the extra mile to enable things like
TLS inter-process communication. Further, it’s no great leap of the imagina-
tion to assume glue code will be written, which intentionally undermines
the security model of otherwise innocent open-source tools.

On the other hand, it’s certainly arguable that the glue-code model generally
enhances security. For example, bundling something like Apache instead of
rolling your own Web server buys a lot in the peer-review department. As
long as the designers aren’t lazy, keep their eyes open, and make some care-
ful implementation decisions, we’ll all probably be better off in the long run
versus the classic monolithic proprietary model. It’s probably a toss-up.

Here’s an interesting question: How long will it be before a project that you
contribute to becomes re-packaged by open-source corporate-ware that the
company you work for might end up using? In other words, how long before

70	 ; LO G I N : VO L . 3 4 , N O. 4

you become an employee of your employer’s vendor? If that’s at all likely for
you, I’d suggest you begin thinking now about how well your project could
integrate. It might save you from having to flame yourself later.

Take it easy.

references

[1] http://www.zimbra.com.

[2] Eric Raymond, “The Cathedral and the Bazaar”: http://catb.org/esr/
writings/cathedral-bazaar/cathedral-bazaar/ar01s08.html.

[3] David Josephsen, “iVoyeur: Opaque Brews,” ;login:, October 2007:
http://www.usenix.org/publications/login/2007-10/pdfs/josephsen.pdf.

