
; LO G I N :  J u n e 20 0 9	 Practical      Pe rl Tool   s :  e n ta b le au	 49

D a v i d  N .  B l a n k - E d e l m a n

practical Perl tools: 
en tableau
David N. Blank-Edelman is the director of technology 
at the Northeastern University College of Computer 
and Information Science and the author of the 
O’Reilly book Automating System Administration 
with Perl (the second edition of the Otter book), 
newly available at purveyors of fine dead trees 
everywhere. He has spent the past 24+ years as a 
system/network administrator in large multi-plat-
form environments, including Brandeis University, 
Cambridge Technology Group, and the MIT Media 
Laboratory. He was the program chair of the LISA 
’05 conference and one of the LISA ’06 Invited Talks 
co-chairs.

dnb@ccs.neu.edu

A  f r i e n d  c a m e  t o  m e  a  w h i l e  b a c k 
with a problem. He had just purchased an 
iPhone and needed a way to get his address 
book from his old phone into the new one. 
His old phone had software that would let 
it sync the address book information to a 
service provided by the carrier. That car-
rier, let’s call them “rhymes-with-horizon” 
to avoid naming names, hadn’t engineered 
their service to make it easy to take your 
data with you. There was no “download 
your address book” (or “export as CSV”) fea-
ture. At best, they offered a Web interface 
where you could view and edit the data to a 
certain extent.

But a Web interface is better than nothing, because 
if we can see the data in a Web page, we can prob-
ably scrape it and return it to its rightful owner. 
The tricky thing here is the Web page they pro-
vided is kind of yucky. The data is embedded in a 
huge table and there’s lots of other markup goop 
and JavaScript throughout. A simple cut-and-paste 
won’t work for my friend. To get some idea of what 
I mean, Figure 1 shows a portion of what the table 
looked like in the browser (with the names and 
phone numbers changed).

To make it a little more legible, Figure 2 (next 
page) is what it looks like if I outline the table cells 
using the Firefox Web Developer add-on:

F i g u r e  1 :  D a t a  a s  R e n d e r e d  i n  t h e  B r o w s e r



50	 ; LO G I N :  VO L .  3 4 ,  N O.  3

F i g u r e  2 :  O u t l i n i n g  T a b l e  C e ll  s

And that’s where we’ll pick up the story for this edition’s column. In this 
column we’re going to look at an approach for extracting data from even 
ugly HTML tables. Given how much information is now presented to us 
in HTML tabular form, it is generally useful to know how to grab the data 
and work with it on your own terms. In a previous column we looked at 
the WWW::Mechanize module for navigating Web sites and retrieving 
certain content. In this column, we’re going to assume you’ve already re-
trieved the HTML document containing the table of interest (perhaps using 
WWW::Mechanize) and you now need to process its contents.

There are a number of ways we could approach this problem. We could 
shred the document using a set of complex regular expressions, but that’s 
no fun at all. It would be a better idea to treat the HTML table like any other 
HTML and use some of the general-purpose HTML parsing modules like 
HTML::Parse and HTML::TreeBuilder. Those modules make it much easier 
to find the <tr> and <td> elements in the document and proceed from there. 
But probably the best tack we could take would be to use one of the special-
ized table parsing modules to do the heavy lifting, so that’s what we’ll do 
here.

Using HTML::TableExtract for Basic Data Extraction

Regular readers of this column (you know, the ones that have bought all of 
my albums and have the set of well-worn Practical Perl Tools tour t-shirts) 
might recall that I’m a big fan of HTML::TableExtract. We’ll start with that 
module and then head into some more advanced territory.

The first step after loading HTML::TableExtract is to specify which table in 
the document should be considered for extraction. HTML::TableExtract of-
fers several ways to specify the table: the two most commonly used ones are 
by table headers and by depth/count. With the first method you initialize an 
HTML::TableExtract object with the names of the column headers you care 
about from the table in question:

use HTML::TableExtract;
my $te = HTML::TableExtract->new(
	 headers => [ ‘Name’, ‘Phone Number’, ‘Email’ ] );

When we ask the module to parse the data, it will attempt to find all of the 
tables with those headers and retrieve the data in those columns for every 
row in those tables.

This usually works quite well, but sometimes you encounter tables that don’t 
play nice with a header specification: for example, tables without any labeled 



; LO G I N :  J u n e 20 0 9	 Practical      Pe rl Tool   s :  e n ta b le au	 51

headers. In those cases HTML::TableExtract lets you specify a depth and 
count to identify the table in question. “Depth” refers to the level of embed-
ding for a table. If the table is not embedded in any other table, it is at depth 
level 0. If the table you care about is in another table, that would be depth 
level 1. Once you establish depth, you then provide an instance number to 
point at the specific table (both depth and count start at 0). For example, the 
second table on a page would be depth => 0 and count => 1. The first em-
bedded table in the first table in the document would have depth => 1 and 
count => 0. These numbers are set in a similar fashion to the headers:

my $te = HTML::TableExtract->new( depth => 1, count => 1 );

Our sample document has identifiable headers, so our program will start 
off like the first sample above. We can then perform the actual parse of the 
HTML file like so:

$te->parse_file(‘contacts.html’) or die “Can’t parse contacts.html: $!\n”;

Now our object (if the parse succeeded) will let us query the tables matched 
and retrieve all of the rows in those tables:

foreach my $table ( $te->tables ) {
	 foreach my $row ( $table->rows ) {
		  print ‘|’ . join( ‘|’, @$row ) . ‘|’ . “\n”;
	 }
}

Usually at this point we’re home free, because the information in the table is 
sufficiently simple that the extraction yields the data we need. But, alas, with 
our sample document we get stuff that looks like this (I’ve removed a bunch 
of whitespace to save magazine trees, but you get the idea):

|
			   Charlie Parker
				    |
					     Mobile2996209109
				    |<A0>

				    |
Yucko.

More Advanced Data Extraction with the HTML::Tree Family

Basically, each table cell in our example has a bunch of whitespace and who-
knows-what in it, making for a very messy extraction. Here’s a snippet of the 
HTML found in a table row with the whitespace stripped and the elements 
indented for readability:

<tr>
	 <th>
		  <input type=”checkbox” name=”contact5” 
			   value=”931dc428-0 11b-1000-86fb-bfd83474aa25” 
			   onclick=”tc(this, ‘5’);”>
	 </th>
	 <td style=”padding-top:13px;”></td>
	 <td>
		  <span class=”name less” style=”max-width: 182px” id=”x5”>
			   <a href=”javascript:toggleContact(‘5’)” 
				    title=”Toggle contact”>Max Roach</a>
		  </span>
	 </td>



52	 ; LO G I N :  VO L .  3 4,  N O.  3

	 <td>
		  <span class=”mobile”><strong>Mobile</strong>5245232003</span>
	 </td>
	 <td class=”end”>
		  <span class=”email”><strong>Email</strong>
			   <a href=”mailto:maxroach@gmail.com”>maxroach@gmail.com</a>
		  </span>
	 </td>
</tr>

Cleaning up the HTML in this fashion was made much easier by first pass-
ing it through the great HTML Tidy program at http://tidy.sourceforge.net/.

There are at least two things we can learn about the data when we peer at it 
closely:

1. There’s a lot of gunk (JavaScript, useless table columns, attributes, 
markup, etc.) we’re going to want to ignore.

2. The information we do care about is found in three places:
a. 	An anchor tag (<a>) holds the contact’s name.
b. 	A <span> holds the phone number. That span has a class attribute 

(class=”mobile”) that will let us know the kind of phone it is.
c. 	A span with a class of email holds the email address if there is one.

We’re not entirely stuck at this point, because HTML::TableExtract has at 
least one more trick up its sleeve. If you load it like this:

use HTML::TableExtract qw(tree);

it will bring in a method from the HTML::TreeBuilder module (part of the 
HTML::Tree package which contains HTML::TreeBuilder, HTML::Element, 
and HTML::ElementTable). The tree() method from HTML::TreeBuilder can 
turn an extracted table into an HTML::ElementTable structure (composed of 
HTML::Element objects):

foreach my $table ( $te->tables ) {
	 my $tree = $table->tree;

	 # ... do stuff with HTML::Element/HTML::ElementTable objects
}

This gives us a tree-like data structure composed of the HTML elements in 
the table. Here’s an example dump of the tree created for the previous HTML 
row snippet to give you an idea of the tree that is created:

	 DB<1> print $row->dump                                                        
<tr> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26
	 <th> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.0
		  <input name=”contact11” onclick=”tc(this, &#39;11&#39;);” 
		  type=”checkbox” value=”931dc428-011b-1000-86ff-bfd83474aa25” /> 
		  @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.0.0
	 <td style=”padding-top:13px;”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.1
	 <td> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.2
		  <span class=”name less” id=”x11” style=”max-width: 182px”> 
		  @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.2.0
			   <a href=”javascript:toggleContact(&#39;11&#39;)” title=”Toggle  
			   contact”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.2.0.0
				    “Max Roach”
	 <td> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.3
		  <span class=”mobile”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.3.0



; LO G I N :  J u n e 20 0 9	 Practical      Pe rl Tool   s :  e n ta b le au	 53

			   <strong> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.3.0.0
				    “Mobile”
			   “5245232003”
	 <td class=”end”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.4
		  <span class=”email”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.4.0
			   <strong> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.4.0.0
				    “Email”
			   <a href=”mailto:maxroach@gmail.com”> 
			   @0.1.7.0.2.0.1.0.2.5.2.0.1.0.26.4.0.1
	 “maxroach@gmail.com”

This output shows the element (indented to show its level in the tree), a 
unique identifier, and any textual contents of the element. With that struc-
ture we should be able to tease apart the structured (albeit yucky) HTML 
contents of the table cells in question.

OK, so now it’s clobberin’ time. Our main tool for taking all of this apart 
is the HTML::Element method look_down(). We tell it which elements we 
want in the tree and it will return either the first element that matches that 
specification (if called in a scalar context) or all of the elements that match 
(if called in a list context). Our first use of it is to get all of the table rows:

my @table_rows = $tree->look_down( ‘_tag’, ‘tr’,
	 sub { $_[0]->look_down( ‘class’, ‘name less’ ) } );

This line of code requests elements that fit the two-part specification of 

1. Find all of the <tr> tags . . . 
2. . . . that contain an element with a class attribute of “name less”.

look_down() then returns the list of matching HTML::Element objects that 
fit this bill. To get the actual data, we’ll iterate over the objects returned and 
extract what we need:

foreach my $row (@table_rows) {

	 my $name	 = $row->look_down( ‘class’, ‘name less’ );
	 my $work	 = $row->look_down( ‘class’, ‘work’ );
	 my $home	 = $row->look_down( ‘class’, ‘home’ );
	 my $mobile	= $row->look_down( ‘class’, ‘mobile’ );
	 my $email	 = $row->look_down( ‘class’, ‘email’ );

	 push @contactlist,
		  [
			   $name->as_trimmed_text(),
			   ($work	 ? ( $work->content_list )[1	 : ‘’,
			   ($home)	 ? ( $home->content_list )[1]	 : ‘’,
			   ($mobile)	 ? ( $mobile->content_list )[1]	 : ‘’,
 			   ($email)	 ? ( $email->content_list )[1]->as_trimmed_text()	 : ‘’,
 		  ];
}

The extraction starts with a gaggle of look_down() method calls, each seek-
ing a class attribute with a specific value. Some of the method calls will re-
turn an HTML::Element; the rest will not succeed in their search and will 
return undef instead. Our next step will be to store the information found 
by the successful searches.

To understand what is going on in the push() statement you may need to 
flip back to the HTML example code we showed earlier. For the name field 
we can scoop up any text found in the sub-tree (as_trimmed_text()), be-
cause the only piece of text in an element with the class attribute of “name 



54	 ; LO G I N :  VO L .  3 4,  N O.  3

less” is the actual name. Retrieving the other data is a little bit trick-
ier because it has a pesky label next to the actual number: for example, 
<strong>Mobile<strong>.

Our look_down() calls have found <span> elements that look like this:

DB<1> print $mobile->dump                                                     
<span class=”mobile”> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.2.3.0
	 <strong> @0.1.7.0.2.0.1.0.2.5.2.0.1.0.2.3.0.0
		  “Mobile”
	 “2996209109”  

The <span> element has two things in it: a <strong> sub-element and the 
actual text value we want (the phone number). We really only care about the 
text value, so we just reference the second element returned by content_list() 
as in ( $mobile->content_list )[1]. The email address <span> needs an extra 
as_trimmed_text() because the address is stored in an <a> sub-element in-
stead of plain text like the phone numbers.

At the end of this rigmarole, we’ve got a bunch of lists in @contactlist, each 
list containing one contact record. We could easily spit it out as a comma-
separated value file, like this:

foreach my $record (@contactlist) {
	 print join( ‘,’, map { ‘”’ . $_ . ‘”’ } @$record ), “\n”;
}

with the resulting output looking like this:

“Charlie Parker”,””,””,”2996209109”,””
“Coleman Hawkins”,”5834800077”,””,””,””
“Hank Jones”,””,””,”2692315826”,””
“Ray Brown”,””,”7372450564”,””,””
“Lester Young”,””,””,”6633158411”,””
“Bill Harris”,””,””,”6391737453”,””
“Harry Edison”,””,””,”9987145662”,””
“Ella Fitzgerald”,””,””,”2097688862”,””
“Max Roach”,””,””,”5245232003”,”maxroach@gmail.com”

The Mac OS X address book is happy to import a CSV file of this format, so 
job done.

Eagle-eyed readers (i.e., those not falling asleep on the keyboard) may have 
noticed that our use of HTML::TableExtract in the last section didn’t buy us 
very much. We still had to grovel around in a parsed tree of HTML elements 
to get anything done. We could have ditched HTML::TableExtract and gone 
right to something like HTML::TreeBuilder.

That’s a perfectly valid criticism. In most cases, HTML::TableExtract hands 
you back the data elements you want; in this case, it just helped us find the 
right table in the document. There is at least one other excellent module for 
table parsing, called HTML::TableParser, we could have used, but my pre-
liminary experiments with it in this context showed that the ugly HTML in 
the document gave it a tummy-ache as well. We’ll have to save it for another 
task.

Hopefully, this column has given you an idea of how to extract data from 
both simple and complex HTML tables. Take care, and I’ll see you next time.




