
THE MAGAZINE OF USENIX & SAGE
July 2001 • Volume 26 • Number 4

inside:
THE TCLSH SPOT

by Clif Flynt

The Advanced Computing Systems Association &

The System Administrators Guild

&

22 Vol. 26, No. 4 ;login:

the tclsh spot
The last several Tclsh Spot articles have shown ways to write simple client-

server applications with Tcl. These pairs all used pure ASCII text to transmit

data, in the tradition of SMTP, NNTP, POP, etc. This article will expand on the

client-server articles and the previous article about the binary command, to

develop a program to examine the behavior of telnet servers.

It’s almost embarrassing to admit how many years I’ve used telnet without ever wonder-
ing what went on under the hood. The telnet protocol not only handles the printable
ASCII text that we see on our screen, it also sends a number of unseen commands to
negotiate how the session will be managed.

Peter Burden published a nice overview of the telnet protocol at
http://www.scit.wlv.ac.uk/jphb/comms/telnet.html.

The telnet configuration commands all start with a binary 0xff byte, referred to as IAC
(for Interpret-as-Command). The 0xff is followed by a binary command between 0xf0
and 0xfe, which is followed by the data required by the command.

Opening a connection to a telnet server is easy in Tcl: we just use the normal socket
command.

set connection [socket $Client(ipAddress) 23]

The default behavior for the socket command is to open a buffered connection to the
remote host and translate carriage-return/newline pairs to whatever the normal line ter-
mination characters are on the local host.

This works fine for printable ASCII text, but creates a problem with binary data, where a
0x0a might be not be a newline and adding a 0x0d will break a binary data stream.

The solution is to use the Tcl fconfigure command to modify the socket’s behavior to
something more acceptable for binary data.

The fconfigure command will modify several aspects of the channel including whether
the channel should be buffered, the size of the buffer to use, whether to block on
read/write and how to translate binary characters.

by Clif Flynt

Clif Flynt is president
of Noumena Corp.,
which offers training
and consulting serv-
ices for Tcl/Tk and
Internet applications.
He is the author of
Tcl/Tk for Real Pro-
grammers and the
TclTutor instruction
package. He has
been programming
computers since
1970 and a Tcl advo-
cate since 1994.

<clif@cflynt.com>

Syntax: fconfigure channelId ? name? ?value?

fconfigure Configure the behavior of a channel
channelId The channel to modify
name The name of a configuration field which includes:

-blocking boolean If set true (the default mode), a Tcl program will block on a gets, or read until data is
available. If set false, gets, read, puts, flush, and close commands will not block.

-buffering newValue If newValue is set to full, the channel will use buffered I/O. If set to line, the buffer will
be flushed whenever a full line is received. If set to none, the channel will flush when-
ever characters are received.

-translation{inMode outMode} Controls how end-of-line translations are performed. Acceptable values for inMode
and outMode include:
auto On input, treats any combination of cr and lf as line terminators. On output

line termination is sent as whatever is native for the current platform.
binary No end-of-line translations are performed.
cr On input, all cr characters are converted to newline. On output, newlines are

converted to a cr character.
crlf On input, all crlf characters are converted to newline. On output, newlines are

converted to a crlf sequence.

http://www.scit.wlv.ac.uk/jphb/comms/telnet.html

23July 2001 ;login: THE TCLSH SPOT ●

We can modify the behavior of our socket with this code:

fconfigure $connection -translation binary -buffering none -blocking 0

The previous client-server pairs used the Tcl gets command to read a line of text from
the server. Again, looking for a newline doesn’t work with binary data.

The Tcl read command handles this problem.

Syntax: read channelID ?numBytes?

read Read a certain number of characters from a channel.
channelID The channel to read data from
numBytes Optionally, the number of bytes to read. If this argument is left out, all

available data is read.

These commands enable us to build a non-line-oriented client with commands like this:

set s [socket $argv 23]

fconfigure $s -translation binary -buffering none -blocking 0

fileevent $s readable "readData $s"

proc readData {s} {
set n [read $s]
if {[eof $s]} {

close $s
return
}
Process data.

}

Whenever there is data available in the input buffer, the readData procedure will be
evaluated to read and process the data. Since the socket is configured to be non-block-
ing, the read command will read whatever is in the buffer, whether it ends in a newline
or not.

This brings us to the processing part of this example, which is to print out a human-
friendly version of the server’s requests.

Since Tcl is (like most of us) primarily text oriented, the first thing to do with the binary
data is convert it into printable ASCII to make it easier to work with. Since the telnet
protocol is byte oriented, it makes sense to convert the data into single byte hex values.

We can use the Tcl binary scan command to convert the binary data to a string of Hex
values.

Syntax: binary scan binaryString formatString arg1 ?varName1? ... ?varNamen?

binary scan Converts a binary string to one or more printable ASCII strings
binaryString The binary data
formatString A string that describes the format of the ASCII data
varName* Names of variables to accept the printable representation of the binary

data

For example to convert a string to hexadecimal values:

Convert "abc" to "616263", save value in hexData
binary scan "abc" "H*" hexData

That’s better, but still hard to read and work with. If the string were a list of individual
byte values, we could read the string more easily and use Tcl’s list-processing commands
to step through the data.

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

24 Vol. 26, No. 4 ;login:

The Tcl split command will convert a string into a list, splitting on whatever character
(or characters) you desire.

Syntax: split data ?splitChar?

split split data into a list.
data The data to split.
?splitChar? An optional character (or list of characters) to split the data at

A common use of the split command is converting some character-delimited string (like
a spreadsheet export file) into a proper Tcl list.

Convert "3/23:Cab from Airport:35.00"
to
{3/23 {Cab from Airport} 35.00}
set line "3/23:Cab from Airport:35.00"
set lst [split $line ":"]

By default, the splitChar is a whitespace. You can define any other character or characters
to be the split character, as the previous example does. You can even declare the split
character to be an empty string, which splits a string into a list where each character is a
separate list element.

convert "abcd" to {a b c d}
set lst [split "abcd" ""]

The next step is to convert the list of single hex values into a list of byte values. We could
step through the list two elements at a time using Tcl’s foreach command, but since this
is a fairly simple pattern to convert, it’s faster to use the regsub command.

The regsub command will modify patterns that match a regular expression to another
pattern. The syntax looks like this:

Syntax: regsub ?options? expression string subSpec varName

regsub Copies string to the variable
varName. If expression matches a portion of string then that portion is replaced by

subSpec.
options Options to fine-tune the behavior of regsub may be one of:

all Replace all occurrences of the regular expression with the
replacement string. By default only the first occurrence is
replaced.

-nocase Ignores the case of letters when searching for match.
— Marks the end of options. Arguments which follow this will

be treated as regular expressions, even if they start with a
dash.

expression A regular expression which will be compared to the target string.
string A target string to which the regular expression will be compared.
subSpec A string which will replace the regular expression in the target string.
varName A variable in which the modified target string will be placed.

In the simple use of regsub, the subSpec value will be a simple string:

Convert powerful to useful.
regsub "power" "Regular expressions are powerful" "use" string2

The regexp command will sort parenthesized subsets of a regular expression pattern
into separate variables. Similarly, the Tcl regsub command supports merging patterns

from the original string in the subSpec value. These substitutions are specified by using
a backslash-escaped number in the subSpec string to correspond to the parts of the pat-
tern you wish to substitute. The number denotes which part of the pattern will be sub-
stituted for the backslash-escaped value.

The pattern \0 will substitute for the entire matched portion of the string. If sections of
the regular expression are placed in parentheses, these sections can be addressed as \1
for the first parenthesized expression, and \2 for the second, etc.

Invert the positions of "a" and "c"
x will contain the string : "abc becomes: cba"
regsub "(a)(.)(c)" "abc" {\0 becomes: \3\2\1} backwards

Which, finally gets us to a simple three-line procedure to convert a binary string to a list
of hexadecimal-coded byte values:

Convert binary strings to lists of hex values
"abc" converts to "61 62 63"

proc bin2hex {binaryString} {
binary scan $binaryString "H*" hexData
regsub -all {([^]) ([^])} [split $hexData ""] {\1\2} hexList
return $hexList

}

The final process is to step through the list of binary data and print out something a
simple human can easily read. The first byte of any command will be the IAC symbol,
0xFF. The value after that will be a byte that denotes which command this is.

In C, we might parse the second byte with a case command like this:

switch (i) {
case FE: {processFE; break;}
case FD: {processFD; break;}

}

In Tcl, we can let the interpreter handle the parsing, and instead of using a switch state-
ment to parse our commands, we can name the procedures for the command name.

Define procedures to process the command
proc FE {...} {

Process the FE command
...

}
proc FD {...} {

Process the FD command
...

}
...
Select the command from the hexadecimal list
(something like FA of FD)
set cmd [lindex $hexList $position]

Evaluate the command
$cmd

The number of bytes after the command byte varies for each command. Some of the
information commands (like terminal type) can even include free-form ASCII data.

In C, it would be nice to use a pointer, and advance the pointer as we process each com-
mand and data.

25July 2001 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

Unfortunately, this isn’t an option in Tcl, so we’ll have to use the lindex command to
select each byte we want to look at from the list, and increment our position counter
after we process each command.

To make life simpler, the procedures that process each command are defined to return
the number of bytes to increment the pointer to get to the next IAC marker.

The telnet protocol allows interleaving of ASCII text and IAC commands in a data
stream, so we have to check each byte to see if it’s an IAC symbol and process the com-
mand if it is.

set lst [binaryStrings::bin2hex $string]

for {set i 0} {$i < [llength $lst]} {incr i} {
Get the current character
set l [lindex $lst $i]

Loop for as long as the current character is
an IAC marker
while {[string match $l "ff"]} {

Get the command byte
incr i
set cmd [lindex $lst $i]

Evaluate the command, and increment
the position marker
incr i [$cmd [lrange $lst $i end]]

Get the next byte – if it’s still an IAC we’ll
loop.
set l [lindex $lst $i]

}
}

The procedures that process the commands contain the logic for handling each telnet
command and also save a comment about what they’ve done.

The basic format of the procedures is:

proc fd {sublist ...} {
Process the fd command
...
addInfo $subl TELOPT_
return $commandLength

}

The addInfo procedure uses an associative array as a lookup table to get the human-
readable information about each command and puts that string into a temporary com-
ment buffer, which is combined by the main loop when a command has completed.

proc addInfo {subl prefix} {
variable Telnet
variable Lookups

set m [lindex $subl 0]
scan $m %x dec
set id [array names Lookups ${prefix}*.$dec]
if {[string match $id ""]} { set id UNKNOWN.-1 }
append Telnet(comment-temp) " $Lookups($id)"

}

26 Vol. 26, No. 4 ;login:

The lookup table has indices in the form mnemonic.decimalValue, and could be con-
structed with code like this:

set Lookup(IAC.255) {interpret as command:}
set Lookup(DONT.254) {you are not to use option}
set Lookup(DO.254) {please, you use option}
...

However, the telnet include file (telnet.h) already has a nice set of comments that would
be useful for this application. Rather than making up my own messages, I decided to
write a little script to read the include file, find the lines in the form

#define mnemonic value /* Comment */

and use them to generate the lookup table to convert the binary values to a human-
readable text. This uses the regexp command’s support for sorting patterns into separate
variables to recognize the lines with valid information and build the array index and
value.

##
proc readIncludeFile {arrayName fileName}–
Read an include file, and make a lookup table for all the
lines that match a
#define xxx val /* comment */
or
#define xxx val
format
#
Arguments
arrayName: The name of an array in the calling procedures scope.
fileName: The full path for the include file to be read.

Results
Adds new indices to the arrayName in the form:
set arrayName(mnemonic.value) "comment"

proc readIncludeFile {arrayName fileName} {

upvar $arrayName localArray

set if [open $fileName r]

while {[set len [gets $if line]] = 0} {

Use the Advanced Regular Expression "\s"
Class Shorthand to encode for whitespace.
set m [regexp \

{#define[\s]+([^\s]+)[\s]+([^\s]+)[\s]+/*([^*]+) */} \
$line all mnemonic num comment]

If no match, it might be a line with no comment
if {!$m} {

set m [regexp {#define\s+([^\s]+)\s+([^\s]+)} \
$line a mnemonic num]

set comment "No Comment"
}

If still no match, this line must note be a #define line
skip it.
if {!$m} {continue}

Holler if there's a collision. I guess a human will
need to deal with this file.
if {[info exists localArray($mnemonic.$num)]} {

27July 2001 ;login: THE TCLSH SPOT ●

●

PR

O
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

puts "COLLISION: $num"
exit

}

Everyone's happy, assign the value
set localArray($mnemonic.$num) $comment

}
}

The readIncludeFile requires Tcl 8.1 or newer to use the [\s] convention for describing
whitespace.

This procedure is invoked as

readIncludeFile Lookups /usr/include/arpa/telnet.h

That covers all the pieces in this application. When you run it, it can send some simple
responses to the server, and will report all the IAC messages the server sent to the client.
This can be useful if you are trying to figure out what optional protocols your server
supports, or if you are writing a robot that needs to talk with a telnet server.

If you run the program with the telnet server distributed on RedHat 6.2 Linux, it will
return:

COMMENT: please, you use option: terminal type
COMMENT: please, you use option: terminal speed
COMMENT: please, you use option: X Display Location
COMMENT: please, you use option: New – Environment variables

If you use the program to examine a BSD system it will return:

COMMENT: please, you use option: Unknown Option
COMMENT: I will use option: Encryption option
COMMENT: please, you use option: terminal type
COMMENT: please, you use option: terminal speed
COMMENT: please, you use option: X Display Location
COMMENT: please, you use option: New – Environment variables
COMMENT: please, you use option: Old – Environment variables

As usual, this code for this example is available at http://noucorp.com.

28 Vol. 26, No. 4 ;login:

http://noucorp.com

