
THE MAGAZINE OF USENIX & SAGE
July 2001 • Volume 26 • Number 4

inside:
WHAT ARE YOUR INTENTIONS?

by Brent Chapman

The Advanced Computing Systems Association &

The System Administrators Guild

&

42 Vol. 26, No. 4 ;login:

by Brent Chapman

Brent Chapman is an
IT infrastructure and
network architecture
consultant based in
Silicon Valley. He is
coauthor of the
O’Reilly & Associates
book Building Inter-
net Firewalls, and
creator of the Major-
domo mailing list
management pack-
age. He is also a
founding member of
SAGE and was the
original SAGE post-
master.

brent@greatcircle.com

what are your
intentions?
Air traffic controllers, with their ability to use radar to see exactly what air-

craft are doing, seem to be the very picture of omniscience in their domain

(at least until the 30-year-old mainframe in the basement blows another vac-

uum tube, and the whole screen goes blank). However, there’s a big differ-

ence between “all-seeing” and “all-knowing.” A controller might be able to

see exactly what a given aircraft is doing, but be totally in the dark about

why the aircraft is doing that. If the controller doesn’t know and can’t figure

it out, the pilot of the aircraft in question soon hears something like “Cessna

Four Three Zero Papa, what are your intentions?” The controller needs to

know what each of the pilots in their care is trying to accomplish, so that the

controller can coordinate all their actions to get them each safely and effi-

ciently to their destinations.

Whether we realize it or not, as IT professionals we often face similar situations. Any
competent system administrator can examine a system and determine the details of how
the system is configured, but they may still be totally in the dark about why it is config-
ured that way. Without understanding the “why” behind a system’s configuration, it’s
much more difficult to make changes or updates to the system successfully, because it’s
much more difficult to predict the effects (positive or negative) that those changes will
have. It’s also difficult to evaluate how well a system is currently doing its job, when
you’re not entirely sure just what job it was designed to do.

When documenting our systems and networks, we often spend a huge amount of effort
documenting what they are, how they’re configured, and how to use them, but little or
no effort documenting why we set them up that way. While a certain amount of “what”
and “how” documentation is definitely called for, particularly as a map of the situation,
there are two problems with producing only this form of documentation. First, much of
this documentation quickly gets out of date, particularly if it covers system-level details
like how much memory and disk space a system has; when you need to know such info,
it’s usually better to get it from the system directly. Second, even if it’s kept accurate, this
documentation doesn’t tell a later reader (months or years after the system was
deployed) anything at all about why the system is configured that way, which makes it
more difficult to repair, extend, replace, or retire.

Examples of questions that are often left unanswered in the documentation include:

■ Why are we using a given package or version for a particular service?
■ Why Postfix? (rather than Sendmail or QMail or whatever)
■ Why Oracle? (rather than MySQL or Postgres or whatever)
■ Why BINDv8? (rather than BINDv9)
■ Why RedHat? (rather than Debian or SuSE)

■ Why are we using a particular vendor or service provider?
■Why Dell? (rather than Compaq or Micron or whoever)
■ Why Sun? (rather than HP or SGI or whoever)
■ Why UUNET? (rather than XO or PSINet or whoever)
■ Why Exodus? (rather than Level3 or Digital Island or whoever)

■ Why are certain services provided by particular systems, rather than some other
system?

■ Why are certain services grouped onto particular systems?
■ Why are other services given their own systems?

■ Why are our standard systems what they are?

43July 2001 ;login: WHAT ARE YOUR INTENTIONS? ●

■ Why this config for an engineering desktop?
■ Why this config for an engineering laptop?
■ Why this config for a non-engineering desktop?
■ Why this config for a non-engineering laptop?

■ Why is our IP address plan set up the way it is?
■ Why do we allocate a /24 to each office?
■ Why do we skip every other /24 in the allocation?
■ Why do we allocate all the point-to-point /30s as we do?

Competent IT professionals usually have good reasons for the things they do. They can
usually tell you those reasons, if you ask. Months or years later, however, it can be diffi-
cult to obtain this information; the professionals in question may have worked on so
many things since then that they no longer remember, or they might not even be with
the organization anymore. A much better approach is to create a short explanation
(maybe just a paragraph or two) of why a system is the way it is at the time the system is
configured.

These reasons are often discussed and debated among staff while the system is being
designed and deployed; all you need to do is capture the conclusions of those discus-
sions and debates. At a small shop, an archive of your internal IT email discussion list
might be sufficient, if you’ve got a good search mechanism. Or you might want to go
one small step further and establish a special archived email alias just for these “wis-
dom” summaries; the trick will be to remember to create such summaries and send
them to the alias for recording.

Growth plans are a related issue. Competent IT professionals usually include avenues for
efficient future growth in their designs, but those avenues often aren’t obvious later,
especially if the person looking for them wasn’t a participant in the original design
process. These growth plans and thoughts should be documented when the system is
designed and deployed, so that they can be used when needed in the future.

Assumptions about the environment and its future are another thing that should be
documented when a system is designed and deployed. Documenting these assumptions
will help later IT staff determine when a design is no longer suitable for the current
(ever changing) situation, and should be revised or replaced. For example, if you design
an IP address plan to accommodate a dozen large field offices, total, over the next five
years, but your company has shifted plans and is instead now opening a dozen small
offices per month, you probably need to rethink your address plan.

Assumptions can also take the form of constraints, which might not apply in the future.
If you don’t document them at design and deployment time, however, it will be more
difficult to take advantage of later changes that ease those constraints. For example,
you’ve probably heard the joke about the mother teaching her child their family’s tradi-
tional method of preparing a roast, which starts with cutting the roast in half. The child
asks “Why?” and the mother says, “Well, that’s the way we’ve always done it; that’s the
way my mother taught me to do it.” The child, being a naturally curious sort, goes and
asks Grandma “why cut the roast in half?” and gets the same answer. The child recurses
through ancestresses until eventually reaching one who answers, “Because it wouldn’t fit
in the pan that I had when I was a young bride.” That’s a perfect example of a system
carried forward far longer than necessary, because nobody realized that the relevant
constraint (the size of the pan) no longer applied.

To get a good idea of what your “why” documentation should cover, imagine the ques-
tions that a new hire would ask if they were made responsible for that system or service.

Assumptions about the

environment and its future are

another thing that should be

documented when a system is

designed and deployed.

●

SY

SA
D

M
IN

| S
EC

U
RI

TY
|P

RO
G

RA
M

M
IN

G
|N

IF
TY

H
A

C
KS

| C
O

M
PU

TI
N

G

Assume that this person is a competent system administrator, and knows how to find
and use vendor documentation for the system or service; they’d still want to know
things like who the primary users are, why this particular platform and/or software
package was chosen to provide the service, what the growth plans are, what the unusual
or subtle aspects of this configuration are, and so forth.

As a consultant, asking “why?” is often the most important service that I provide to my
clients. The act of explaining their concerns or goals to an outsider (me) often clarifies
those concerns and goals. This, in turn, often makes a range of solutions clear as well,
and the task becomes one of evaluating and choosing between those solutions, then
implementing the chosen solution. There’s no magic to hiring a high-priced consultant
for this type of exercise (though I certainly don’t mind the business!); you can apply this
same method very well yourself, if you just take the time to do so.

So... what are your intentions?

44 Vol. 26, No. 4 ;login:

As a consultant, asking

“why?” is often the most

important service that I

provide to my clients.

