
www.usenix.org	   AU G U S T 20 14  VO L . 3 9, N O. 4  71

BOOKSBook Reviews
R I K F A R R O W A N D M A R K L A M O U R I N E

The Phoenix Project: A Novel About IT, DevOps, and
Helping Your Business Win
Gene Kim, Kevin Behr, and George Spafford
IT Revolution Press 2013; 345 pages
ISBN 978-0988262591
Reviewed by Rik Farrow

I learned of this book while working on the LISA ’14 tutorial
committee. After reading it, I wondered how I had missed
hearing about it previously. And although this is a novel, it also
provides a deeper understanding of DevOps, something I hadn’t
encountered before.

The plot roughly follows that of Eliyahu Goldratt’s The Goal,
which has become a model for systems management ever since
it was published in 1984. Bill, the protagonist, is the senior IT
guy who has risen to management of the mid-level systems
group. Bill is happy where he is and manages his own group
well, but that safe harbor disappears in the opening chapter,
when his CEO deftly maneuvers Bill into taking the VP of IT
position. The former VP has disappeared under a cloud, and
Bill quickly finds himself having to deal with one impossible
situation after another.

For anyone who has worked in IT, the details of the story will
sound familiar: failed releases, the over-ambitious project, a
release deadline set by marketing, and an IT department that is
not just fragmented, but fractious. Bill gets guidance from a new
board member, who takes him on visits to a smoothly function-
ing factory. Rather than tell Bill what to do, the board member
provides hints and leaves Bill to work things out on his own. In
real life, you could read other Gene Kim books and get a head
start. But Bill progresses through one disastrous release after
another, getting a handle on development, quality assurance,
security, testing, and release management.

I found the book easy to read and breezed through it. If you usu-
ally read novels driven by character development, you will find
just traces of that here. The greatest benefit to reading this is
getting a visceral, on the ground understanding of how work-
place transformation can happen, given the right set of circum-
stances and personalities. The Phoenix Project is not a textbook,
but it still gets across key ideas about controlling the acceptance
of new projects, uncovering chokepoints, and how continuous
integration actually makes software projects more successful
and less expensive.

Penetration Testing: A Hands-On Introduction to
Hacking
Georgia Weidman
No Starch Press, 2014; 531 pages
ISBN 978-1-59327-564-8
Reviewed by Rik Farrow

This is the book I wish I had when I was teaching my two-day,
hands-on Linux security class. At more than 500 pages long,
the book covers a lot more material and many more topics than
I could in two days.

After a brief introduction, Weidman spends a long chapter on
setting up four VMs: one for the pen testing, and three as targets.
Although the pen tester’s VM runs Kali, a Linux distro that
already includes many tools for security, the author takes the
time to explain how to install additional tools that will be used
in exercises throughout the book. The target systems also get
extra attention, with vulnerable apps getting installed. I like this
approach, because it prepares the reader for what’s to come, as
well as encouraging the reader to do more than just read.

The next couple of chapters are the weakest, but they will need
to be there for some readers. I do wonder how many people who
can’t use basic Linux commands will be successful with pen
testing, even when using GUI-based tools like Wireshark, or how
showing someone a short shell script or C program will help.

Once past this point, Weidman progresses rapidly, providing a
quick overview of Metasploit from the command line. In part
two, she guides the reader through vulnerability scanning, port
scanning, and network packet capture. Weidman’s explana-
tions are clear and accurate, if a bit terse. And although she
tells the reader to start up Wireshark as root and “click through
the warnings about using Wireshark as root being dangerous,”
I wished she had explained why: that Wireshark itself can be
exploited while parsing packets, and that being root makes any
exploit much more useful to the attacker. In a book that teaches
about vulnerabilities and exploits, I thought explaining this issue
would both help with the pen tester’s mind-set as well as act as
a warning. I found myself imagining an organization’s security
team exploiting the pen tester’s laptop, something which I know
has been done, including by one of the people Weidman lists in
her acknowledgments. At least Weidman describes running Kali
from within a VM, partially excusing her exclusive use of the
root account for all exercises throughout the book.

72    AU G U S T 20 14  VO L . 3 9, N O. 4 	 www.usenix.org

BOOKS

Weidman does a very nice job of explaining how stack-overflow
exploits work, as well as going through examples of how to build
these exploits. She does also point out that stack-overflows only
work on older OS versions, before data execution prevention
(DEP) became the norm for most software. Still, with the use of
examples, she walks the reader through how these exploits work,
essential knowledge for the person who wants to understand
exploitation in the post-DEP and address space layout randomiza-
tion (ASLR) defensive environment. And understanding how to
write exploits forms the basis for modifying existing Metasploit
exploits or writing new ones, which she covers in a chapter.

Weidman has developed the Smartphone Pentest Framework
herself and covers this in the final chapter. SPF works with
Android emulators, whose setup is described in the first chapter,
but Weidman uses the framework to explain how attacks outside
of the simulated environment should work. I did find myself
cringing when she suggested changing the SSH password for the
iPhone (alpine is the root password), but for the most part, her
writing and exposition are solid.

There are also chapters on exploiting Windows and bypassing
antivirus, among other topics.

If you are interested in understanding security from the perspec-
tive of the practitioner—that is, a pen tester or hacker—Penetra-
tion Testing will certainly do more than get you started. For many
people I taught over the years, this book will explain more about
the tools we used then, and about new tools and techniques.

Understanding Computation
Tom Stuart
O’Reilly Media, 2013. 315 pages.
ISBN 978-1-449-32927-3
Reviewed by Mark Lamourine

In Understanding Computation, Stuart sets out to provide some-
thing you don’t often find in the computing aisle of the retail
bookstore chains. Most books in this area are tutorials and refer-
ences designed to achieve a level of popularity by focusing on
the most recent languages and frameworks. Stuart, by contrast,
takes on an Honest-To-God Theory of Computation. Although
this would typically be an academic book, Stuart has put this one
together with the professional computing audience in mind.

Stuart breaks the book into two sections (if you exclude the brief
introduction to Ruby—more on that later).

In the first half, Stuart builds up simple computational machines,
starting with parsers and finite automata and finishing with
the development of a universal Turing machine. He explores the
capabilities and limits of each machine and then investigates
how to extend the machine to the next level.

Stuart has chosen to express the logic of the machines using
Ruby rather than a formal language. He acknowledges that this
approach poses some tradeoffs in clarity, but he thinks this
is offset by the fact that the reader can actually execute and
observe the behavior of the machines he describes. I applaud
the attempt to invite the reader to experiment and explore, but I
think that he might have made the concepts clearer by present-
ing them in proper notation as well as in code. This would have
given a concise representation that could be compared to the
working code. As it is, it can be difficult to separate the topical
content from the Ruby code artifacts.

Stuart spends the remainder of the book exploring the capabili-
ties and limitations of the universal Turing machine. Again, he
starts with the language of computation, this time the lambda
calculus. After producing a working implementation in Ruby,
he shows that the lambda calculus is equivalent to a universal
Turing machine, as are, in the end, several possible alterna-
tive computational models. Again, it would have been clearer to
include the operations and explanation of the lambda calculus in
traditional notation followed by the translation into Ruby.

Finally, in a chapter entitled “Impossible Programs,” Stuart
confronts the truly difficult problems of modern computa-
tion. In a mere 30 pages he treats the identity of code and data,
decidability, and the Halting Problem. Godel’s Incompleteness
Theorem gets mentioned, but there is no real discussion of its
deep implications.

Stuart quotes from and provides a reference to Turing’s original
paper on computability. In at least half a dozen other places, he
makes a passing comment about some other research or infor-
mation that could have added depth to the discussion. In some of
those places, he includes a link to Wikipedia (which I think is a
fine place to learn more), but in others he just moves on.

Stuart has done a fine job presenting the content of this theory,
but the presentation lacks a sense of the significance and wonder
that I find in the idea that my laptop is, conceptually, no more
powerful than a Turing machine. Nevertheless, Understanding
Computation is still the only offering that I’ve seen aimed at
computer professionals, and it will serve that audience well.

