
THE MAGAZINE OF USENIX & SAGE
August 2002 volume 27 • number 4

The Advanced Computing Systems Association &

The System Administrators Guild

&

inside:
SYSADMIN

Patterson: An Introduction to Dependability

●

SY

SA
D

M
IN

an introduction to
dependability
Definitions and Examples
To improve dependability of systems, the Recovery-Oriented Computing

(ROC) project is creating technology that will let systems recover more

quickly from failures [Patterson et al. 2002]. We are especially interested in

services accessed over a network, such as Internet sites and enterprise data

centers. Since system administrators are the ones called when systems fail,

we want to start a conversation about dependability problems in the hopes

of developing technology that will really help.

One persistent difficulty with the general topic of making computers systems that can

survive component faults has been confusion over terms. Consequently, perfectly good

words like reliability and availability have been abused over the years so that their pre-

cise meaning is unclear.

Clearly, we need precise definitions to discuss such events intelligently. As a first step in

a conversation about dependability, we define the dependability terminology: fault,

failure, reliability, availability, mean time to failure (MTTF), and mean time to repair

(MTTR). We also show how to calculate MTTF of a system given the MTTF of its

components.

This paper is derived from Chapter 7 of Hennessy and Patterson [2002]. It provides a

simplified version of definitions used by the IEEE Computer Society Technical Com-

mittee on Fault Tolerance and the IFIP working group 10.4. This paper is the first in a

series; future papers will talk about issues relevant to the system administration com-

munity using these definitions.

Defining Dependability, Reliability, and Availability
The research community picked a new term – dependability – to have a clean slate to

work with: computer system dependability is the quality of delivered service such that

reliance can justifiably be placed on this service. Each component of that system also

has an ideal specified behavior, where a service specification is an agreed description of

the expected behavior. A system failure occurs when the actual behavior deviates from

the specified behavior. The failure occurs because of a fault, a defect in that compo-

nent.

We can now explain reliability and availability. Users may see a system alternating

between two states of delivered service with respect to the service specification:

1. Service accomplishment, where the service is delivered as specified

2. Service interruption, where the delivered service is different from the specified

service

Transitions between these two states are caused by failures (from state 1 to state 2) or

restorations (2 to 1). Quantifying these transitions lead to the two main measures of

dependability.

Reliability is a measure of the continuous service accomplishment (or, equivalently, of

the time to failure) from a reference initial instant. Hence, the mean time to failure of

disks is a reliability measure. The reciprocal of MTTF is a rate of failures. Service inter-

ruption is measured as mean time to repair. The related term mean time between fail-

ures (MTBF) is simply the sum of MTTF and MTTR. Although MTBF is widely used,

MTTF is often the more appropriate term, as repair times may be harder to predict.

AN INTRODUCTION TO DEPENDABILITY ● 61August 2002 ;login:

patterson@cs.berkeley.edu

by David A. Patterson

David Patterson is Pro-
fessor of Computer
Science at the Univer-
sity of California,
Berkeley. He imple-
mented one of the first
RISC microprocessors
and invented, along
with Randy Katz, the
Redundant Arrays of
Inexpensive Disks
(RAID),

Availability is a measure of the service accomplishment with respect to the alternation

between the two states of accomplishment and interruption. Module availability is sta-

tistically quantified as:

Availability = MTTF/(MTTR+MTTF)

Note that availability and reliability are now quantifiable metrics, rather than syn-

onyms for dependability. Availability ranges from 0% to 100%, with 100% being per-

fect; reliability as measured by MTTF ranges from 0 to infinity, with infinity being

perfect.

Calculating MTTF and Availability
If we assume that the age of the component is not important in its probability of fail-

ure and that failures are independent, the overall failure rate of a subsystem is just the

sum of the failure rates of the modules. Let’s do an example. Assume a disk system

with the following components and rated MTTF:

■ 1 SCSI controller, 500,000 -hour MTTF
■ 1 power supply, 200,000-hour MTTF
■ 1 fan, 200,000-hour MTTF
■ 1 SCSI cable, 1,000,000-hour MTTF
■ 5 SCSI disks, each rated at 1,000,000 -hour MTTF;

We can compute the MTTF of the system as a whole by adding the failure rate of each

component, which is the inverse of its MTTF.

Failure ratesystem = 1/500,000 + 1/200,000 + 1/200,000 +1/1,000,000 + (5 * 1/1,000,000)

= (2 + 5 + 5 + 1 + 5)/(1,000,000 hours)

= 18 / (1,000,000 hours)

The MTTF of the system is just the inverse of the failure rate of the system:

MTTFsystem = (1,000,000 hours) / 18 = 55,555 hours

If the average MTTR is one day for this system, the estimated availability would be

Availabilitysystem = 55,555 / (55,555 + 24)

which is about 99.96%. Marketing departments have shorted availability from the

actual percentages to the number of leading 9s in the percentage. Thus, 99.96% can be

called “3 nines” of availability. Well-run servers achieve 2 or 3 nines of availability, or

99% to 99.9%.

Failures vs. Faults
The difference between faults and failures aren’t as obvious as you might think.1 Here

are some examples of the difficulties.

■ Is a programming mistake a fault or a failure? Does it matter whether we are talk-

ing about when the program was designed, or when it is run? If the running pro-

gram does not exercise the mistake, is it still a fault or failure?
■ Suppose bits on disk in a RAID system change due to a problematic sector in a

disk. Did a fault or failure still occur if the error correction codes (ECC) of the

sector delivers the corrected value to the processor? Is it a fault or failure if it was

an uncorrectable fault according to the disk, but the RAID system corrects it?
■ The same difficulties concerning data change, latency, and observability arise with

a mistake by a human operator.

62 Vol. 27, No. 4 ;login:

NOTE

1. The dependability community makes the

subtle distinction between a defect that does

not change anything and a defect that does

change the state [Gray and Siewiorek 1991,

Laprie 1985]. They call the former a fault and

the latter an error. An example is an Alpha

particle hitting a DRAM cell. That collision is

a fault, and it is only an error if it changes the

value in the DRAM cell. Although this dis-

tinction is more precise, it is often confusing,

resulting in debates on whether something is

a fault or error. In this paper we concentrate

on the differences between defects and serv-

ice outages, which we call faults and failures.

Initially, a fault is considered latent and becomes effective when it is activated. For

example, a programming mistake is a latent fault until that code is invoked by the sys-

tem. If the fault actually affects the delivered service, a failure occurs. The time

between the occurrence of a fault and the resulting failure is the latency. Thus, a failure

is the manifestation on the service of a fault. Reviewing the properties of fault:

■ A latent fault becomes effective once activated.
■ An effective fault often propagates from one component to another, thereby creat-

ing new faults.

Thus, an effective fault is either a formerly latent fault in that component or it has

propagated from another fault.

Reviewing the fault-failure sequence, the steps are latent faults, then effective faults,

and finally, if it disrupts the delivered service, a failure.

Let’s go back to our motivating examples above. A programming mistake is a fault;

upon activation, the fault becomes effective; when this effective fault produces erro-

neous data which affect the delivered service, a failure occurs. For the disk example,

the flaw in the sector is a fault. If the ECC corrects the fault, the RAID system would

not observe it. If the disk could not correct it, and thus has a failure, then RAID system

would see a fault. If the RAID system corrected it, the operating system would not see

a fault. A mistake by a human operator is a fault; it is latent until activated; and so on

as before.

These properties are recursive and apply to any component in the system. That is, a

defect is either a fault or a failure depending on your perspective. For example, the

specified behavior of a disk is to deliver correct sectors when requested. Thus an

uncorrectable read fault is a failure from the disk perspective, but it is a fault from the

perspective of the RAID system. Confusion between faults and failures often depends

on how you draw the boundaries around the system and hence what is the expected

service of that system.

Categorizing Faults and Ways to Handle Them
The purpose of this section is to familiarize you with some terms that you may see

when looking at systems that claim greater dependability. There are many ways to cate-

gorize faults. We show two ways – by duration or by cause – to give you some intuition

about how to talk about faults. Classifying by their duration yields three options:

1. Transient faults exist for a limited time and do not recur.

2. Intermittent faults cause a system to oscillate between faulty and fault-free

operation.

3. Permanent faults do not correct themselves with the passing of time; they remain

until repaired.

The classification above shows a hierarchical taxonomy of faults based on cause. The

first split is whether it is physical or logical, where all software and operator faults are

logical. Hardware faults are either due to problems in manufacturing, in operation, or

in design. Manufacturing faults are either individual flaws or due to problems in the

manufacturing process. Physical operation faults are either the result of wear or of

environmental problems, such as power outages, high temperature, fire, flood, earth-

quake, and so on. Design faults may simply be bugs in hardware or software, or not

designing-in sufficient margins in hardware to handle normal variations in, say, volt-

63

●

SY

SA
D

M
IN

August 2002 ;login:

A programming mistake is a

latent fault until that code is

invoked by the system.

AN INTRODUCTION TO DEPENDABILITY ●

age. Finally, logical operation faults can be people breaking into the system or mistakes

by operators, although poor design of the user interface and documentation leads to

operator mistakes.

Just as there are many ways to categorize faults, there are many ways to categorize sys-

tems’ handling of them. Laprie [1985] divides improvements into four methods:

1. Fault avoidance: how to prevent, by construction, fault occurrence – that is, pre-

venting the creation of latent faults.

2. Fault tolerance: how to provide, by redundancy, service complying with the serv-

ice specification in spite of faults having occurred or occurring – that is, prevent-

ing faults from becoming failures.

3. Fault removal: how to minimize, by verification, the presence of latent faults.

4. Fault forecasting: how to estimate, by evaluation, the presence, creation, and con-

sequences of faults, and thus take preemptive action to prevent the fault from

turning into a failure without necessarily using redundancy.

A final topic is repair. Some systems or modules are repair tolerant, in that you can

safely repair them while the system continues to operate. For example, many systems

allow disks to be hot swapped without shutting down the computer. Some systems and

modules are repair intolerant. For example, you often must shut down the system

before replacing the motherboard.

Drawbacks to MTTF and the Definition of Failure
One drawback of MTTF calculations is that they imply a comfort zone that is not mer-

ited in practice. First, although MTTF is just the inverse of the failure rate, it is not

intuitive. For example, a million-hour MTTF means the mean time to failure is over

100 years. Does this mean the average disk lasts 100 years? No. Since manufacturers

calculate disk lifetime as five years, it means that if you bought many disks and copied

the data to a new drive every five years, on average you could do it 20 times before you

saw a failure. Annual failure rates are a better match to human intuition. For example,

if we make common assumptions about the distribution of independent failures,

about 1% of components would fail in each of the first few years if each component

was rated as a 100-year MTTF.

The second drawback is that MTTF assumes failures are independent and that they are

based on MTTF numbers supplied by the manufacturer. The manufacturer supplies

MTTF rates assuming the products were not damaged in shipping and that they were

operating in nominal conditions of temperature and voltage. As many as half of disk

failures are due to problems in shipping. High operating temperature due to fan fail-

ure, something blocking the air flow, or air-conditioning failure can severely shorten

lifetimes. Such environmental problems can also violate the independent-failure

assumption.

The purpose of MTTF calculations is to show relative reliability of different designs

rather than to predict what you will see in practice. For example, the calculation above

shows that MTTF is limited by the weakest link in the chain. To significantly improve

the reliability of this subsystem, we would need a more reliable power supply and fan.

If those two components were unchanged, even if we had perfect controllers, cables

and disks, the MTTF would be capped at a tenth of the reliability of one disk.

As it is either expensive or impossible to replace components with more reliable ver-

sions, the primary way of coping with failures is redundancy. For example, one of the

64 Vol. 27, No. 4 ;login:

As many as half of disk

failures are due to problems

in shipping.

long-standing guidelines in design is to have no single point of failure. We will talk

about calculating the reliability of redundant systems in a future paper.

A final note about the definition of failure itself. The terminology takes the simplified

view that the system is either accomplishing service or there is a service interruption. A

more nuanced view sees a third state, service degradation, whereby the service is not

interrupted but is performing poorly enough to be a problem. It also assumes a single

service, although Internet sites like eBay and Yahoo offer a collection of services. We

will tackle a more nuanced definition of failure in future papers.

Conclusion
The goal of this paper is to begin to pierce through the fog of dependability terminol-

ogy. We distinguished a fault from a failure, showing the difference can simply be a

matter of perspective. We also gave quantitative definitions of reliability and availabil-

ity, and provided an example of how to estimate MTTF and availability. Finally, we

warned to not be too comfortable with high MTTF, since the numbers can be mislead-

ing.

Future papers will talk about redesigning systems so that there are no single points of

failure, statistics collected on why systems fail, the cost of downtime, and the goals of

the Recovery-Oriented Computing project.

We hope to initiate a series of conversations about why current systems fail and how

researchers can help create a new foundation for systems that are easier to operate.

Acknowledgements
I would like to thank Aaron Brown, George Candea, David Oppenheimer, and Mike

Patterson for comments on earlier drafts of this paper. This work is supported by the

National Science Foundation, grant no. CCR-0085899, the California State MICRO

Program, Allocity, Hewlett Packard, IBM, and Microsoft.

65

●

SY

SA
D

M
IN

August 2002 ;login:

REFERENCES
Gray, J., and D. P. Siewiorek. 1991. High-avail-
ability computer systems. Computer 24:9
(Sept.): 39–48.

Gray, J., and A. Reuter. 1993. Fault tolerance.
Chapter 3 of Transaction processing: concepts
and techniques. San Francisco: Morgan Kauf-
mann Publishers.

Hennessy, J. L., and D. A. Patterson. 2002. Com-
puter architecture: A quantitative approach. 3d
ed. San Francisco: Morgan Kaufmann Publish-
ers.

Laprie, J.-C. 1985. Dependable computing and
fault tolerance: Concepts and terminology. Fif-
teenth Annual International Symposium on
Fault-Tolerant Computing FTCS 15. Digest of
Papers. Ann Arbor, MI, USA (June 19–21),
2–11.

Patterson, D., A. Brown, P. Broadwell, G. Can-
dea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E.
Kiciman, M. Merzbacher, D. Oppenheimer, N.
Sastry, W. Tetzlaff, J. Traupman, N. Treuhaft.
2002. Recovery-oriented computing (ROC):
Motivation, definition, techniques, and case
studies. U.C. Berkeley Computer Science Techni-
cal Report UCB//CSD-02-1175, March 15, 2002
(see http://roc.cs.berkeley.edu).

AN INTRODUCTION TO DEPENDABILITY ●

http://roc.cs.berkeley.edu

