
THE MAGAZINE OF USENIX & SAGE
November 2001 • Volume 26 • Number 7

inside:

BEST PRACTICES

A Secure OS-Based Firewall

by Oscar Bonilla

The Advanced Computing Systems Association &

The System Administrators Guild

&

Special Focus
Issue: Security
Guest Editor: Rik Farrow

67November 2001 ;login:

System administrators working with limited resources must be resourceful.

Sometimes, however, this same limitation can force the system administra-

tor to think thoroughly about the problem at hand in order to utilize the

scarce resources effectively. In this article, I present an example of how a

limitation in disk space led me to rethink the role of the firewall. I also show

how to build a BSD-based firewall that fits on a floppy and runs on a PC

without a hard disk. This type of configuration could be, in my opinion,

more secure than some commercial products and most OS-based firewalls

running on a PC with a hard disk drive.

For the past few years, I have been working as an instructor for the computer science
department of Galileo University in Guatemala (http://www.galileo.edu). As is often the
case with universities in undeveloped countries, the teaching staff has to take over
other responsibilities usually given to administrative staff in universities with more
resources. Since the subjects I teach are operating systems and computer networks, I
have been implicitly expected to be the system administrator for the computing infra-
structure of the university. Universities in third-world countries usually have very lim-
ited resources for computer infrastructure. For example, the primary firewall of the
university I work at, a PC running FreeBSD and IP Filter, crashed a couple of months
ago and needed to be replaced. I found a machine lying around that had most of the
specifications needed for the job, except for a hard disk drive. I asked the supplies
department for a 40GB hard disk drive and got a 1.44MB floppy.

This lack of resources forces system administrators to think carefully about how the
available resources will be used. In the firewall example above, having limited space
makes you to think very carefully about what programs you will be installing on the
machine and the uses you will give them.

A firewall is essentially a discriminating router. It receives IP packets on one network
interface, tries to match the packet with one of the rules, and takes an action which
could be routing or dropping the packet. All of this is done inside the kernel. Thus,
firewalls do not really need many programs to accomplish their job. All that is needed
is the kernel, a program for installing the firewall rules, and a few commands for ini-
tializing the network interfaces, turning routing on, and checking how the firewall is
doing.

Most operating systems come with many programs and services installed; many of
these services are even enabled by default. This is not surprising since they are general
purpose operating systems and have to be useful to a wide variety of users. In the next
section we will see how we can choose a minimal subset of these programs that lets a
firewall do its job.

The One-Floppy Firewall (using PicoBSD)
PicoBSD is a variant of FreeBSD that fits in a single floppy. It lets you create a boot
floppy that contains a custom kernel and a memory file system in which you can
install your own subset of the programs available in the FreeBSD distribution. You can
also add your own programs as long as there is still space in the file system.

You must have a FreeBSD system with full sources in order to build a PicoBSD floppy.
This is because PicoBSD utilizes a technology called “crunched binaries.” This means
that several programs (and libraries) are combined in a single statically linked binary,
thus saving considerable amount of disk space. This statically linked binary uses its

a secure OS-based
firewall

I asked the supplies

department for a 40GB hard

disk drive and got a 1.44MB

floppy.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

by Oscar Bonilla

Oscar Bonilla is an
instructor at Galileo
University in
Guatemala. As part
of his consulting
career, he has desig-
ned the networks of
three major ISPs in
Guatemala and El
Salvador. His main
interests include
operating systems,
computer networks,
and Internet secu-
rity.

obonilla@galileo.edu

http://www.galileo.edu

Vol. 26, No. 7 ;login:

own name (argv[0]) to know which function it must perform. You only need to hard
link it to every program name you have “crunched” in it to have it execute the proper
functions. In order to build the crunched binary, all the binary files must be recom-
piled using special flags. The reason we hard link the different program names to the
crunched binary, as opposed to soft linking it, is that a hard link only uses an entry in
the directory for storing another name for the same inode, whereas a soft link uses
another inode with the path of the linked program. Since inodes take space in the file
system, it is more efficient to use hard links.

In FreeBSD, all of the required sources for PicoBSD are in the directory /usr/src/
release/picobsd. In this directory you’ll find several examples of various one-floppy
configurations that do things such as routing, dial-up serving, etc. However, we’ll see
how to build a custom PicoBSD floppy with only the programs you want.

A typical configuration directory has the following hierarchy:

floppy_name/
PICOBSD
config crunch.conf
floppy.tree/

etc/
...files that will go in /etc on the floppy...

root/
...files that will go in /root on the floppy...

mfs_tree/
etc/

...files that will go in /etc on the MFS...

In the picobsd directory there are several examples that you can copy and modify to
suit your needs. Alternatively, you can create the configuration directory from scratch.
I will explain here how to create the hierarchy from scratch.

The floppy_name is the name of the directory that will hold all the configuration files
for the floppy. Think of it as a project name. I chose to call it offw (One-Floppy Fire-
Wall).

The PICOBSD file is a FreeBSD kernel configuration file specifying which device driv-
ers and options to install in the new kernel. It must start with the following lines:

Line starting with #PicoBSD contains PicoBSD build parameters
#marker def_sz init MFS_inodes floppy_inodes
#PicoBSD 3500 init 4096 32768
options MD_ROOT_SIZE=3500 # same as def_sz

The first two lines are just comments. The third line is a comment for the kernel con-
figuration program config(8). However, that third line tells the PicoBSD building
script the parameters for building both the MFS and floppy file systems. The four
parameters def_sz, init, MFS_inodes, and floppy_inodes specify the size of the MFS file
system, what program to use as init, the number of inodes to use in the MFS, and the
number of inodes to use in the floppy file system, respectively.

PicoBSD uses two file systems for operation: MFS and a floppy file system. MFS is a
Memory File System that’s patched into the kernel and loaded at boot time to the
machine’s RAM. Since MFS is patched into the kernel, it makes the kernel binary
image bigger. The bigger you make the MFS, the bigger the kernel will be, and the less
memory you’ll have for running user processes.

The bigger you make the

MFS, the bigger the kernel

will be, and the less memory

you’ll have for running user

processes.

68

The other file system used by PicoBSD is the floppy file system. This is the file system
that remains on the floppy. In this file system, you’ll have the kernel itself and some
files in which modifications must persist between reboots. Another program that will
be copied to the floppy file system is the kernel binary image itself. What this means is
that as the kernel image gets bigger (because the MFS is bigger or because you have too
many drivers in the kernel), the space available in the floppy file system will get
smaller.

You have to achieve a balance between the size of the MFS, the drivers configured in
the kernel, and the files you put in the floppy file system. The bigger the MFS, or the
more drivers you have in your kernel, the bigger the kernel binary image that will be
copied to the floppy file system, thus leaving less space for programs and files in the
floppy file system.

So how do you go about choosing the right sizes? I basically put as much as I can on
the MFS and leave the floppy file system only for configurations files and data that
must persist between reboots. There are two reasons for doing this: (1) if you put files
in the floppy that will be used a lot (like binaries), the floppy must be inserted and
working in order to use those files, and (2) floppy access times are usually orders of
magnitude slower than memory access times. So in the end, I’ve found that it works
best to keep most of the files in the MFS and leave as little as possible in the floppy file
system. Files that need to be modified easily (without recompiling the kernel image)
should go in the floppy file system. For example, the firewall rules configuration file is
a good candidate for the floppy file system.

Getting back to the PICOBSD kernel configuration file, the rest of the configuration
lines will be what drivers you need and what options you want set in your kernel. You
can find plenty of information on configuring FreeBSD kernels on the FreeBSD Hand-
book, available from the FreeBSD home page (http://www.freebsd.org/). Just remember
to keep things to a minimum. Here’s my complete kernel configuration file:

Line starting with #PicoBSD contains PicoBSD build parameters
#marker def_sz init MFS_inodes floppy_inodes
#PicoBSD 3500 init 4096 32768
options MD_ROOT_SIZE=3500 # same as def_sz
the machine architecture
Machine i386
the cpu type
cpu I686_CPU
an identifier for this kernel
ident FIREWALL
maxusers sets the static sizes of various structures inside the
kernel, like maximum number of open files, etc.
maxusers 12

options INET #InterNETworking
options FFS #Berkeley Fast File System
options FFS_ROOT #FFS usable as root device [keep this!]
options MFS #Memory File System
options MD_ROOT #MFS as root
options COMPAT_43 #Compatible with BSD 4.3 [KEEP THIS!]
options PCI_QUIET

device isa0 # ISA Bus
device pci0 # PCI Bus

69November 2001 ;login:

. . . it works best to keep

most of the files in the MFS

and leave as little as possible

in the floppy file system.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

http://www.freebsd.org/

Vol. 26, No. 7 ;login:

Floppy disk controller
device fdc0 at isa? Port IO_FD1 irq 6 drq 2
Floppy disk
device fd0 at fdc0 drive 0

Keyboard controller
device atkbdc0 at isa? port IO_KBD
Keyboard
device atkbd0 at atkbdc? irq 1
VGA display
device vga0 at isa?
Console Driver
device sc0 at isa?
Math Coprocessor [KEEP THIS!]
device npx0 at nexus? port IO_NPX irq 13
Serial Port
device sio0 at isa? port IO_COM1 flags 0x10 irq 4
miibus is needed for certain Ethernet cards (like 3Com FastEthernet)
device miibus
device xl0 # 3Com FastEthernet Card
pseudo-device loop # local loop interface (lo0)
pseudo-device ether # Generic Ethernet Drivers
pseudo-device pty 8 # Pseudo TTY’s
pseudo-device md # memory disk
Berkeley Packet Filter (not needed if you don’t need tcpdump)
pseudo-device bpf 4 # 4KB, for tcpdump
IPFilter is the packet filter we’ll use
options IPFILTER
Logging facility for IPFilter
options IPFILTER_LOG
Make IPFilter block all packets by default
options IPFILTER_DEFAULT_BLOCK
options PROCFS #Process file system

The next file you need to create is config. This file is a configuration file that is sourced
by the PicoBSD build script. It must contain only variable definitions. The one impor-
tant variable that must be in this file is MY_DEVS, which tells the build script which
devices to create in /dev inside the MFS. This is done passing each item in MY_DEVS
to the standard FreeBSD MAKEDEV script usually found in /dev. This is what I have:

MY_DEVS="std vty10 fd0 pty0 cuaa0 bpf0 bpf1 ipl"

This example tells MAKEDEV to create standard devices (std), 10 tty’s (vty10), a
floppy disk drive device (fd0), the pseudo stty’s (pty0), a serial port device (cuaa0),
two Berkeley Packet Filter devices (bpf0 and bpf1), and an IPFilter logging device (ipl).

The ipl device is particularly important because it’s the interface between IPFilter
inside the kernel and the command line utilities that run in user space and are needed
to load the firewall rules. The bpf devices can be left out if you don’t need tcpdump in
the firewall host.

The next file is called crunch.conf and contains the specifications needed to make the
crunched binary.

The type of directives supported are (from the crunchgen(1) man page):

70

■ srcdirs dirname: A list of source trees in which the source directories of the
component programs can be found. These dirs are
searched using the BSD <source-dir>/<progname>/ con-
vention. Multiple srcdirs lines can be specified. The direc-
tories are searched in the order they are given.

■ progs progname: A list of programs that make up the crunched binary.
Multiple progs lines can be specified.

■ libs libspec: A list of library specifications to be included in the
crunched binary link. Multiple libs lines can be specified.

■ buildopts : A list of build options to be added to every make target.
■ ln progname linkname: Causes the crunched binary to invoke progname whenever

linkname appears in argv[0]. This allows programs that
change their behavior when run under different names to
operate correctly.

Here’s what I have in my crunch.conf file:

We don't need PAM, NETGRAPH, IPSEC or INET6 (and we’ll hint the
sources that this is a RELEASE_CRUNCH
buildopts -DNOPAM -DRELEASE_CRUNCH -DNONETGRAPH -DNOIPSEC -\

DNOINET6
directories where to look for sources of various binaries
srcdirs /usr/src/bin
srcdirs /usr/src/sbin/i386
srcdirs /usr/src/sbin
srcdirs /usr/src/usr.bin
srcdirs /usr/src/gnu/usr.bin
srcdirs /usr/src/usr.sbin
srcdirs /usr/src/libexec
Some programs are especially written for PicoBSD and reside here.
srcdirs /usr/src/release/picobsd/tinyware

init is almost always necessary.
progs init # 4KB.
Without ifconfig you wouldn’t be able to configure IPs on your
network interfaces.
progs ifconfig # 4KB.
You need a shell.

progs sh # 36KB.
ln sh -sh
These are just some utilities I find useful.
progs echo # 0KB.
progs pwd
progs mkdir rmdir
progs chmod chown
progs mv ln # 0KB.
progs mount
minigzip is smaller than gzip.
progs minigzip # 0KB.
ln minigzip gzip
progs cp # 0KB.
progs rm
progs ls
progs kill
progs df # 0KB.

71November 2001 ;login: A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

progs ps # 4KB.
ns is a lightweight version of netstat.
progs ns # 4KB.
ln ns netstat
progs vm # 0KB.
progs cat # 0KB.
progs test # 0KB.
ln test [
progs hostname # 0KB.
progs login # 4KB.
progs getty # 4KB.
progs stty # 4KB.
progs w # 0KB.
uptime gives you only the first line of w’s output.
ln w uptime
msg is a lightweight version of dmesg.
progs msg # 0KB.
ln msg dmesg
progs kget # 0KB.
progs reboot # 0KB.
less is smaller than more
progs less # 36KB
ln less more

sysctl is a program for changing kernel variables;
it’s needed, for instance, to enable IP Forwarding.
progs sysctl
progs swapon # 0KB.
progs pwd_mkdb # 0KB.
progs dev_mkdb # 0KB.
progs umount
progs mount_std

progs route # 8KB
If you need an editor ee is as small as they get although it is
at least debatable why you would need an editor in the firewall.
#progs ee # 32KB.
#libs -lncurses

It might be useful to have tcpdump for debugging purposes.
progs tcpdump # 100KB.
special tcpdump srcdir /usr/src/usr.sbin/tcpdump/tcpdump

progs arp # 0KB.
I wouldn’t NFS mount anything on a firewall, but it can be done.
#progs mount_nfs # 0KB.
#ln mount_nfs nfs
progs ping # 4KB.
#progs routed # 32KB.
progs traceroute # 0KB.
ln mount_std procfs
ln mount_std mount_procfs

It’s nice to be able to ssh into your firewall and see how it’s doing.
progs sshd # includes ssh and scp

These programs are needed to control IPFilter.
progs ipf ipfstat ipnat ipmon

72

IPFilter logs using syslog which should be configured to log remotely to a
centralized log server.
progs syslogd

progs chflags

Libraries Needed
libs -ledit -lutil -lmd -lcrypt -lmp -lgmp -lm -lkvm
libs -lmytinfo -lipx -lz -lpcap -lwrap
libs -ltermcap -lgnuregex -ltelnet
libs -lcrypto

The process of selecting the programs for the floppy is basically a trial and error proce-
dure. You think of something you would like to have in the floppy, you add it, the
image turns out to be too big, you think again if you really, really need it (or delete
something else), and so on.

As you can see in the crunch.conf example, the firewall should have as few programs as
possible to accomplish its job. You could strip this list even further, but don’t make the
system completely unusable. You should still be able to login to it and troubleshoot it.

The two directories mfs_tree and floppy.tree will be copied to the MFS and floppy file
systems, respectively. You should have there the minimum set of configuration files
needed for the system to function properly.

In my mfs_tree directory I only have a /etc directory containing a stripped down ver-
sion of the following files:

disktab host.conf profile services
fstab hosts protocols shells
gettytab login.conf rc termcap
group motd remote ttys

The rc file is a special script in PicoBSD. While rc is called by init, just like in any other
UNIX, the shell script overwrites itself during execution. The reason for this is that no
file created in the MFS can be modified without recompiling the kernel. Although you
can modify them in a running system, the changes will be lost if you reboot the
machine. By having a minimal rc in the MFS that only copies the configuration files
from the floppy and rewrites itself, we can achieve the most flexibility for system con-
figuration. The real rc in the floppy file system can be modified by mounting the
floppy on another machine, and it will not be necessary to rebuild either the kernel or
the floppy binary image.

The rc script file that is in the MFS will be something like this:

#!/bin/sh
Special setup for one floppy PICOBSD ###
WARNING!!! We overwrite this file during execution with a new rc file.
Awful things happen if this file's size is > 1024B

stty status '^T'
trap : 2
trap : 3

HOME=/; export HOME
PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin
export PATH
dev="/dev/fd0c" #
trap "echo 'Reboot interrupted'; exit 1" 3

73November 2001 ;login:

While rc is called by init . . .

the shell script overwrites

itself during execution.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Copy from MFS version of the files, and then from FS version.
echo "Reading /etc from ${dev}..."
mount -o rdonly ${dev} /fd
cd /fd; cp -Rp etc root / ; cd / ; umount /fd
cd /etc
#rm files to stop overwrite warning
for i in *.gz; do

if [-f ${i%.gz}]; then
rm ${i%.gz}
fi

done
gzip -d *.gz
pwd_mkdb -p ./master.passwd
echo "Ok. (Now you can remove ${dev} if you like)"
echo " "
. rc
exit 0

In the file system floppy, you should put the configuration files that you expect to
change. For instance, you can put your firewall rules (ipf.conf) and your NAT rules
(ipnat.conf) there if you’re doing NAT. Another file that is usually there is the
master.passwd file used to generate the passwd and db hashes used for authentica-
tion.

Here are the files I have in my floppy.tree /etc directory:

ipf.conf ipnat.conf rc sshd_config
master.passwd resolv.conf syslog.conf

The interesting file here is rc. This rc script is the one that overwrites the rc in the MFS
file system. This file is where I configure the network interfaces, load the firewall rules,
load the NAT rules, start the appropriate daemons like SSH and syslogd, and rebuild
the password files.

#!/bin/sh
mount -a -t nonfs
rm -rf /var/run/*
hostname firewall
ifconfig lo0 inet 127.0.0.1 netmask 0xff000000 up
ifconfig xl0 inet XX.XX.XX.XX netmask 0xffffff00 up
ifconfig xl1 inet YY.YY.YY.YY netmask 0xffffff00 up
route add default ZZ.ZZ.ZZ.ZZ
route add -net 192.168.0.0 192.168.0.1
ipf -Fa -f /etc/ipf.conf
ipnat -FC -f /etc/ipnat.conf
sysctl -w net.inet.ip.forwarding=1
(cd /var/run && { cp /dev/null utmp; chmod 644 utmp; })
sshd -f /etc/sshd_config
syslogd -s
dev_mkdb
cat /etc/motd
exit 0

Since this file is in the floppy file system, changing it is very easy. You only need to
mount the floppy on any UNIX machine and make any modifications you want. Since
the rc file in the MFS overwrites itself with this rc file, your modifications will have an
effect on the firewall host.

74

Another trick is to put a /root directory in the floppy tree with a .ssh/ subdirectory. You
can then store your SSH public keys in the floppy file system and configure SSHD to
use only public key authentication.

After you have all files ready, it’s only a matter of running the PicoBSD configuration
script. The script is in the directory build/ and it’s called picobsd. It has a menu which
lets you modify various parameters and build the binary image of your floppy.

Once you have the floppy image done, you can use dd(1) to transfer it to a real floppy
and boot your firewall from it. Remember to format the floppy first to make sure it
does not have any bad blocks.

Once you have your one floppy firewall operational, there are some things you can try
experimenting with. One of them is the kernel run levels in FreeBSD, and thus
PicoBSD.

There is a variable in the FreeBSD kernel that specifies in which security context the
kernel should operate. The name of the variable is kern.securelevel, and the default is
-1 which means that no security is enabled. The possible values are:

-1 Permanently insecure mode – always run the system in level 0 mode. This is the
default initial value.

0 Insecure mode – immutable and append-only flags may be turned off. All
devices may be read or written subject to their permissions.

1 Secure mode – the system immutable and system append-only flags may not be
turned off; disks for mounted file systems, /dev/mem, and /dev/kmem may not
be opened for writing; kernel modules (see kld(4)) may not be loaded or unloaded.

2 Highly secure mode – same as secure mode, plus disks may not be opened for
writing (except by mount(2)) whether mounted or not. This level precludes tam-
pering with file systems by unmounting them, but also inhibits running
newfs(8) while the system is multi-user.
In addition, kernel time changes are restricted to less than or equal to one sec-
ond. Attempts to change the time by more than this will log the message “Time
adjustment clamped to +1 second.”

3 Network secure mode – same as highly secure mode, plus IP packet filter rules
(see ipfw(8) and ipfirewall(4)) cannot be changed and dummynet(4) configuration
cannot be adjusted.

The MFS and floppy file systems could be built with all files set as immutable, and
right after loading the firewall rules you could switch to run level 3. The only disad-
vantage of this is that once the system is running you can no longer change anything,
but I think that’s as secure as you can get with a firewall.

Conclusion
Although firewalls are usually built using general purpose operating systems, they do
not need all of the programs and utilities that come by default. All that firewalls really
need are the kernel and a couple of programs for configuring network interfaces, load-
ing the rules, etc. We have seen that all of these programs fit nicely in a single 1.44MB
3.5” floppy disk. There is no reason to have all of the extra unused programs in the
disk, even if there is enough space for them. They make it possible to accidentally turn
on an unwanted service. They also give a trespasser a rich development environment
from which to launch further attacks. I believe that eliminating all of these unused
programs makes a firewall more secure. In the case of a break-in, it gives the attacker
an almost unusable system from which no further attack is possible.

75November 2001 ;login:

. . . once the system is

running you can no longer

change anything, but I think

that’s as secure as you can

get with a firewall.

A SECURE OS-BASED FIREWALL ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

