
THE MAGAZINE OF USENIX & SAGE
November 2001 • Volume 26 • Number 7

inside:
BEST PRACTICES

No Plaintext Passwords

by Abe Singer

The Advanced Computing Systems Association &

The System Administrators Guild

&

Special Focus
Issue: Security
Guest Editor: Rik Farrow

83November 2001 ;login:

Introduction
Compromise of a user password is one of the most difficult intrusions to

detect. Historically it has been difficult or impossible to avoid transmission

of passwords in the clear. But the technology now exists to make this possi-

ble, albeit not trivially. The San Diego Supercomputer Center (SDSC) has

managed to eliminate plaintext password transmission, while continuing to

deliver services to a widely distributed user base. While it took some techni-

cal effort, overcoming the human hurdles proved to be more challenging.

This article discusses what solutions we provided and how we managed to

do it without annoying too many people. We have actually added value to

the environment, instead of reducing it.

At SDSC, we have to deal with some interesting issues of scale. We have thousands of
users and very few support staff. We have a wide variety of operating systems, high-
speed networks and high-performance storage systems. Our users expect to be able to
move large amounts of data (terabytes) around, in a reasonable amount of time. They
want to do streaming applications, grid computing, and stuff that has not yet been
invented. In addition to providing computing resources to researchers, we have people
doing research in high-performance computing, networking, and storage. Unlike
many places, most of our users do not work inside networks that we control. They are
spread all over the planet and work for different institutions. This means that our
infrastructure must scale outside of our “trusted” networks.

Because of the nature of our users, and the work done within and outside the Center,
we cannot (and do not want to) mandate homogeneity such as “everyone must use
Outlook for email.” Instead, we focus on supporting protocols, and let the users pick
their clients. We attempt to provide reasonable support for the applications that our
users are already using, instead of requiring them to use the one(s) that we’ve decided
are easy to support. Oh, and by the way, we have not had a root-level compromise
(that we are aware of) on our managed systems in over two years.

How do we do it? Mostly through the following:

* Strong configuration management
* Patch early, patch often
* Strong authentication, and no plaintext passwords, anywhere
* Simple, but strong, access control between “trusted” and “untrusted” networks

We have managed to turn off plaintext passwords and continue to provide support for
almost all of the applications our users have. Additionally, we will provide services for
applications that we don’t support. For instance, we provide IMAP over SSL service,
and support Netscape Mail and Outlook clients. However, if a user has another client
that speaks IMAPS, they are welcome to use it. We just won’t help them with problems
with their client.

The result is that we have an environment where users can get their work done from
anywhere in the world. They can use the software that they need and read their email
with the clients that they like, and we have improved the security of our systems at the
same time.

no plaintext
passwords

NO PLAINTEXT PASSWORDS ●

by Abe Singer

Abe Singer is a com-
puter security man-
ager at the San Diego
Supercomputer Cen-
ter, and occasional
consultant and expert
witness. His current
work is in security
measurement and
security “for the life
of the Republic.”

abe@SDSC.EDU

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Background
Most of the commonly used TCP protocols use plaintext passwords: telnet, the r-com-
mands, ftp, pop, imap, and HTTP basic authentication. Other protocols can use either
plaintext or encrypted passwords but may use plaintext passwords by default.

Effective access control requires strong authentication. This means using authentica-
tion mechanisms which cannot be easily bypassed or subverted through eavesdrop-
ping, cryptanalysis, or brute-force attack.1

An authentication scheme that is highly resistant to brute-force attack or cryptanalysis
can be fundamentally useless if the password can be intercepted. Protection of pass-
words on hosts is reasonably well implemented: both UNIX and Windows provide
encrypted storage of passwords and prevent exposure of the passwords to the users.
However, many network protocols transmit these same passwords in plaintext.

Why is this a problem? Primarily because plaintext passwords can be easily intercepted
via a sniffer. There are dozens of sniffer programs available.2 Some sniffers are smart
enough to filter out just the usernames and passwords, and produce username, remote
host, and password in an easy-to-read format.

As mentioned above, we have not had a root-level compromise on our managed sys-
tems in over two years. But we do have some networks with systems managed by users
or other groups. We have had compromises on those systems, and occasionally we help
investigate intrusions on other systems. Most of the intrusions we’ve seen include the
use of a sniffer.

An intruder may have any number of motives for breaking into a system: running an
IRB “bot,” setting up a “warez” site, or using the system as a cutout to attack other sys-
tems, for example. The intruder typically installs a rootkit, and the rootkit almost
always includes a sniffer. Even when sniffing is not an intruder’s primary motive, the
sniffer is an opportunistic attempt to compromise user accounts on other systems.
Since users often use the same password on multiple systems, an intruder will try the
username and password on various machines, even at different sites, to see what they
can log into.

In one case, a user burned passwords to three different sites, including ours. The user
had set up their own system (on the “user-managed” network) because they suppos-
edly needed to run their own FTP server. They would routinely telnet into the system,
and from there ssh into our site and the two others. Eventually their system was com-
promised (due to an unpatched vulnerability). The intruder used the system to run a
bot but also installed a sniffer. When we found the sniffer log, we saw several user-
names and passwords into multiple sites. We notified the other sites involved and
investigated our managed machines to determine whether or not the intruder had
actually used the passwords (apparently not).

“Switched” networks are not immune to sniffing. Switches sometimes leak informa-
tion. Some switches are not fully switched but are really “switching hubs,” where
groups of ports share data exactly like a hub. Most importantly, most switches behave
like hubs when their MAC tables are overloaded.3

One of the big problems with password compromises is that they are difficult to
detect. Since the intruder logs in with a legitimate username and password, they are
successfully authenticated and look like a legitimate user to the system. A user account
compromise can go undetected for months – in one case we know of, a compromise

. . . most switches behave like

hubs when their MAC tables

are overloaded

84

went undetected for two years! Some detection is possible using user profiling, but this
is cumbersome and inaccurate. We believe that efforts are better spent at eliminating
the opportunity for interception in the first place.

The more effective solution is to either encrypt the password in transmission or
authenticate without password transmission.

The Rollout
About three years ago, SDSC began turning off most plaintext password services. A
year ago we turned off the last, with the exception of a few older systems that we
haven’t yet updated. (The long time frame was partly due to a lack of technology and
partly due to the need to make sure that users were able to make the transition.) These
systems allow plaintext within our trusted networks, but not outside.

We began by enabling SSH and Kerberos services. Users had the option of using Ker-
berized clients or SSH. FTP was enabled via tunneled SSH sessions. We bought 5,000
copies of SecureCRT and several hundred copies of F-Secure SSH for Macintosh to
distribute to users who needed it.

We then announced that plaintext access would be cut off in nine months. We notified
all user via email and mentioned the change in the message-of-the-day and in banners.
All the messages included links to Web pages for information on how to get software
and how to use it. We also periodically sent out reminders.

On the scheduled date, we turned off access to Telnet, rlogin, and FTP. We did this by
changing TCP-wrappers to deny access and display a banner with an explanation and a
URL for more information. Most of our users had already switched. Some of them had
not, but as soon as they tried to log in and saw the rejection message, they had little
choice but to make the appropriate transition. Very few called our help desk, as they
sheepishly realized that we had given them plenty of notice. A few (20 or so) did call.
Most of them had some problems understanding. One user, when asked if he had
read seen our notices, responded, “I never read those things. They never say anything
useful.”

We implemented email solutions as they became available. About a year and a half ago,
we drew a matrix of all the email clients we had to support, the non-plaintext authen-
tication mechanisms they supported, and servers implementing the same. We found
that we could turn off plaintext access to email using a combination of IMAPS, POPS,
APOP, KPOP, and NFS access for mail-reading from managed UNIX systems. We also
found a Web-mail solution (IMHO Webmail)4 to provide users with access to their
email from any SSL-capable Web browser.

Six months later, after appropriate announcements and lead time, we turned off plain-
text email services.

We have also rolled out SecureFTP,5 sftp, and are evaluating Web-based access to user
directories.6

The Technology
We describe here the various solutions we have implemented, with some tips based on
our experience. We are not providing a tutorial on how to implement POP or IMAP
servers. Rather, we discuss what we use to encrypt passwords on these services. Refer-
ences are provided for details of implementation.

85November 2001 ;login:

One user, when asked if he

had read seen our notices,

responded, “I never read

those things. They never say

anything useful”

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Kerberos is a mature,

well-reviewed, open

protocol, having been around

about 15 years.

86

INTERACTIVE ACCESS
For interactive access, we support Kerberos7 and SSH.8

Kerberos works very well. Installing and configuring Kerberos is not trivial, but it is
very easy to use. Kerberos provides strong authentication (both user and host) without
transmitting passwords, and can provide encrypted data transmission. It scales very
well (our KDCs are Sparc5s), has low overhead, and provides redundancy for failover
and remote administration tools. Kerberos is a mature, well-reviewed, open protocol,
having been around about 15 years. See note 7 for a detailed source of information on
running and installing Kerberos.

SSH is a replacement for Telnet which provides interactive shell access, rcp-like file
copying, and the ability to tunnel other protocols across encrypted streams. All data
streams in SSH are encrypted.

We are currently supporting version 1 SSH because, until recently, there were not ver-
sion 2 clients for all of the platforms we have to support (Windows, UNIX/Linux,
Macintosh). We support Kerberos authentication for SSH sessions.

We also support RSA public keys for authentication via SSH. This requires a user to
generate a public-key pair, store the private key on their client machine(s), and install
the public key on the server(s). We have mixed feelings about this option, as it requires
users to keep their private key secure, and users are not known for being good at keep-
ing data secure.

A source for information on various SSH clients can be found in reference 8.

EMAIL
We support a variety of services for email. Our users have Eudora, Netscape Mail, Out-
look, and others.

Our users have to be able to read and send mail from any location. However, we do not
want to be an open relay for the entire world. Our solution involves authenticated
SMTP over SSL, IMAP over SSL (IMAPS), APOP, POP XTND XMIT, HTTPS, POP
over SSL, and KPOP.9

Here is what we support:

Reading Mail Sending Mail

Client Protocol Daemon Protocol Daemon

Eudora APOP qpopper POP XTND XMIT Sendmail, qpopper

Outlook IMAP/SSL UW imapd, sslwrap AUTH SMTP/SSL Sendmail

Netscape IMAP/SSL UW imapd, sslwrap AUTH SMTP/SSL Sendmail

Webmail HTTPS, IMAP Roxen,IMHO, imapd HTTPS Sendmail, Roxen, IMHO

Mutt, Elm, Pine NFS SMTP

Eudora KPOP qpopper

Outlook POP/SSL qpopper, sslwrap

IMAPS and POPS are implemented using sslwrap.10 This is almost trivial to do.

We have a centralized mail hub running Sendmail. We will not relay mail for machines
outside of our network, without authentication. However, users outside our network
who need to send mail have the option of using either authenticated SMTP over SSL,
or the XTND XMIT option of POP. Netscape Mail and Outlook support the former,
Eudora supports the latter.

For UNIX mail clients (pine, elm, mutt) on internal hosts, we provide NFS access to
incoming mail folders. We only allow NFS on “trusted” networks, which are the net-
works which only have hosts that we manage. Since users have to use Kerberos or SSH
to access these hosts, they have already used a strong authentication method to access
the system.

sslwrap is a relatively simple way to encrypt a TCP-based service. To sslwrap a service,
first configure the service to accept connections only on the loopback interface
(127.0.0.1). This can be done easily with TCP-wrappers (and you should be TCP-
wrapping your services anyway). Next, place an entry in inetd for the secure version of
that service (e.g., IMAP uses port 143, IMAPS uses port 993).11

The inetd.conf entry for imap and imaps looks like this:

imap stream tcp nowait root /usr/local/etc/tcpd /usr/local/etc/imapd
imaps stream tcp nowait nobody /usr/local/etc/tcpd /usr/local/etc/imapsd

imapsd is a simple shell script that looks like this:

/usr/local/etc/sslwrap -cert /usr/local/certs/ssl-imap.pem \
-CAfile /usr/local/certs/ca-cert.pem -port 143

The TCP-wrapper configuration for these services looks like this:

imapd: 127.0.0.1: allow
imapd: ALL: rfc931: DENY
imapsd : ALL : rfc931 : ALLOW

The ssl-wrapper negotiates an encrypted session on the “secure” port, then connects
through the loopback device to the original unencrypted service. The remote client
gets an encrypted session, and the local client does not require any modification. The
same can be done to implement POPS with any POP server.

KPOP is not trivial to configure, and Eudora only supports version 4 of Kerberos. The
server must be compiled with Kerberos libraries, and is run on an alternate port with a
command line option to enable Kerberos authentication. We have not had many users
making use of KPOP. Refer to the qpopper documentation for instructions on imple-
mentation.12

APOP uses a challenge-response password hashing mechanism to avoid transmitting
passwords in the clear. When a client connects to the server, the server presents a chal-
lenge string. The client hashes the user’s password with that challenge, and returns the
hash. The server authenticates the client by comparing that hash with its own hash of
the password. In order to implement APOP, qpopper has to keep clear-text copies of
user passwords in its own database, by default /etc/pop.auth. Tools are provided for
managing this password database.

The XTND XMIT feature of qpopper allows mail delivery through the pop server. The
pop server in turn delivers the mail by calling Sendmail locally. This allows us to pre-

87November 2001 ;login:

sslwrap is a relatively simple

way to encrypt a TCP-based

service.

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

vent open mail relaying on our mail server and still enable users to send mail through
their POP clients.

XTMD XMIT also has to be configured on the client. For Windows Eudora clients, this
requires editing a .ini file. For Macintosh clients, it requires that the Esoteric Settings
plug-in be installed.13

Authenticated SMTP over SSL implements the SMTP AUTH feature,14 using SSL to
encrypt the data stream. We implement this feature using Open Sendmail,15 with
SASL16 and the entropy-gathering daemon.17 With Sendmail, the server must be dedi-
cated to authenticated SMTP, so we run a separate mail host just for authenticated
relaying.18 A source for detailed implementation instructions is in this reference.

For users who insist on using other mail clients which do not support the above proto-
cols, we also support SSH-port forwarding.19 Our POP and IMAP servers allow plain-
text authentication via the loopback device. A user can establish an SSH connection to
our mail server and then tunnel any mail client they want. SSH tunneling can be tricky
to do, but it does work.

Finally, we have some users who may not have access to a mail client. They may be
using another person’s machine, in a terminal room in a conference, or at an “Internet
cafe,” for example. In addition to the various client support above, we provide a Web-
based mail client called IMHO (see note 4). The client runs under the Roxen20 Web
server, and talks IMAP to the mail server via localhost.

FILE TRANSFER
For file transfers, we support scp through SSH (version 1), sftp (through SSH version
2), KFTP, and SecureFTP (see note 5).

scp is supported through the SSHD server. However, the scp protocol has a two-giga-
byte file limit, which is problematic for some of our users.

sftp uses a separate binary which is invoked by the SSHD server. An entry in the SSHD
configuration file points to the sftp binary.

KFTP is a Kerberized version of FTP. It uses Kerberos authentication on the command
channel, but data transfers remain plaintext. This is considered a feature by some of
our users.

Many of our users are not concerned with data confidentiality, only data integrity.
Most are researchers using open or published data. Many of them transfer large
amounts of data – sometimes terabytes. In these cases, the overhead of encryption cre-
ates too large a performance problem. At one point in time, our users found that
encryption increased transmission time by a factor of four.

SecureFTP is an ssl-wrapped FTP server, with command line clients and a Java-based
client that can be run from a Web browser. The command channel is encrypted, which
protects passwords during transmission. Like KFTP, the data channel is left unen-
crypted. Any FTP server can be ssl-wrapped, and the Java client can be run from any
operating system (which supports Java). See reference 5 for where to find details.

FILE SHARING
We currently do not allow file sharing outside of our trusted networks. Within our
networks, we provide NFS for UNIX systems, Netbios/SMB for Windows systems, and

. . . the scp protocol has a

two-gigabyte file limit, which

is problematic for some of

our users

88

AppleTalk for Macintosh. We have a handful of centralized file servers where all user
data lives – home directories, project areas, etc.

NFS does not provide user authentication. We only export to trusted hosts, and the
NFS server will only talk to trusted networks.

We use Samba to provide file sharing for the Windows systems. We do this so that we
can export the same data to the Windows systems as we do the UNIX systems. Samba
can authenticate using UNIX passwords, its own password file, or through a Windows
PDC, but password encryption is only available for the latter two methods. We authen-
ticate Samba users against a PDC, which is also used to authenticate Windows logins.
In order to match file ownership properly against a UNIX system, Samba requires that
the UNIX usernames match the Windows usernames, or you must manually maintain
an equivalence list.

We use Netatalk21 to provide AppleTalk file shares similar to how we provide Windows
file shares. Currently this uses plaintext passwords, and is restricted to our Macintosh
networks.

OTHER
We also maintain an anonymous-only FTP site. It is configured anonymous-only so
that users aren’t tempted to use the server for file transfers. All users have an incoming
and outgoing folder that they can use anonymously. This provides a fallback method
of transferring files when authenticated access is unavailable.

PGP software is available for those who wish to use it. We provide version 2 and ver-
sion 5+ software.22

Weaknesses
Our system is not (yet :-]) perfect. There are some known weaknesses, most of which
will be addressed over time.

Our biggest problem is what we call “two-hopping.” A user at a remote site, who does
not have an SSH client on their desk (machine A), will telnet to another system which
does have SSH (machine B), and then SSH into our site. The password into our site is
intercepted by a sniffer between A and B. The intruder then uses the password to SSH
into our site. Sometimes the less-than-clueful user telnets through several machines
before ssh-ing into ours. In some cases, we have alerted the user and site administra-
tion, and changed their passwords, only to have it happen again a few days later. When
asked to install SSH, the user complains that it is too hard, or they don’t have the fif-
teen dollars for a site-licensed copy! (and now there are free versions of SSH available)

Macintosh file sharing via AppleTalk currently sends passwords in plaintext. As men-
tioned above, we expect to move to DoubleTalk and Samba.

Several of the services we implement (e.g., APOP and Kerberos) require access to
stored plaintext passwords (encrypted on disk with a shared key). While this is less
than desirable, the hosts on which these passwords are stored are within our control
and are kept relatively secure. The risk to us is much less than a user storing a plaintext
password on their home computer.

The anonymous-only feature of our FTP server (wu-ftpd) does not reject the login
until after the password is provided. The result is that users who don’t know the server
is anonymous-only will “burn” their password the first time they try to use the service.

89November 2001 ;login:

Our biggest problem is what

we call “two-hopping.”

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

Vol. 26, No. 7 ;login:

Windows password encryption is known to be weak.23 We only use this protocol on
internal networks and limit it to Windows-only networks.

We are also vulnerable to keystroke sniffers. An intruder at a remote site can install a
keystroke sniffer and intercept passwords as they are typed. In our experience, key-
stroke sniffers are rather rare, and our risk is relatively low. The only solution to this
would be one-time passwords or hardware tokens, which for us is not worth the
expense.

Policy
It probably goes without saying that it is important to have policy behind your tech-
nology.

As always, support from management is instrumental. Our management takes security
seriously and has supported our efforts. What has helped us gain that support is show-
ing that we are enabling services, as opposed to denying access. Additionally, we make
sure that management knows what we are doing, and is comfortable using the technol-
ogy, before switching off services. In this way, when the disgruntled big-ego researcher
calls the director to complain about not being able to use Telnet, the response is, “I’m
able to use it, why can’t you?”

We sometimes appeal to ego to encourage recalcitrant users. For instance, when deal-
ing with a researcher, first we’ll find out who their biggest rival is. The conversation
then goes something like this: “Well, Dr. X, Dr. Y [the rival] had no problem installing
and using SSH. Perhaps we could ask one of his grad students to come over and show
you how to use it.” This works more often than you might think.

The other key strategy is to give users plenty of advance warning. We typically give six
months’ to a year’s warning, with email reminders, items in the message-of-the-day,
and banners on services. Even with all this notice, some users will not get the informa-
tion. So we make sure that help-desk staff are prepared to support them. In some
cases, we preemptively help out users who we know will have difficulty.

Clients that store plaintext passwords for the convenience of the user are problematic.
An intruder on a remote machine can pluck these passwords out of the files where
they are stored. We don’t have any (technological) way to prevent users from using
these features. We do ban user storage of plaintext passwords on our managed systems.

Gotchas and Issues
When configuring any encrypted service, first make sure that authentication works
properly without encryption. It can be easy to assume that there is a problem with ses-
sion encryption when the real problem is that authentication is failing.

When enabling encryption, verify that the transmitted passwords are actually
encrypted. Some services can be easily misconfigured, so that you think that passwords
are encrypted when they actually are being sent in plaintext.

Password distribution/management is not trivial. All of these systems require that we
manage user passwords on a variety of systems. We do not use a centralized account
management service (e.g., NIS), because most of them are insecure and/or don’t work
with all of our systems.

We have a home-grown Web-based password changing system, which sets UNIX pass-
words, Kerberos pass-phrases, APOP passwords, and Windows passwords. We do not

90

REFERENCES
1. B. Schneier, Applied Cryptography, 2nd ed.
(John Wiley and Sons, Inc., 1996).

2. SecurityFocus: sniffers,
http://www.securityfocus.com/templates/tools_category.html?category=4&platform=&path=[%20sniffers%20]

3. S. Sipes, “Why Your Switched Network Isn’t
Secure,” http://www.sans.org/newlook/resources/IDFAQ/switched_network.htm, The
SANS Institute, September 10, 2000.

4. S. Wallström, B. Lincoln, IMHO Webmail,
http://www.lysator.liu.se/~stewa/IMHO.

5. G. Cohen, B. Knight, SecureFTP,
http://secureftp.sdsc.edu, 2000.

6. Y. Last, WebRFM,
http://www.geocities.com/SiliconValley/Horizon/7772/webrfm.html, 1999.

7. “Kerberos, the Network Authentication Pro-
tocol,” http://web.mit.edu/kerberos/www/,
September 10, 2000.

8. “OpenSSH for Windows and Mac”,
http://www.openssh.org/windows.html, July 25,
2001.

9. M. Crispin, RFC 2060, “Internet Message
Access Protocol – Version 4rev1,” December
1996; J. Myers, M. Rose, RFC 1939, “Post Office
Protocol – Version 3,” May 1996; A. Freier, P.
Karlton, P. Kocher, “The SSL Protocol Version
3.0,”
http://home.netscape.com/eng/ssl3/draft302.txt,
November 18, 1996.

10. R. Kaseguma, sslwrap,
http://www.rickk.com/sslwrap/, 1999.

11. Protocol Numbers and Assignment Services,
http://www.iana.org/numbers.html, Internet
Assigned Numbers Authority, April 30, 2001.

12. qpopper, http://www.eudora.com/qpopper/.

13. “Email FAQ,”
http://www.netgate.net/html/email_faq.html;
“Changing POP (or other) Port in Eudora,”
http://www.eudora.com/techsupport/kb/1501hq.html.

14. J. Myers, RFC 2554, “SMTP Service Exten-
sion for Authentication,” March 1999.

15. Sendmail, http://www.sendmail.org.

16. J. Myers, RFC 2222, “Simple Authentication
and Security Layer (SASL),” October 1997.

17. EGD, http://www.lothar.com/tech/crypto/.

http://www.securityfocus.com/templates/tools_category.html?category=4&platform=&path=[%20sniffers%20]
http://www.sans.org/newlook/resources/IDFAQ/switched_network.htm
http://www.lysator.liu.se/~stewa/IMHO
http://secureftp.sdsc.edu
http://www.geocities.com/SiliconValley/Horizon/7772/webrfm.html
http://web.mit.edu/kerberos/www/
http://www.openssh.org/windows.html
http://home.netscape.com/eng/ssl3/draft302.txt
http://www.rickk.com/sslwrap/
http://www.iana.org/numbers.html
http://www.eudora.com/qpopper/
http://www.netgate.net/html/email_faq.html
http://www.eudora.com/techsupport/kb/1501hq.html
http://www.sendmail.org
http://www.lothar.com/tech/crypto/.

manage all passwords from a centralized database but explode the passwords out to
their respective systems. It’s not the best system, but it works for us.

Be aware of software that people can install on their desktops on their own, such as
VNC (it can be SSH-wrapped), personal Web servers, FTP servers, etc. We ban these as
a matter of policy, but it is difficult to prevent.

Future Directions
We eventually will replace /bin/login with the Kerberized version. This version will log
users in using their Kerberos pass-phrase, and get a ticket-granting ticket all in one
shot. This will allow us to use the KDC as the central password management system
for UNIX logins. We would like to integrate Windows 2000 into this environment, but
its feasibility remains to be seen.

We are evaluating a Web-based system for users to access our file systems (WebRFM,
see note 6), providing the ability to upload and download files through an encrypted,
authenticated site. The system looks promising.

We have also started looking at OpenAFS24 with Kerberos. AFS provides true user-
authenticated file sharing and can be used effectively for file sharing between different
sites.

Conclusion
Due to the ubiquitous use of sniffers, disabling plaintext passwords is critical for effec-
tive protection of systems. There is no single solution that provides universal access,
but effective service can be provided through a combination of technologies, policy,
and careful user handling.

Thanks to the following people who were involved in the actual implementation: Tom
Guptil, Tom Perrine, Jeff Makey, Cindy Zheng, Haisong Cai, and Dave Savilonis.

For additional documentation see http://security.sdsc.edu/self-help/no-plaintext/.

91November 2001 ;login:

18. B. Bannister, “Implementing Authenticated
SMTP with Sendmail,”
http://security.sdsc.edu/publications/smtp-auth.shtml.

19. “Port Forwarding,”
http://www.ssh.com/products/ssh/administrator30/Port_Forwarding.html, May
2001.

20. Roxen Web Server,
http://www.roxen.com/products/webserver/.

21. Netatalk, http://netatalk.sourceforge.net/.

22. Pretty Good Privacy,
http://web.mit.edu/network/pgp.html.

23. l0phtCrack,
http://www.atstake.com/research/lc3.

24. OpenAFS, http://www.openafs.org/.

NO PLAINTEXT PASSWORDS ●

●

BE

ST
PR

A
C

TI
C

ES
|I

N
TR

U
SI

O
N

D
ET

EC
TI

O
N

| F
O

RE
N

SI
C

S

http://security.sdsc.edu/self-help/no-plaintext/
http://security.sdsc.edu/publications/smtp-auth.shtml
http://www.ssh.com/products/ssh/administrator30/Port_Forwarding.html
http://www.roxen.com/products/webserver/
http://netatalk.sourceforge.net/
http://web.mit.edu/network/pgp.html
http://www.atstake.com/research/lc3
http://www.openafs.org/

