
THE MAGAZINE OF USENIX & SAGE
November 2000 • volume 25 • number 7

{

#
inside:
SECURING THE DNS

The Advanced Computing Systems Association &

The System Administrators Guild

&

THEME ISSUE: SECURITY
edited by Rik Farrow

As our society becomes more and more dependent on the Internet for infor-

mation, communication, and business, the Domain Name System (DNS),

which holds the Internet together, becomes a tasty target for hackers. A

hacker who compromises DNS can divert all traffic destined for one host to

another host without users ever knowing they have been led astray. The

economic impact of such an attack can be huge.

Securing DNS does not stop Web sites from being broken into and defaced, but it does
help to guarantee users that they are actually reaching the Web site they asked for. To be
totally honest, securing the DNS will guarantee that you reach the correct IP address,
but when connecting to this valid IP address, your connection might still be hijacked or
mis-routed due to other weaknesses in the infrastructure. To really secure the Internet
we need end-to-end authentication and encryption of the data sent over a connection.
Securing the DNS via DNSSEC is the first step, as the DNS can then provide a way to
distribute the keys required by any end-to-end security mechanisms. DNS is equally
important for email, copying files, printing, or any application that uses domain names
instead of network addresses.

There are two main points of vulnerability in the DNS system:

■ Server-server updates
■ Client-server communication

The Internet Software Consortium’s BIND implementation addresses these vulnerabili-
ties with separate mechanisms: TSIG/TKEY for server updates and DNSSEC for client-
server lookups. The first allows pairs of servers, such as your master server and its
slaves, to authenticate each other before exchanging data. TSIG/TKEY uses shared-
secret-based cryptography. DNSSEC allows the client not only to authenticate the iden-
tity of a server but also to verify the integrity of the data received from that server. It
uses public key cryptography. We describe each of these two mechanisms in detail and
then look at some of the outstanding issues that are hampering the widespread deploy-
ment of secure DNS zones. Some of the material in this article is adapted with permis-
sion from Nemeth et al., Unix System Administration Handbook, Third Edition, Prentice
Hall PTR, (in press). We assume that the reader is somewhat familiar with DNS
resource records, the DNS naming hierarchy, named (the BIND name-server daemon),
and its configuration file /etc/named.conf.

Securing DNS Transactions with TSIG and TKEY
While DNSSEC (covered in the next section) was being specified, the IETF developed a
simpler mechanism called TSIG (RFC2845) to allow secure communication among
servers through the use of transaction signatures. Access control based on transaction
signatures is more secure than access control based on IP source addresses.

Transaction signatures use a symmetric encryption scheme. That is, the encryption key
is the same as the decryption key. This single key is called a shared-secret key. You must
use a different key for each pair of servers that want to communicate securely. TSIG is
much less expensive computationally than public key cryptography, but it is only
appropriate for a local network on which the number of pairs of communicating
servers is small. It does not scale to the global Internet.

TSIG signatures sign DNS queries and responses to queries, rather than the authorita-
tive DNS data itself, as is done with DNSSEC. TSIG is typically used for zone transfers
between servers or for dynamic updates between a DHCP server and a DNS server.

21November 2000 ;login: SECURING THE DNS ●

by Evi Nemeth

Evi Nemeth is a
member of the
computer science
faculty at the Univer-
sity of Colorado and
a part-time resear-
cher at CAIDA, the
Cooperative Asso-
ciationfor Internet
Data Analysis at the
San Diego Super-
computer Center. She
is about to get out of
the UNIX and net-
working worlds and
explore the real
world on a sailboat.

<evi@cs.colorado.edu>

securing the DNS

●
SE

C
U

RI
TY

TSIG signatures are checked at the time a packet is received and are then discarded;
they are not cached and do not become part of the DNS data. Although the TSIG spec-
ification allows multiple encryption methods, BIND implements only one, the HMAC-
MD5 algorithm.

BIND’s dnssec-keygen utility generates a key for a pair of servers. For example, to gen-
erate a shared-secret key for two servers, serv1 and serv2, use the command

dnssec-keygen -H 128 -h -n serv1-serv2

to create a 128-bit key and store it in the file Kserv1-serv2+157+00000.private. The file
contains the string “Key:” followed by a base-64 encoding of the actual key.

The generated key is really just a long random number. You could generate the key
manually by writing down an ASCII string of the right length and pretending that it’s a
base-64 encoding of something, or by using mimencode to encode a random string.
The way you create the key is not important; it just has to exist on both machines.

Copy the key to both serv1 and serv2 with scp, or cut and paste it. Do not use telnet or
ftp to copy the key; even internal networks may not be secure. The key must be includ-
ed in both machines’ named.conf files. Since named.conf is usually world-readable and
keys should not be, put the key in a separate file that is included in named.conf. For
example, you could put the snippet

key serv1-serv2 {
algorithm hmac-md5 ;
secret "shared-key-you-generated" ;

} ;

in the file serv1-serv2.key. The file should have mode 600 and its owner should be
named’s UID. In the named.conf file, you’d add the line

include "serv1-serv2.key"

near the top.

This part of the configuration simply defines the keys. To make them actually be used
to sign and verify updates, each server needs to identify the other with a keys clause.
For example, you might add the lines

server serv2's-IP-address {
keys { serv1-serv2 ; } ;

} ;

to serv1’s named.conf file and

server serv1's-IP-address {
keys { serv1-serv2 ; } ;

} ;

to serv2’s named.conf file. Any allow-query, allow-transfer, and allow-update clauses in
the zone statement for the zone should also refer to the key. For example:

allow-transfer { key serv1-serv2 ;} ;

When you first start using transaction signatures, run named at debug level 1 (-d1) for
a while to see any error messages that are generated. Older versions of BIND do not
understand signed messages and complain about them, sometimes to the point of
refusing to load the zone.

22 Vol. 25, No. 7 ;login:

Older versions of BIND do

not understand signed

messages and complain about

them, sometimes to the point

of refusing to load the zone.

TKEY is an IETF protocol that BIND 9 implements to allow two hosts to generate a
shared-secret key automatically without phone calls or secure copies to distribute the
key. It uses an algorithm called the Diffie-Hellman key exchange, in which each side
makes up a random number, does some math on it, and sends the result to the other
side. Each side then mathematically combines its own number with the transmission it
received to arrive at the same key. An eavesdropper might overhear the transmission
but will be unable to reverse the math.

Securing Zone Data with DNSSEC
DNSSEC is a set of DNS extensions that authenticates the origin of zone data and veri-
fies its integrity by using public key cryptography. That is, the extensions permit DNS
clients to ask the questions, “Did this DNS data really come from the zone’s owner?”
and “Is this really the data sent by that owner?”

DNSSEC provides three distinct services: key distribution by means of KEY resource
records stored in the zone files, origin verification for servers and data, and verification
of the integrity of zone data. DNSSEC relies upon a cascading chain of trust: The root
servers provide validation information for the top-level domains, the top-level domains
provide validation information for the second-level domains, and so on.

Public key cryptosystems use two keys: one to encrypt (sign) and a different one to
decrypt (verify). Publishers sign their data with a secret “private” key. Anyone can verify
the validity of a signature with a matching “public” key that is widely distributed. If a
public key correctly decrypts a zone file, then the zone must have been encrypted with
the corresponding private key. The trick is to make sure that the public keys you use for
verification are authentic. Public key systems allow one entity to sign the public key of
another, thus vouching for the legitimacy of the key; hence the term “chain of trust.”

The data in a DNS zone is too voluminous to be encrypted with public key cryptogra-
phy – the encryption would be too slow. Instead, since the data is not secret, a secure
hash (e.g., an MD5 checksum) is run on the data and the results of the hash are signed
(encrypted) by the zone’s private key. The results of the hash are like a fingerprint of
the data, and the signed fingerprint is called a digital signature.

Digital signatures are usually appended to the data they authenticate. To verify the sig-
nature, you decrypt it with the public key of the signer, run the data through the same
secure hash algorithm, and compare the computed hash value with the decrypted hash
value. If they match, you have authenticated the signer and verified the integrity of the
data.

In the DNSSEC system, each zone has its own public and private keys. The private key
signs each RRset (that is, each set of records of the same type for the same host). The
public key verifies the signatures and is included in the zone’s data in the form of a
KEY resource record.

Parent zones sign their child zones’ public keys. named verifies the authenticity of a
child zone’s KEY record by checking it against the parent zone’s signature. To verify the
authenticity of the parent zone’s key, named can check the parent’s parent, and so on
back to the root. The public key for the root zone would be included in the root hints
file.

SIGNING A ZONE
Several steps are required to create and use signed zones. First, you generate a key pair
for the zone. For example, in BIND 9,

23November 2000 ;login:

Public key systems allow one

entity to sign the public key

of another, thus vouching for

the legitimacy of the key;

hence the term “chain of

trust.”

●
SE

C
U

RI
TY

SECURING THE DNS ●

dnssec-keygen -a DSA -b 768 -n ZONE mydomain.com.

or in BIND 8,

dnskeygen -D768 -z -n mydomain.com.

The table below shows the meanings of the arguments to these commands.

dnssec-keygen and dnskeygen return the following output:

algorithm = 003
key identifier = 12345
flags = 16641

They also create files containing the public and private keys:

Kmydomain.com.+003+12345.key # public
Kmydomain.com.+003+12345.private # private key

Generating a key with dnssec-keygen can take a long time, especially if your operating
system does not have /dev/random to help with generating randomness. It will ask you
to type stuff and use parameters from your typing speed and pauses to get the random-
ness it needs. It might take five minutes, so don’t get impatient, and keep typing until it
stops echoing dots for each character you type.

The public key is typically $INCLUDEd into the zone file. It can go anywhere after the
SOA record, but is usually the next record after SOA. The DNS key record from the .key
file looks like this:

mydomain.com. IN KEY 256 3 3 BIT5WLkFva53IhvTBIqKrKVgme7...

where the actual key is about 420 characters long.

DNSSEC requires a chain of trust, so a zone’s public key must be signed by its parent to
be verifiably valid. BIND 8 had no mechanism to get a parent zone to sign a child
zone’s key other than out-of-band cooperation among administrators. BIND 9 provides
a program called dnssec-makekeyset to help with this process.

dnssec-makekeyset bundles the keys you want signed (there may be more than just the
zone key), a TTL for the resulting key set, and a signature validity period. For example,
the command

dnssec-makekeyset -t 3600 -s +0 -e now+864000
Kmydomain.com.+003+12345

bundles the public zone key that you just generated with a TTL of 3,600 seconds (one
hour) and requests that the parent’s signature be valid for ten days starting from now.

24 Vol. 25, No. 7 ;login:

Argument Meaning

For dnssec-keygen (BIND 9)

-a DSA Uses the DSA algorithm
-b 768 Creates a 768-bit key pair
-n ZONE mydomain.com. Creates keys for a zone named mydomain.com

For dnskeygen (BIND 8)

-D768 Uses the DSA algorithm, with a 768-bit key
-z Creates a zone key
-n mydomain.com. Creates keys for a zone named mydomain.com

dnssec-makekeyset creates a single output file, mydomain.com.keyset. You must then
send the file to the parent zone for signing. It contains the public key and signatures
generated by the zone keys themselves so that the parent can verify the child’s public
key. Here is the mydomain.com.keyset file generated by the dnssec-makekeyset com-
mand above:

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SIG KEY 3 2 3600 20000917222654 (

20000907222654 64075 mydomain.com.
BE8V7nicLOARc0PRvBhBMeX7JXL3TdCUBY2Ah313pg+
Wq4THOq0U28Q=)

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCnV
57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfboVma
8IGmONId2CSfryeuLdLLwW15bhhPHdw+nXWPFB7MY5s
bGLkokpuWmyHXkdWThr3A1ICWBs5GQRg8wMaIGOL4d
VSUWefQ/g4hGchEq12kieYVE4j9PE5p3uX2BNe0CIGNf05
c1VD6kYIn5Ip4hQZGwVL8hpi6NJsxp2U/krtS7GpHN55WA
fRY+joQ4AalY3f+AtapkGdV3lHjr1a7LG0qAgFAhNJ2jqKvoB
nXbWKKY9AlzMjsyleRdtRqn+V8vY30uTCkaaykrWhtu02QZ
pIGuwx294RudyA3gOQgR1aJ+X6BfUmXm2msmmHq//vL
mr)

In BIND 9, the parent zone uses the dnssec-signkey program to sign the bundled set of
keys:

dnssec-signkey mydomain.com.keyset Kcom.+003+56789

This command produces a file called mydomain.com.signedkey, which the parent
(com) sends back to the child (mydomain.com) to be included in the zone files for
mydomain.com. In BIND 8, the parent uses the dnssigner command.

The signedkey file is similar to the keyset file, except that the SIG record is associated
with the com zone. Note, in our example, we generated the key for the com zone to use
in the dnssec-signkey command; not the real one.

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SIG KEY 3 2 3600 20000917222654 (

2000090722265431263com.BAM/WIdPIwY6b4Aj8a5PZ
1UHwfo/qKl65HIlpitdvF2UgKaNJVEMSY4=)

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCn
V57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJ

...

Once you have obtained the parent’s signature, you are ready to sign the zone’s actual
data. Add the records from the signedkey file to the zone data before signing the zone.
The signing operation takes a normal zone data file as input and adds SIG and NXT
records immediately after every set of resource records. The SIG records are the actual
signatures, and the NXT records support the signing of negative answers.

Here is a before and after example for our mydomain.com zone:

25November 2000 ;login:

●
SE

C
U

RI
TY

SECURING THE DNS ●

$TTL 3600 ; 1 hour
; start of authority record for fake mydomain.com
@ IN SOA mydomain.com. hostmaster.mydomain.com. (

2000083000 ; Serial Number
7200 ; Refresh - check every 2 hours for now
1800 ; Retry - 30 minutes
604800 ; Expire - 1 week (was 2 weeks)
7200) ; Minimum - 2 hours for now

KEY 256 3 3 (
BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCnV57TBIe
HkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfboVma8IGmONId2
CSfryeuLdLLwW15bhhPHdw+nXWPFB7MY5sbGLkokpuWmyH
XkdWThr3A1ICWBs5GQRg8wMaIGOL4dVSUWefQ/g4hGchEq1
2kieYVE4j9PE5p3uX2BNe0CIGNf05c1VD6kYIn5Ip4hQZGwVL8h
pi6NJsxp2U/krtS7GpHN55WAfRY+joQ4AalY3f+AtapkGdV3lHjr1
a7LG0qAgFAhNJ2jqKvoBnXbWKKY9AlzMjsyleRdtRqn+V8vY30u
TCkaaykrWhtu02QZpIGuwx294RudyA3gOQgR1aJ+X6BfUmXm
2msmmHq//vLmr)

IN A 128.138.243.151
IN NS @
IN NS anchor
IN NS zamboni
IN MX 10 @
IN MX 30 anchor
IN LOC 40 00 23.5 N 105 15 49.2 W 1900m

localhost IN A 127.1
anchor IN A 128.138.242.1

IN A 128.138.243.140
IN MX 10 anchor
IN MX 99 @

awesome IN A 128.138.236.20
IN MX 10 awesome
IN MX 99 @

zamboni IN A 128.138.199.7
IN A 128.138.243.138
IN MX 10 zamboni
IN MX 99 @

In BIND 8, you use the dnssigner program in the contrib directory of the distribution
to sign a zone; in BIND9, you use the dnssec-signzone command. For example, the
command

dnssec-signzone mydomain.com Kmydomain.com.+003+12345 # BIND 9

reads the zone file mydomain.com and produces a signed version using the private key
in the Kmydomain.com+003+12345.private file. The resulting file is called mydomain.
com.signed. If you forget to include the key file on the command line, you get an
obscure error message about an “inappropriate ioctl for device” from the module
entropy.c.

It can take a long time to sign a zone, especially if your system does not have /dev/
random, because it asks you to type a few sentences for each signature it generates.
Quite a pain after a while. If you try to fool it by cutting and pasting text in, it makes
you type more till it feels there has been sufficient randomness generated. Here is a
portion of the resulting signed zone file for mydomain.com:

26 Vol. 25, No. 7 ;login:

$ORIGIN .
$TTL 3600 ; 1 hour
mydomain.com IN SOA mydomain.com. hostmaster.mydomain.com. (

2000083000 ; serial
7200 ; refresh (2 hours)
1800 ; retry (30 minutes)
604800 ; expire (1 week)
7200 ; minimum (2 hours)
)

SIG SOA 3 2 3600 20001008023531 (
2000090802353164075mydomain.com.BFN/8mIRX/M
W01kMoe+7qId63LB7Tbb9t98/NnfY16WQgItk03FDXTk
=)

NS mydomain.com.
NS anchor.mydomain.com.
NS zamboni.mydomain.com.
SIG NS 3 2 3600 20001008023531 (

20000908023531 64075 mydomain.com.
BAkrse9uTdANxbGA0kaWkjiippeCCUBcvHGR7zDOt+k
STeGbVfJy8iw=)

SIG LOC 3 2 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BIARXt5zqiPy08Ca7T7AiUCau1PJEWlv3uHTQci0f3g5nlr
kw1exaqM=)

SIG MX 3 2 3600 20001008023531 (
2000090802353164075mydomain.com.
BEHMocIH/p1cL0FlQTz1cfEZzqHHHf1BBLSy2FtU1H6v
5DXZy9zkyOw=)

SIG A 3 2 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BGKrpBrAkCtHcuzX57heH5sS0MYnFRC3MqeRMf3i881
Y3ZD+Q+E9r24=)

SIG KEY 3 2 3600 20000917222654 (
20000907222654 31263 com.
BAM/WIdPIwY6b4Aj8a5PZ1UHwfo/qKl65HIlpitdvF2UgK
aNJVEMSY4=)

$TTL 7200 ; 2 hours
SIG NXT 3 2 7200 20001008023531 (

20000908023531 64075 mydomain.com.
BDvw+QgYBcmIXeS4qMyMNDtB8K+sX5Jb2zKMRCcQ
4uFySJJVQ/s6A1w=)

NXT anchor.mydomain.com. (A NS SOA MX SIG
KEY LOC N XT)

$TTL 3600 ; 1 hour
KEY 256 3 3 (

BIT5WLkFva53IhvTBIqKrKVgme7r/tbnBTRkLDDKjGYCn
V57TBIeHkZSgbJ7jfYtuTLv4a2OIF5jJDoHD8LEFKNJfbo
Vma8IGmONId2CSfryeuLdLLwW15bhhPHdw+nXWPFB
7MY5sbGLkokpuWmyHXkdWThr3A1ICWBs5GQRg8w
MaIGOL4dVSUWefQ/g4hGchEq12kieYVE4j9PE5p3uX2
BNe0CIGNf05c1VD6kYIn5Ip4hQZGwVL8hpi6NJsxp2U/
krtS7GpHN55WAfRY+joQ4AalY3f+AtapkGdV3lHjr1a7L
G0qAgFAhNJ2jqKvoBnXbWKKY9AlzMjsyleRdtRqn+V8v
Y30uTCkaaykrWhtu02QZpIGuwx294RudyA3gOQgR1aJ
+X6BfUmXm2msmmHq//vLmr)

27November 2000 ;login:

●
SE

C
U

RI
TY

SECURING THE DNS ●

A 128.138.243.151
MX 10 mydomain.com.
MX 30 anchor.mydomain.com.
LOC 40 0 23.500 N 105 15 49.200 W 1900.00m 1m

10000m 10m
$ORIGIN mydomain.com.
anchor SIG MX 3 3 3600 20001008023531 (

20000908023531 64075 mydomain.com.
BFEtOCT+y0dQPx7Am7gpxD9SjEl+USuaE7qExUOrX22
X7wjqJFJbqdo=)

SIG A 3 3 3600 20001008023531 (
20000908023531 64075 mydomain.com.
BDwfBm2j6xFLoXttzvtuln9ZD+9qUWBAwSBJVB06WJ/
Rc6+F1ubj/fs=)

$TTL 7200 ; 2 hours
SIG NXT 3 3 7200 20001008023531 (

20000908023531 64075 mydomain.com.
BIMwxryI8NyfWupBe4JJmeRCCj1/FnyPjxAuBOQKTRX
X4FsaDrma1X4=)

NXT awesome (A MX SIG NXT)
$TTL 3600 ; 1 hour

A 128.138.242.1
A 128.138.243.140
MX 10 anchor
MX 99 mydomain.com.

...

The signedkey file from the parent domain .com gets slurped into the processing if it is
in the same directory as the zone file being signed (see the SIG KEY record associated
with com toward the top of the example). There is quite an increase in the size of the
zone file, roughly a factor of three in our example. The records are also reordered.

A SIG record contains a wealth of information:

■ The type of record set being signed
■ The signature algorithm used (in our case, it’s 3, the DSA algorithm)
■ The TTL of the record set that was signed
■ The time the signature expires (as yyyymmddhhssss)
■ The time the record set was signed (also yyyymmddhhssss)
■ The key identifier (in our case 12345)
■ The signer’s name (mydomain.com.)
■ And finally, the digital signature itself

To use the signed zone, change the file parameter in the named.conf zone statement for
mydomain.com to point at mydomain.com.signed instead of mydomain.com. In BIND
8, you must also include a pubkey statement in the zone statement; BIND 8 verifies the
zone data as it loads and so must know the key beforehand. BIND 9 does not perform
this verification. It gets the public key from the KEY record in the zone data and does
not need any other configuration.

Whew! That’s it.

NEGATIVE ANSWERS
Digital signatures are fine for positive answers like “Here is the IP address for the host
anchor.mydomain.com, along with a signature to prove that it really came from mydo-

28 Vol. 25, No. 7 ;login:

main.com and that the data is valid.” But what about negative answers like “No such
host”? Such negative responses typically do not return any signable records.

In DNSSEC, this problem is handled by NXT records that list the next record in the
zone in a canonical sorted order. If the next record after anchor in mydomain.com is
awesome.mydomain.com and a query for anthill.mydomain.com arrived, the response
would be a signed NXT record such as

anchor.mydomain.com. IN NXT awesome.mydomain.com (A MX SIG NXT)

This record says that the name immediately after anchor in the mydomain.com zone is
awesome, and that anchor has at least one A record, MX record, SIG record, and NXT
record. The last NXT record in a zone wraps around to the first host in the zone. For
example, the NXT record for zamboni.mydomain.com points back to the first record,
that of mydomain.com itself:

zamboni.mydomain.com. IN NXT mydomain.com. (A MX SIG NXT)

NXT records are also returned if the host exists but the record type queried for does
not exist. For example, if the query was for a LOC record for anchor, anchor’s same
NXT record would be returned and would show only A, MX, SIG, and NXT records.

We have described DNSSEC as of BIND v9.0.0rc5 (September 2000). Judging from the
significant changes that occurred during the beta cycle, this information may not be
current for long. As always, consult the documentation that comes with BIND for the
exact details.

Outstanding Issues
Now that we have described the two mechanisms available in BIND for securing the
DNS, let’s look at some of the potential problems.

CACHING AND FORWARDING

DNSSEC is at odds with the notions of caching and forwarders. DNSSEC assumes that
queries contact the root zone first and then follow referrals down the domain chain to
get an answer. Each signed zone signs its children’s keys, and the chain of trust is
unbroken and verifiable. When you use a forwarder, however, the initial query is divert-
ed from the root zone and sent to your forwarding server for processing. A caching
server that is querying through a forwarder will recheck signatures, so responses are
guaranteed to be secure. But, for the query to succeed, the forwarder must be capable of
returning all the SIGs and KEYs needed for the signature checking. Non-DNSSEC
servers don’t know to do this, and the RFCs ignore the whole issue of forwarding.

BIND 9 implements some extra features beyond those required by RFC2535 so that a
BIND 9 caching server can use DNSSEC through a BIND 9 forwarder. If you are using
forwarders and want to use DNSSEC, you might have to run BIND 9 throughout your
site.

Unfortunately, those busy sites that use forwarders and caching are probably the sites
most interested in DNSSEC. Alas, the standards writers didn’t quite think through all of
the implications for the other parts of the DNS system.

PUBLIC KEY INFRASTRUCTURE

DNSSEC also relies on the existence of a public key infrastructure that isn’t quite a real-
ity yet. There is no smooth way to get the parent to sign a child’s keys; we cannot yet
send mail to the hostmaster@com and get signed keys back. A public key infrastructure

29November 2000 ;login:

DNSSEC is at odds with the

notions of caching and

forwarders.

●
SE

C
U

RI
TY

SECURING THE DNS ●

is needed for other applications too, such as IPSec (a secure version of the IP protocol)
or e-commerce. DNSSEC is the first step in the chain of a series of security enhance-
ments being deployed on the Internet.

The private key for the root zone is essential for the whole process to work. It must be
used whenever the root zone changes and needs to be re-signed. Therefore it must be
accessible. What do we do if the private root key is lost or stolen? Generating a new key
pair is fast, but distributing it to millions of DNS servers isn’t. How do we change keys?
There must be some period of time during which both the old key and the new one are
valid if caching is to work. How do we plan for changing important keys – the root, the
key for the COM zone, etc.? How do we engineer the switchover to not destabilize the
network? If the root key is built into the software, then a compromise implies that
every DNS server out there must be manually touched and changed. The disruption to
the network would be worse than the damage that whoever stole the root key could do.

SIGNING BIG ZONES

The COM zone is over 2GB. It is typically updated twice a day. But with current hard-
ware and software-signing the COM zone takes several days. An incremental mecha-
nism for re-signing a zone is built into the current BINDv9 distribution. Re-signing,
when not much has changed, takes about 5% of the time to do the original signing. We
are within striking distance of being able to maintain a signed copy of the COM zone.

The folks at NLnet Labs (<http://www.nlnetlabs.nl/dnssec>) have experimented with
signing the top-level DE, NL, ORG, and COM zones. Some of their results are shown
below:

DE full zone 13 hours FreeBSD 3.4 PC
DE delegation zone 4 hours FreeBSD 3.4 PC
ORG full zone 42 hours* Red Hat Linux 6.2, DEC/Compaq Alpha
COM delegation zone 50 hours Red Hat Linux 6.2, DEC/Compaq Alpha

* It took 2 hours to re-sign after 1 record changed

The COM zone snapshot included 12 million delegations and was sorted before signing
(three hours with the standard UNIX sort command). The process used 9GB of virtual
memory, and it took an additional nine hours to write the signed zone out to disk.

NLnet Labs is currently running an experiment on DNSSEC issues in a special domain
called NL.NL. They are building tools to automate the signing of subdomain keys and
helping people get their domains secured.

PERFORMANCE

Signed zones are bigger. Signed answers to queries are bigger. UDP, the default trans-
port protocol used by DNS, has a limitation that makes the maximum packet size 512
bytes in the default case. If an answer is greater than 512 bytes, a truncated answer
comes back in a UDP packet and the client re-asks the query using TCP. TCP is slower
and requires more network traffic. It’s unclear whether the current servers for COM
could keep up with the query rate if a large portion of the DNS traffic were TCP.

Verifying signatures also costs CPU time and memory; the cost is about one-twentieth
of the cost of signing. The actual rates for both signing and verifying depend on the
encryption algorithm used, with DSA-512 the fastest (signing about 135 domains/sec.
on a 500Mhz FreeBSD PC) and RSA-1024 the slowest (17 domains/sec.). DSA-768, a
popular algorithm, is in the middle at 62 domains/sec.

30 Vol. 25, No. 7 ;login:

NLnet Labs is currently

running an experiment on

DNSSEC issues in a special

domain called NL.NL. They

are building tools to

automate the signing of

subdomain keys and helping

people get their domains

secured.

http://www.nlnetlabs.nl/dnssec

Transaction signatures (TSIG/TKEY) use less CPU time and network bandwidth than
do public key authentication methods, but they guarantee only that you know where
your responses came from, not that the responses are correct. A combination of a TSIG
relationship with a server known to do full DNSSEC might provide a reasonable degree
of security. It is not possible to have a TSIG relationship with every server you might
ever want to talk to, since TSIG relationships must be manually configured.

Conclusions
The ISC BIND version 9 contains an initial set of tools for sites to begin securing their
DNS. However, the public key infrastructure and automated mechanisms for a child
zone to have its key signed by its parent are not yet in place. Look for DNSSEC to be
fully deployable in the near future – it is the key ingredient in a public key infrastruc-
ture that can be used by any application requiring authentication, security, or privacy.
Folks with very sensitive data (banks, e-commerce sites, military installations, etc.)
might want to start experimenting with DNSSEC now, at least within the corporate
intranet.

31November 2000 ;login:

Look for DNSSEC to be fully

deployable in the near future.

●
SE

C
U

RI
TY

SECURING THE DNS ●

