
2 ; LO G I N : vO L . 3 4, N O. 2

R i k F a R R o w

musings
Rik is the Editor of ;login:.

rik@usenix.org

W h e r e W a s I ? O h y e a h , I n s a n D I e g O
again, but this time for OSDI. OSDI and
SOSP are the two big operating system
conferences in the US, and I’ve particularly
enjoyed being able to attend OSDI. I sat in
the second row during all sessions, listening
intently. In this issue, I’ve worked with the
authors for two OSDI papers to share some
of what I learned, and I asked researchers at
the University of Rochester to write a survey
article about transactional memory (TM).

You may not have heard of TM (unless you are old
enough to remember Transcendental Meditation),
but TM may become very important in both hard-
ware and programming languages in the near fu-
ture. As Dave Patterson said during his keynote at
USENIX Annual Tech in 2008, multicore is here.
Multicore processors have not just arrived, they are
the clear path forward in increasing processor per-
formance, and TM looks like a good way to make
parallel programming techniques accessible to peo-
ple besides database and systems programmers.

Locks

Mutual exclusion (mutex) locks have been the tech-
nique of choice for protecting critical sections of
code. You may recall past ;login: articles about re-
moving the “big lock” from Linux or FreeBSD ker-
nels. The big lock refers to having one lock that
insures that only one thread can be running within
the locked code at a time. Having one big lock is
inefficient, as it blocks parallel execution of key
kernel code.

Over time, system programmers refined locking by
replacing one big lock with fine-grained locks—
locks that protect much smaller code segments.
Programmers have to work carefully, because hav-
ing multiple locks can result in code that deadlocks
when one locked section requires access to a mutex
for another already locked resource, which in turn
requires access to the first locked section.

TM replaces locking with transactions, where the
results of an operation are either committed atomi-
cally (all at once) or aborted. Within a processor’s
ABI there are precious few atomic operations, as
these play havoc with instruction pipelines. These
operations are useful for implementing mutexes,
but not for handling transactions that will span the
much larger blocks of code found in critical sec-
tions of locked code.

In Shriraman et al. you will learn of the various techniques in hardware, in
software, and in mixed approaches to support TM. Hardware approaches are
faster but inflexible and limited in scope. Software approaches are painfully
slow, as they must emulate hardware features, and that also adds consider-
ably to the amount of memory involved in a transaction.

As I was reading this article, I found myself wanting to reread Hennesey and
Patterson [1] about caches and cache coherence. If you don’t have access to
this book, Wikipedia has a very decent entry on caches [2]. Many TM ap-
proaches rely on tags added to caches for their operation, and the tags them-
selves are related to cache coherency.

Recall that only registers can access data within a single processor clock
cycle. Level 1 (L1) caches provide more memory than registers, but access-
ing the data requires multiple clock cycles. As the caches become larger (L2
and L3 caches), the number of clock cycles increases because of the hard-
ware involved in determining whether a particular cache contains valid data
for the desired memory address.

In single-threaded programs and programs that do not explicitly share
memory, coherency issues do not arise. Only one thread has access to each
memory location. But in multi-threaded programs and programs that share
memory, the caches associated with a core, such as L1 cache, will contain
data that needs to be consistent with the data found in the rest of the mem-
ory system. Cache coherency systems handle this by tagging each cache
block with status, such as exclusive, shared, modified, and invalid. Processor-
level hardware then manages coherency between the different caches by up-
dating an invalided cache block when it is accessed, for example.

Shriraman et al.’s favored solution involves extending coherency mecha-
nisms to support flexible TM. I like this article, as it is a thorough survey of
the approaches to TM, as well as a clear statement of the issues, such as how
TM can be an easier mechanism for programmers to use that avoids dead-
lock and approaches the performance of fine-grained locks.

Although parallel programming is largely the domain of systems, databases,
and some gaming programmers, the wider use of multicore processors sug-
gests that more programmers who require high performance will be looking
to add parallelism to their code. TM appears to be a workable approach to
writing efficient and easy-to-debug parallel code.

Memory and Syscalls

The next two articles don’t go as deeply into the use of processor features.
Gupta et al. consider the use of sharing portions of pages of memory as well
as compressing memory. VMware ESX can share identical pages of mem-
ory, something that occurs as much as 40% of the time when homogeneous
guests are running within VMs. By extending sharing to partial pages and
by compressing rarely used pages, Difference Engine can save much more
memory, allowing more VMs to run on the same system with an increase in
throughput.

Xax, described in “Leveraging Legacy Code for Web Browsers,” relies on the
system call interface for isolating a process. The system call interface is the
gateway linking kernel services such as file system access, allocating mem-
ory, and communications with the network. Only the operating system has
access to these hardware-mediated services, so it is possible to isolate a pro-
cess effectively by interposing on system calls. During the paper presenta-
tion, I found myself wondering about this, but further reflection and a few

; LO G I N : A pr I L 20 0 9 MusI N Gs 3

4 ; LO G I N : vO L . 3 4 , N O. 2

words with the paper’s presenter, Jon Howell, helped me recall that the sys-
tem call mechanism is inviolable because of hardware features—not just the
trap instruction, but also memory management.

Dave Beazley gets into the nitty-gritty of Python 3. I had heard Guido van
Rossum talk about this new version of Python back in the summer of 2007,
and even then he was talking about how older Python programs will not run
unmodified under the new version. Dave explains, with examples, some of
the reasons for the departure from backward compatibility while also show-
ing exactly what pitfalls await those who venture unprepared into the new
version.

Rudi van Drunen begins a series of articles on hardware, starting with the
basics of electricity. If you find yourself wondering just how much voltage
will drop along a run of 12-gauge wire or what exactly is meant by three-
phase power, you will want to read this article. A must-read for anyone de-
signing or overseeing machine rooms or even just racks of systems.

To go back to the beginning of this issue, immediately following these
 Musings, Mark Burgess expresses his misgivings (putting it mildly) about
the “new” rage, cloud computing. Perhaps I should be writing “a new buzz-
word,” as the cloud really isn’t all the new, nor particularly shiny white,
 either.

We also have the usual array of columns, and I am not going to attempt to
introduce them this issue. There are many more book reviews than usual
this time around, including reviews of several programming books.

Finally, we have the reports on OSDI and some co-located workshops.

When it is time to write this column, I often go back and read past columns
to get myself into the “write” mood (pun intended). I noticed how often I
have written about operating systems and security (or lack thereof), won-
dering what a secure yet usable operating system might look like. As you
will have noticed, we still don’t have secure systems, and that goal appears
as elusive as ever. But we do have steps that may lead us to more flexible
systems that will include some steps toward better security, such as the iso-
lation mechanism seen in Xax, as well as clever hacks, such as Difference
Engine and forward-thinking designs, such as FlexTM. I find that I like
computer systems research as much as ever, and I am proud to be part of the
community that does this work.

referenceS

[1] J.L. Hennesey and D.A. Patterson, Computer Architecture, Fourth Edition
(San Francisco: Morgan Kaufman, 2006), Section 4.2.

[2] http://en.wikipedia.org/wiki/CPU_cache.

