o
o ®
THE MAGAZINE OF USENIX & SAGE
, ‘ November 2000 e volume 25 e number 7

THEME ISSUE: SECURITY

edited by Rik Farrow

inside:

CORRELATING LOG FILE.ENTRIES

USENIX & SAGE

The Advanced Computing Systems Association &
The System Administrators Guild

by Steve Romig

Steve Romig is in
charge of the Ohio
State University
Incident Response
Team, which provides
incident response
assistance, training,
consulting, and
security auditing.

<romig@net.ohio-state.edu>

correlating log file
entries

| have often needed to peruse log files from different systems while investi-
gating computer crime, performance issues, and other odd happenings — and
I've learned a few tricks that I'd like to share with you. The general princi-
ples will apply to most investigations, but I'll draw my examples mostly from
the UNIX and incident-response worlds with which | am most familiar.

I’ve written most of this while sitting at Camp Ohio, a 4-H camp, where I'm volunteer-
ing as a counselor for my church’s junior high summer camp. Trying to write an article
on such a technical subject between archery and setting up a campfire and night time
zip line is an interesting challenge (a zip line is where you jump off a tower suspended
below a cable by pulley and harness and ride the cable down to the ground some dis-
tance away — imagine doing that in the dark!) Between my co-counselor Marco and
myself we had more computing power with us than the rest of the camp combined, but
amazingly our cabin still didn’t win the “geekiest cabin” award the day that was the
theme for cabin clean-up. Maybe if we had had a working Internet connection . . .

Let’s suppose that you are investigating a compromised computer, and you are fortu-
nate enough to have tracked the activity back to the source and have access to all of the
systems involved. In our case, a suspect used his home computer to connect to the
Internet through our modem pool using a stolen account. Once on the Internet, he
used a variety of tools to probe for and break into victim hosts for various purposes.
(See Figure 1.)

One common goal in these sorts of investigations is to recon-
struct a chronological record of events and a list of other facts.

pr | PC pe Once we have done that, we develop one or more theories that
account for this history and set of facts. If we are working on the
| I side of the prosecution in a computer-crime investigation, our
'E';I.ﬂjlbp CHHCP p‘rin}e theory would l.)e some.thing along the lines of “the butlef
o did it with mstream in the kitchen.” If we are working on the side
Ciwsadl of the defense, our theory might be “the prosecution’s theory

Roaied
Network

Sorver

didn’t account for this and that evidence that shows that the but-
ler couldn’t have done it.” The supporting evidence and these the-
ories are presented before the court and the jury (“the trier of
fact”) is called upon to determine whether the prosecution has
sufficiently proven its case or not. Obviously, how well we can
construct the record of events and fit the pieces together has great
bearing on the outcome of the investigation.

We need to consider several issues. First, we need to be proficient
at finding the evidence. If you can’t find the evidence in the first

38

Figure 1

place, you'll have a hard time fitting it into your reconstructed
chain of events. We also need to understand what the evidence
actually means. If we misunderstand the evidence, then either our reconstruction will
be wrong or we’ll create faulty theories that explain the evidence. Finally, we need to
understand how to piece evidence from different sources together to create a cohesive
reconstruction. If we know where the evidence can be found, what it means, and how it
fits together, then we’ll be well on our way to reconstructing the chain of events. Note
that I am totally ignoring issues concerning preservation of evidence for use in a civil
or criminal trial. Sorry!

Vol. 25, No. 7 ;login:

Know Where the Evidence Is

I won’t dwell on this here — full treatment of the subject is way beyond the scope of this
short article. In general, this means that you have to know where evidence pertaining to
your case might be, and then look to see whether you can actually find it. For instance,
in our example investigation, we might find evidence in the following locations (look

back at Figure 1):

Think about the components involved in
the incidents you are investigating — what
information might they contain? If you
don’t know enough about them, it doesn’t
hurt to find an expert and ask questions.
Many people fail in their investigations
because they fail to ask questions about
the components involved and thereby miss
important evidence.

What the Evidence Means

It is relatively easy to understand where
the evidence might lie. Draw a block dia-
gram of the system under investigation
and consider each component in turn —
that at least gets you a high level view.
Understanding what the evidence actually
means is trickier. For one thing, it involves

Home system

Phone system

Modem pool

Networks

Victim and intermediate hosts

Dial scripts, dial logs, files containing output from
exploit tools, lists of compromised hosts, etc.

Phone traces or pen registers

TACACS, TACACS+, or RADIUS authentication
logs

logs of network activity, such as Cisco Netflow logs
or from the use of tools like Argus

Syslog records showing access to network services
through TCP wrappers or other means; login
records such as utmp, wtmp, wtmpx (or in syslog
if you are smart enough to use loginlog, a program
that transcribes wtmp entries to syslog); processes
running on the system (and the associated memo-
ry, binaries, network connections, and files); free
and slack space on the filesystem, and so on.

a deeper understanding of the component systems involved. At the very least, we need
to understand how the evidence is created or compiled — for instance, knowing that the
UNIX login program (and some others, like sshd) updates the wtmp/wtmpx/utmp logs

and under what circumstances.

Knowing what the evidence means helps us avoid conclusions that aren’t logically sup-

ported by the evidence. For example (and pardon me if this seems simplistic), a

TACACS log entry that indicates that the “romig” account logged in means just that —
the “romig” account was used to log in. It does not prove that the owner of the account
was the one who used the account to log in, although the theory that “Steve Romig, the
owner of the romig account, used it to log in at this time” is consistent with this evi-

dence. Similarly, a DHCP (Dynamic Host Configuration Protocol) server log that

shows that a host with a particular MAC address had a lease for a given IP address does
not mean that that host was the only host using that IP address during that time peri-
od; it just means that this host held the lease. The theory that “this host held the lease
for this IP address at the time and used that address to probe the victim” is consistent
with the lease evidence, but the lease evidence doesn’t conclusively prove this theory,

since there are other plausible theories that are also consistent with this evidence.

Understanding what the evidence means also helps us recognize
potential blind spots. One modem pool that I worked with used a
pair of authentication servers handling authentication requests in a
round-robin fashion. This meant that log entries pertaining to
login/logout events for any given terminal server port could be
found in the logs from either server. If we only looked at the records
from authentication server A (see Figure 2), we might mistakenly
conclude that the “romig” account was used to authenticate the ses-

authentication authentication
time server A server B
1:02:12 login - romig
1:10:32 logout
1:10:56 login - farrow
1:26:09 logout

sion that spans 1:15:21 (the time that some nefarious Internet crime

November 2000 ;login:

CORRELATING LOG FILE ENTRIES

Figure 2: Login/logout events for a single port on

a terminal server.

SECURITY

39

40

occurred, which we traced back to this terminal server port). Note that in this example
the logout records do not name the associated account name that goes with the corre-
sponding login records. You need to merge and sort the logs from both servers before
you can reconstruct an accurate history of login/logout events.

Again, don’t be afraid to get help from an expert.

How It Fits Together

When we conduct an investigation we collect bits and pieces of information from vari-
ous sources. These sources vary in completeness and in reliability. The real point to this
article is to talk about how to correlate the pieces together. When we do this we com-
monly run into several problems.

TIME-RELATED ISSUES

First, let’s talk about the time-related issues. Most log files include some sort of time-
stamp with each record, which can be used to correlate entries from several logs against
one another. One common problem we run into when correlating logs from different
hosts together is that the clocks on those hosts may not be synchronized to the same
time, let alone the correct time. You can sometimes infer this clock offset from the logs
themselves. If the shell history file for my account on host A shows me running “telnet
B” at time T1, but the TCP wrapper log on host B shows the Telnet connection at T2,
then we can conclude that the clock offset between host A and host B is roughly T2-T1
(assuming they are in the same time zone). It isn’t always possible to infer this offset
directly, since there can be a significant lag between events in different logs (see below).

It is also important to know the time zone that each log was recorded in. Unfortunate-
ly, the timestamps in many logs do not include the time zone. Get into the habit of
sending time-zone and clock-correction information when you send logs to others, and
request the same when you ask others to send logs to you. I generally like to express
time zones as offsets from GMT, since that is more universally understood and is less
ambiguous than some of the common abbreviations.

Event lag is the difference in times between related events in different types of logs. For
example, suppose that someone connects from host A to host B using Telnet and logs
in. A Cisco Netflow log containing the traffic between A and B will record the time T
that traffic to port TCP/23 (typically Telnet) on host B was first seen. If host B uses
TCP wrappers to log access to the Telnet service, the log entries for that entry will
probably have a timestamp very close to T. However, there can be a considerable delay
between when a person is presented with a login prompt and when she actually com-
pletes the authentication process, which is when the wt np record would be created. So
I might see a NetFlow entry indicating attempts to connect to the Telnet service at
13:02:05, a TCP wrapper entry at 13:02:05, and a login entry at 13:02:38, 33 seconds
later.

Event lag is important because often our only means of correlating entries from differ-
ent logs together is through their timestamps. Unfortunately, since the amount of lag is
often variable, we can’t always correlate events specifically by starting time or even
duration since the session in the network-traffic log would last longer than the login
session. However, we can use session duration and starting time to eliminate false cor-
relations — a login session that lasts 0:23:32 wouldn’t (usually) match a phone session
that lasts only 0:05:10. We can sometimes use the ending time of a session to make
closer correlations, since the ending events often match up more closely in time. For
example, logging out of a host you connected with telnet usually ends the Telnet ses-

Vol. 25, No. 7 ;login:

sion and its associated network traffic, so the logout event and the end of network traf-
fic in the NetFlow log would be very close chronologically.

Sometimes logs are created in order of the ending time of a session, instead of the start
time. This can lend further confusion to the correlation process. Log entries for Cisco
Netflow logs are created when the “flow” of traffic ends. UNIX process accounting logs
are created when the associated process ends. It is easy to misinterpret such logs, since
important information may be buried much later in the log.

Figure 3 shows the process accounting records corresponding to a line account tsitir(: duration command
login shell where someone ran Is, cat, and then a shell script that

ran egrep and awk. Note that the sh processes corresponding to ttyp1 romig 12:32:28 00:00:07 Is

the login session and the shell script that was run show up after ttyp1 romig 12:33:02 00:00:05 cat
the processes started from within those shells. If you were just ttyp1 romig 12:33:45 00:00:03 egrep
casually reading the log, however, you might miss this — I know I ttypl romig 12:33:45 00:00:04 awk
have on several occasions, and was very confused until I realized ttypl romig 12:33:45 00:00:04 sh
my mistake. Note that not all systems provide tools that print

process accounting records in this format — the basic data is there ttyp1 romig 12:20:12 00:10:02 sh

in the file, but you might have to write some software to winkle it Figure 3: Process accounting records.

out!

We can often can use the time bounds on one session to “focus in” on smaller portions
of other logs. For example, if the modem-pool authentication records show a login ses-
sion starting at 07:12:23 and lasting for 00:12:07, we can narrow our search through
things like process accounting logs and other logs on target systems to just that time
range (assuming that we’ve corrected for clock offsets and time zone). That’s fairly
straightforward, and we do this sort of bounding naturally. What may not be obvious is
that we cannot always do this. Most of the log entries associated with a login session on
a host should fall within the start and end times of that session. However, it is easy to
leave a process running in the background so that it will persist after logout (using
nohup), in which case its process accounting records will not be bounded by the login
session.

MERGING LOGS

We sometimes have to merge logs made on different systems together to build a com-
plete picture. For instance, on some occasions we have set up authentication servers
that operate in parallel, in which case logout records may not be left on the same server
that handled the corresponding login record. The Ohio State University now has two
different routers that handle traffic to different parts of the Internet. There are some
hosts where network traffic goes out through one router and returns through the sec-
ond (due to asymmetric routing). If we are looking through Cisco Netflow logs for
traffic, we now need to be careful to merge the logs together so that we have a more
complete record of network activity. This can also be an issue in cases where we have
multiple SMTP servers (records of some email will be here, some there) and for Web
Pproxy servers.

RELIABILITY

Logs vary in the degree to which they can be relied upon to be accurate recordings of
“what happened.” Their reliability hinges on issues like the ownership and mode of the
log files themselves. For instance, the utmp and wtmp logs on some UNIX systems are
world-writable, meaning that anyone on the system could modify their contents. We
are also dependent on the integrity of the system pieces that generate the logs. If those
subsystems have been compromised or replaced, the logs that they generate may not be

November 2000 ;login: CORRELATING LOG FILE ENTRIES

SECURITY

41

42

Sometimes it isn't what
we find in the log that is
interesting, but what we
don't find.

a complete or accurate portrayal. If an intruder has replaced the login binary with a
“rootkit” version that doesn’t record login entries for certain users, then the login logs
will naturally be incomplete.

In other cases, the accuracy of the logs is subject to the security of the network proto-
cols used for transporting the messages. Syslog and Cisco Netflow logs are both sent
using UDP (the User Datagram Protocol), which makes no provisions to ensure that all
data sent will be received. In these cases the logs can easily be incomplete, in the sense
that records that were sent from the source were never received by the server that made
the record that we are examining. This also means that it is relatively easy to create false
log entries by directing carefully crafted UDP packets with spoofed source addresses to
the log servers.

We can help guard against the dangers of incomplete or incorrect logs by correlating
events from as many sources as possible. We will still have to adjust our theories to
account for discrepancies among the logs, but at least these discrepancies will be more
visible. This is especially true in the cases where system processes on a host have been
modified or replaced by an intruder.

IP ADDRESS AND HOST NAME PROBLEMS

We need to realize that IP addresses can be spoofed and recognize cases where this is
likely and cases where it is unlikely. (For example, spoofing is common in flooding
attacks and rare for straight Telnet connections.) There is also a variety of games that
people can play to steal domains, poison the caches on DNS servers, and otherwise
inject false information into address/name lookups.

Unfortunately, many subsystems resolve the IP addresses that they “know” into names
using DNS, and then only log the resolved names, which may not be correct. So we also
need to recognize that the host names that we see in log files may not represent the cor-
rect source of the traffic that generated the log message. It’s generally best for log mes-
sages to include both the IP address and the name that it was resolved to, rather than
one or the other. If I had to choose one, I would choose the IP address, since that’s
more correct in most contexts (in the sense that the subsystem “knows” that it saw traf-
fic with a source IP address of A.B.C.D, and we can’t know whether the resolved host
name for that is correct).

RECOGNIZE WHAT'S MISSING

Sometimes it isn’t what we find in the log that is interesting, but what we don’t find. If
we see NetFlow data showing a long-lasting Telnet session to a host but no correspon-
ding login entry for that time period, this should naturally raise the suspicion that the
login entries are incomplete (or that the NetFlow data was incorrect). If a shell history
file shows that someone unpacked a tar archive in /dev/ — but we cannot find /dev/ on
the system — then someone has either deleted it or it is being hidden by a rootkit of
some sort.

Some Comments on Specific Logs
I have a few parting comments about some of the logs that we commonly work with, in
light of the issues that I've addressed in this article.

PHONE LOGS

I don’t know whether the phone companies do anything to synchronize the clocks used
for timestamping phone trace logs; past experience shows that they are usually close to

Vol. 25, No. 7 ;login:

correct, but are usually off by a minute or two. Note also that there can be significant
event lag between the start of a phone connection and the start of an authenticated ses-
sion on the modem pool that someone is connecting to (or start of activity in other
logs). The easiest way to match calls to login sessions and other logs is by narrowing
down the search by very rough time constraints and especially by call duration. We
tend to have many short dialup sessions and relatively few long sessions, and so it is
generally easier for us to match login sessions against longer phone calls, since they are
“more unique” than the shorter calls. For example, there are few calls that last at least
2:31:07, but many that last at least 00:05:21.

UTMP, UTMPX, WTMP, AND WTMPX LOGS

Apart from the reliability concerns mentioned above, on some UNIX systems you also
run into problems that are due to the fact that the wtmp and utmp files truncate the
source host name (for remote login sessions) to some limited size. This obscures the
source host name if it is long. One way to help address this is to use other sources (like
TCP wrapper or network traffic logs) to try to determine the correct host name.

UNIX PROCESS-ACCOUNTING RECORDS

One problem with process accounting records is that they only contain the (possibly
truncated) name of the binary that was executed, and not the full pathname to the file.
Consequently, to find the binary that belongs to a process accounting record, we need
to search all attached filesystems for executable files with the same name. If there is
more than one file, it may not be possible to specifically determine which binary was
executed. In the case of shell scripts, the name of the interpreter for the script is record-
ed (e.g., Perl, sh, ksh), but the name of the script isn’t recorded at all.

In some cases we can infer the name of the executable on the basis of other records,
such as shell history files and by examining the user’s PATH environment-variable set-
tings. If we see from a user’s shell history file that a command named “blub” was run at
a given time, and a search of attached filesystems reveals a shell script named “blub” in
a directory that lies in their “PATH,” we can reasonably correlate the file with the shell
history file entry and the process accounting record for the shell that was invoked to
interpret the contents of “blub.” We should be able to make further correlations
between the contents of the script “blub” and the process accounting record if the
script executes other programs on the system. This is especially true if the sequence of
commands executed is unique, or the commands are not commonly used in other
places. Note that the most we can say in these cases is that the process accounting
records are consistent with running the script “blub.” We cannot prove directly from
the process accounting records that the script was what generated those log entries —
for instance, a different script named “blub” might have been run, and then deleted or
renamed.

UNIX SHELL HISTORY FILES

Some UNIX shell history files are timestamped — otherwise, it can be very difficult to
match these records to other events, such as process accounting records. Note, of
course, that shell history files are typically owned by the account whose activity they
record, and so are subject to editing and erasure. You should be able to match the
events depicted in the shell history file against the process accounting records and
sometimes against others, like logs of network traffic, timestamps on files in the local
filesystem, and so on. The shell history is written when each shell exits, so overlapping
shells can obfuscate the record. (History is written by the last to exit. . . .)

Note that the most we can
say in these cases is that the
process-accounting records
are consistent with running
the script “blub.”

November 2000 ;login: CORRELATING LOG FILE ENTRIES

SECURITY

43

There's a wealth of
information available in
other logs on a system,
especially if the log levels

have been tweaked up by a

knowledgeable administrator.

44

SYSLOG, NT EVENT LOGS, AND OTHER TIMESTAMPED LOGS

There’s a wealth of information available in other logs on a system, especially if the log
levels have been tweaked up by a knowledgeable administrator. Take note of my cau-
tions above about correlating log entries by timestamps and about the reliability of the
logs. It is ideal if you can log to a secure logging host so that an intruder can’t easily
modify previously logged events. This is easy to do with syslog, and fairly easy to do
with NT event logs using both commercial and free software. There’s even software that
allows you to “transcribe” NT event-log entries to a syslog server. One thing to beware
of — with syslog, the timestamp that appears on the entries in the log file is the time
that the entry was received by the local machine according to its own clock, not the
clock of the machine that the log entries come from. That’s generally a good thing,
since you've hopefully taken pains to synchronize your syslog host’s clock to “real time.”
However, it can cause confusion if you try to correlate those log entries to other events
from the original host, since there may be a clock offset between that host and the sys-
log host.

OTHER SOURCES THAT WE HAVEN'T TALKED ABOUT

There’s a wealth of information that can potentially be found on the local host — bina-
ries, source code, output from commands run, temporary files, tar archives, contents of
memory of various processes, access and modification times for files and directories,
files recovered from the free and slack space on the filesystems, information about
active processes, network connections and remote filesystem mounts at the time of the
incident, etc. You need to hunt for these and fit them into your reconstruction of the
history of the event. For most of this information, unless you have access to more
detailed logs (e.g., timestamped shell history files or tcpdump captures of the Telnet
session where the intruder did his work), a lot of this reconstruction will necessarily be
informed guesswork. Suppose we find a process running on a UNIX host and run Isof
on it. (Isof lists the file handles that a process has open — very handy for investigations
where processes have been left running.) If Isof reveals that this process has open net-
work connections, we might be able to correlate these against entries from network
traffic logs based on the time, the host’s IP address, the remote IP address, the IP proto-
col type, and the UDP or TCP port numbers (if applicable).

Take-Home Lessons

There are a few practices you can follow to improve the condition of your logs and
make it easier to correlate them against one another. First, turn your logging on and log
a reasonable amount of data (both in quality and in quantity). Disks are cheap these
days, so you can afford to both log more and retain it longer. It is always a good idea to
forward copies of your logs to a secure log server — this is easy to do with both syslog
and NT event logs. Synchronize your clocks to a common source — if you don’t want to
synchronize them to an external source, you can at least set up a fake internal source
and synchronize them using the network time protocol. If you have a choice, log IP
addresses in addition to (or instead of) the host name that corresponds to the address —
the host name might be more meaningful to you, but the IP address is more correct.
Finally, secure your systems so that you don’t have to do these sorts of investigations
often!

Vol. 25, No. 7 ;login:

