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I N C R E A S I N G  C P U  P E R F O R M A N C E  W I T H 
faster clock speeds and ever more complex 
hardware for pipelining and memory ac-
cess has hit the brick walls of power and 
bandwidth. Multicore CPUs provide the way 
forward but also present obstacles to using 
existing operating systems design as they 
scale upwards. Barrelfish represents an ex-
perimental operating system design where 
early versions run faster than Linux on the 
same hardware, with a design that should 
scale well to systems with many cores and 
even different CPU architectures.

Barrelfish explores the design of a multikernel 
operating system, one designed to run non-shared 
copies of key kernel data structures. Popular cur-
rent operating systems, such as Windows and 
Linux, use a single, shared operating system image 
even when running on multiple-core CPUs as well 
as on motherboard designs with multiple CPUs. 
These monolithic kernels rely on cache coherency 
to protect shared data. Multikernels each have their 
own copy of key data structures and use message 
passing to maintain the correctness of each copy.

In their SOSP 2009 paper [1], Baumann et al. 
describe their experiences in building and bench-
marking Barrelfish on a variety of Intel and AMD 
systems ranging from four to 32 cores. When these 
systems run Linux or Windows, they rely on cache 
coherency mechanisms to maintain a single image 
of the operating system. This is not the same thing 
as locking, which is used to protect changes to data 
elements which themselves consist of data struc-
tures, such as linked lists, that must be changed 
atomically. In monolithic kernels, a change to a 
data element must be visible to all CPUs, and this 
consistency gets triggered when a CPU attempts 
to read or write this data in its own cache. Cache 
consistency mechanisms prevent the completion of 
this read or write if the cache line is invalid, and 
also mean that execution may be paused until the 
operation is complete.

In a multikernel, each CPU core runs its own ker-
nel and maintains its own data structures. When a 
kernel needs to make a change to a data structure 
(e.g., memory page tables) that must be coordinated 
with kernels running on other cores, it sends mes-
sages to the other kernels.

I asked Timothy Roscoe of the Systems Group at 
ETH Zurich if he could answer a few questions 
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about Barrelfish, working in a manner similar to Barrelfish, using asynchro-
nous messaging. Before I begin the interview, Mothy wanted me to point out 
that the development of Barrelfish involves a very large team of people, and 
he is just one person among many working on this very complex project. 
You can learn more about this team by visiting the Barrelfish Web site, 
http://www.barrelfish.org/.

Farrow: Barrelfish maintains separate kernel state, and this seems to me to 
be one of the key differentiators from monolithic kernels.

Roscoe: Actually, this is not quite, but nearly, true: monolithic kernels 
started with a single shared copy of kernel state, and to a limited extent they 
have started to replicate or partition this state to reduce memory contention 
on multiprocessors. Solaris is probably the most advanced version of this. 
The model, however, remains one of a single image managing the whole ma-
chine, with the replication and/or partitioning of kernel state as an optimiza-
tion.

In a multikernel, this is the other way around. No kernel state at all is 
shared between cores by default, and so consistency must be maintained 
by explicitly sending messages between cores, as in a distributed system. 
The model is one of replicated or partitioned data which is accessed the 
same way as one would access replicas in a distributed system. In particu-
lar, depending on the consistency requirements, changing some OS state 
may be a two-phase operation: a core requests a change and, at some point 
in the future, gets confirmation back that every other core has agreed to it, 
or, alternatively, that it conflicted with some other proposed change and so 
didn’t happen.

In principle, we could share kernel data between cores in Barrelfish, and 
this might be a good idea when the cores are closely coupled, such as when 
they share an L2 or L3 cache or are actually threads on the same core. We 
also intend to do this at some point, but the key idea is that the model is of 
replicated data, with sharing as a transparent optimization. In traditional 
kernels it’s the other way around.

Farrow: Barrelfish has a small CPU driver that runs with privilege, and a 
larger monitor process that handles many of the tasks found in a monolithic 
operating system. Barrelfish is not a microkernel, as microkernels share a 
single operating system image, like much larger monolithic kernels. Barrel
fish does seem to share some characteristics of microkernels, such as run-
ning device drivers as services, right?

Roscoe: You’re right that every core in Barrelfish runs its own CPU driver, 
which shares no memory with any other core. Also, every core has its own 
monitor process, which has authority (via capabilities) to perform a num-
ber of privileged operations. Most of the functionality you would expect to 
find in a UNIX kernel is either in driver processes or servers (as you would 
expect in a microkernel) or the distributed network of monitor processes.

Farrow: The SOSP paper talks about a system knowledge base (SKB) that 
gets built at boot time using probes of ACPI tables, the PCI bus, CPUID 
data, and measurement of message passing latency. Could you explain the 
importance of the SKB in Barrelfish?

Roscoe: The SKB does two things. First, it represents as much knowledge as 
possible about the hardware in a subset of first-order logic—it’s a Constraint 
Logic Programming system at the moment. This, as you say, is populated 
using resource discovery and online measurements. Second, because it’s 
a reasoning engine, the OS and applications can query it by issuing con-
strained optimization queries.
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This is very different from Linux, Solaris, or Windows: traditional OSes 
often make some information about hardware (such as NUMA zones) avail-
able, but they often over-abstract them, the format of the information is ad 
hoc, and they provide no clean ways to reason about it (resulting in a lot of 
non-portable complex heuristic code). The SKB is not a magic bullet, but it 
drastically simplifies writing OS and application code that needs to under-
stand the machine, and it means that clients can use whatever abstractions 
of the hardware are best for them, rather than what the OS designer thought 
useful.

We currently build on ARM, x86_64, x86_32, and Beehive processors. 
We’re currently also porting to Intel’s recently announced SCC (Single-chip 
Cloud Computer), which is a somewhat unconventional variant of x86_32.

One interesting feature of Barrelfish is that you don’t really “port” the OS 
to a different architecture; rather, you add support for an additional CPU 
driver. Since CPU drivers and monitors only communicate via messages, 
Barrelfish will in principle happily boot on a machine with a mixture of dif-
ferent processors.

Farrow: While reading the paper, I found myself getting confused when you 
discussed how a thread or process gets scheduled. Could you explain how 
this occurs in Barrelfish?

Roscoe: Well, here’s one way to explain this: Barrelfish has a somewhat 
different view of a “process” from a monolithic OS, inasmuch as it has a con-
cept of a process at all. It’s probably better to think of Barrelfish as dealing 
with “applications” and “dispatchers.”

Since an application should, in general, be able to run on multiple cores, and 
Barrelfish views the machine as a distributed system, it follows that an ap-
plication also, at some level, is structured as a distributed system of discrete 
components which run on different cores and communicate with each other 
via messages.

Each of these “components,” the representative of the application on the 
core, so to speak, is called a “dispatcher.” Unlike a UNIX process (or thread), 
dispatchers don’t migrate—they are tied to cores. When they are desched-
uled by the CPU driver for the core, their context is saved (as in UNIX), but 
when they are rescheduled, this is done by upcalling the dispatcher rather 
than resuming the context. This is what Psyche and Scheduler Activations 
did, to first approximation (and K42, which is what we took the term “dis-
patcher” from, and Nemesis, and a few other such systems).

Farrow: So how do you support a traditional, multi-threaded, shared-mem-
ory application like OpenMP, for example?

Roscoe: Well, first of all, each dispatcher has, in principle, its own virtual 
address space, since each core has a different MMU. For a shared-memory 
application, clearly these address spaces should be synchronized across the 
dispatchers that form the application so that they all look the same, where-
upon the cache coherence hardware will do the rest of the work for us. We 
can achieve this either by messages or by sharing page tables directly, but 
in both cases some synchronization between dispatchers is always required 
when mappings change.

As an application programmer, you don’t need to see this; the dispatcher li-
brary handles it. Incidentally, the dispatcher library also handles the applica-
tion’s page faults—another idea we borrowed from Nemesis and Exokernel.

Application threads are also managed by the dispatchers. As long as a 
thread remains on a single core, it is scheduled and context-switched by the 
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dispatcher on that core (which, incidentally, is a much nicer way to imple-
ment a user-level threads package than using signals over UNIX). Note that 
the CPU driver doesn’t know anything about threads, it just upcalls the 
dispatcher that handles these for the application, so lots of different thread 
models are possible.

To migrate threads between cores (and hence between dispatchers), one dis-
patcher has to hand off the thread to another. Since the memory holding the 
thread state is shared, this isn’t too difficult. It’s simply a question of making 
sure that at most one dispatcher thinks it owns the thread control block at a 
time. The dispatchers can either do this with spinlocks or by sending mes-
sages.

Farrow: Why should a multikernel work better than a monolithic kernel on 
manycore systems? In your paper, you do show better performance than a 
Linux kernel when running the same parallel tasks, but you also point out 
that the current Barrelfish implementation is much simpler/less functional 
than the current Linux kernel.

Roscoe: Our basic argument is to look at the trends in hardware and try to 
guess (and/or influence) where things are going to be in 10 years.

The main difference between a multikernel like Barrelfish and a monolithic 
OS like Linux, Windows, or Solaris is how it treats cache-coherent shared 
memory. In monolithic kernels, it’s a basic foundation of how the system 
works: the kernel is a shared-memory multi-threaded program. A multiker-
nel is designed to work without cache-coherence, or indeed without shared 
memory at all, by using explicit messages instead.

There are four reasons why this might be important:

First, cache-coherent shared memory can be slower than messages, even on 
machines today. Accessing and modifying a shared data structure involves 
moving cache lines around the machine, and this takes hundreds of ma-
chine cycles per line. Alternatively, you could encode your operation (what 
you want to be done to the data structure) in a compact form as a message, 
and send it to the core that has the data in cache. If the message is much 
smaller than the data you need to touch, and the message can be sent ef-
ficiently, this is going to be fast.

“Fast” might mean lower latency, but more important is that cores are gener-
ally stalled waiting for a cache line to arrive. If instead you send messages, 
you can do useful work while waiting for the reply to come back. As a result, 
the instruction throughput of the machine as a whole is much higher, and 
the load on the system interconnect is much lower—there’s just less data 
flying around.

Ironically, in Barrelfish on today’s hardware, we mostly use cache-coherent 
shared memory to implement our message passing. It’s really the only mech-
anism you’ve got on an x86 multiprocessor, aside from inter-processor inter-
rupts, which are really expensive. Even so, we can send a 64-byte message 
from one core to another with a cost of only two interconnect transactions 
(a cache invalidate and a cache fill), which is still much more efficient than 
modifying more than three or four cache lines of a shared data structure.

The second reason is that cache-coherent shared memory can be too hard to 
program. This sounds counterintuitive—it exists in theory to make things 
easier. It’s not about shared-memory threads vs. messages per se either, 
which is an old debate that’s still running. The real problem is that hardware 
is now changing too fast, faster than system software can keep up.



; LO G I N :  A PRI L  201 0	 TH E BA RRE LFI SH MU LTI K E RN E L :  A N I NTE RV I EW WITH TI MOTH Y ROSCO E	 21

It’s a bit tricky, but ultimately not too hard to write a correct parallel pro-
gram for a shared-memory multiprocessor, and an OS is to a large extent a 
somewhat special case of this. What’s much harder, as the scientific comput-
ing folks will tell you, is to get good performance and scaling out of it. The 
usual approach is to specialize and optimize the layout of data structures, 
etc., to suit what you know about the hardware. It’s a skilled business, and 
particularly skilled for OS kernel developers.

The problem is that as hardware gets increasingly diverse, as is happening 
right now, you can’t do this for general mass-market machines, as they’re all 
too different in performance characteristics. Worse, new architectures with 
new performance tradeoffs are coming out all the time, and it’s taking longer 
and longer for OS developers, whether in Microsoft or in the Linux com-
munity, to come out with optimizations like per-core locks or read-copy-
update—there’s simply too much OS refactoring involved every time.

With an OS built around inter-core message passing rather than shared 
data structures, you at least have a much better separation between the 
code responsible for OS correctness (the bit that initiates operations on the 
replicated data) and that responsible for making it fast (picking the right 
consistency algorithm, the per-core data layout, and the message passing 
implementation). We’d like to think this makes the OS code more agile as 
new hardware comes down the pipe.

The third reason is that cache-coherent shared memory doesn’t always help, 
particularly when sharing data and code between very different processors. 
We’re beginning to see machines with heterogeneous cores, and from the 
roadmaps this looks set to continue. You’re going to want to optimize data 
structures for particular architectures or cache systems, and a one-size-fits-
all shared format for the whole machine isn’t going to be very efficient. The 
natural approach is to replicate the data where necessary, store it in a format 
appropriate to each core where a replica resides, and keep the replicas in 
sync using messages—essentially what we do in Barrelfish.

The fourth reason is that cache-coherent shared memory doesn’t always 
exist. Even a high-end PC these days is an asymmetric, non-shared memory 
multiprocessor: GPUs, programmable NICs, etc., are largely ignored by mod-
ern operating systems and are hidden behind device interfaces, firmware 
blobs, or, at best, somewhat primitive access methods like CUDA.

We argue that it’s the job of the OS to manage all the processors on a ma-
chine, and Barrelfish is an OS designed to be able to do that, regardless of 
how these programmable devices can communicate with each other or the 
so-called “main” processors.

It’s not even clear that “main” CPUs will be cache-coherent in the future. 
Research chips like the Intel SCC are not coherent, although they do have 
interesting support for inter-core message passing. I’m not sure there’s any 
consensus among the architects as to whether hardware cache-coherence 
is going to remain worth the transistor budget, but there’s a good chance 
it won’t, particularly if there is system software whose performance simply 
doesn’t need it.

Barrelfish is first and foremost a feasibility study for this—knowing what we 
now do about how to build distributed systems, message passing, program-
ming tools, knowledge representation and inference, etc., we can build an 
OS for today’s and tomorrow’s hardware which is at least competitive with 
current performance on a highly engineered traditional OS and which can 
scale out more effectively and more easily in the future.

If a handful of researchers can do that, it sounds like a result.
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