
; LO G I N : A PRI L 201 0	 TH E BA RRE LFI SH MU LTI K E RN E L : A N I NTE RV I EW WITH TI MOTH Y ROSCO E	 17

R I K F A R R O W

the Barrelfish multi-
kernel: an interview
with Timothy Roscoe
Timothy Roscoe is part of the ETH Zürich Computer
Science Department’s Systems Group. His main
research areas are operating systems, distributed
systems, and networking, with some critical theory
on the side.

troscoe@inf.ethz.ch

Rik Farrow is the Editor of ;login:.

rik@usenix.org

I N C R E A S I N G C P U P E R F O R M A N C E W I T H
faster clock speeds and ever more complex
hardware for pipelining and memory ac-
cess has hit the brick walls of power and
bandwidth. Multicore CPUs provide the way
forward but also present obstacles to using
existing operating systems design as they
scale upwards. Barrelfish represents an ex-
perimental operating system design where
early versions run faster than Linux on the
same hardware, with a design that should
scale well to systems with many cores and
even different CPU architectures.

Barrelfish explores the design of a multikernel
operating system, one designed to run non-shared
copies of key kernel data structures. Popular cur-
rent operating systems, such as Windows and
Linux, use a single, shared operating system image
even when running on multiple-core CPUs as well
as on motherboard designs with multiple CPUs.
These monolithic kernels rely on cache coherency
to protect shared data. Multikernels each have their
own copy of key data structures and use message
passing to maintain the correctness of each copy.

In their SOSP 2009 paper [1], Baumann et al.
describe their experiences in building and bench-
marking Barrelfish on a variety of Intel and AMD
systems ranging from four to 32 cores. When these
systems run Linux or Windows, they rely on cache
coherency mechanisms to maintain a single image
of the operating system. This is not the same thing
as locking, which is used to protect changes to data
elements which themselves consist of data struc-
tures, such as linked lists, that must be changed
atomically. In monolithic kernels, a change to a
data element must be visible to all CPUs, and this
consistency gets triggered when a CPU attempts
to read or write this data in its own cache. Cache
consistency mechanisms prevent the completion of
this read or write if the cache line is invalid, and
also mean that execution may be paused until the
operation is complete.

In a multikernel, each CPU core runs its own ker-
nel and maintains its own data structures. When a
kernel needs to make a change to a data structure
(e.g., memory page tables) that must be coordinated
with kernels running on other cores, it sends mes-
sages to the other kernels.

I asked Timothy Roscoe of the Systems Group at
ETH Zurich if he could answer a few questions

18	 ; LO G I N : VO L . 35, N O. 2

about Barrelfish, working in a manner similar to Barrelfish, using asynchro-
nous messaging. Before I begin the interview, Mothy wanted me to point out
that the development of Barrelfish involves a very large team of people, and
he is just one person among many working on this very complex project.
You can learn more about this team by visiting the Barrelfish Web site,
http://www.barrelfish.org/.

Farrow: Barrelfish maintains separate kernel state, and this seems to me to
be one of the key differentiators from monolithic kernels.

Roscoe: Actually, this is not quite, but nearly, true: monolithic kernels
started with a single shared copy of kernel state, and to a limited extent they
have started to replicate or partition this state to reduce memory contention
on multiprocessors. Solaris is probably the most advanced version of this.
The model, however, remains one of a single image managing the whole ma-
chine, with the replication and/or partitioning of kernel state as an optimiza-
tion.

In a multikernel, this is the other way around. No kernel state at all is
shared between cores by default, and so consistency must be maintained
by explicitly sending messages between cores, as in a distributed system.
The model is one of replicated or partitioned data which is accessed the
same way as one would access replicas in a distributed system. In particu-
lar, depending on the consistency requirements, changing some OS state
may be a two-phase operation: a core requests a change and, at some point
in the future, gets confirmation back that every other core has agreed to it,
or, alternatively, that it conflicted with some other proposed change and so
didn’t happen.

In principle, we could share kernel data between cores in Barrelfish, and
this might be a good idea when the cores are closely coupled, such as when
they share an L2 or L3 cache or are actually threads on the same core. We
also intend to do this at some point, but the key idea is that the model is of
replicated data, with sharing as a transparent optimization. In traditional
kernels it’s the other way around.

Farrow: Barrelfish has a small CPU driver that runs with privilege, and a
larger monitor process that handles many of the tasks found in a monolithic
operating system. Barrelfish is not a microkernel, as microkernels share a
single operating system image, like much larger monolithic kernels. Barrel
fish does seem to share some characteristics of microkernels, such as run-
ning device drivers as services, right?

Roscoe: You’re right that every core in Barrelfish runs its own CPU driver,
which shares no memory with any other core. Also, every core has its own
monitor process, which has authority (via capabilities) to perform a num-
ber of privileged operations. Most of the functionality you would expect to
find in a UNIX kernel is either in driver processes or servers (as you would
expect in a microkernel) or the distributed network of monitor processes.

Farrow: The SOSP paper talks about a system knowledge base (SKB) that
gets built at boot time using probes of ACPI tables, the PCI bus, CPUID
data, and measurement of message passing latency. Could you explain the
importance of the SKB in Barrelfish?

Roscoe: The SKB does two things. First, it represents as much knowledge as
possible about the hardware in a subset of first-order logic—it’s a Constraint
Logic Programming system at the moment. This, as you say, is populated
using resource discovery and online measurements. Second, because it’s
a reasoning engine, the OS and applications can query it by issuing con-
strained optimization queries.

; LO G I N : A PRI L 201 0	 TH E BA RRE LFI SH MU LTI K E RN E L : A N I NTE RV I EW WITH TI MOTH Y ROSCO E	 19

This is very different from Linux, Solaris, or Windows: traditional OSes
often make some information about hardware (such as NUMA zones) avail-
able, but they often over-abstract them, the format of the information is ad
hoc, and they provide no clean ways to reason about it (resulting in a lot of
non-portable complex heuristic code). The SKB is not a magic bullet, but it
drastically simplifies writing OS and application code that needs to under-
stand the machine, and it means that clients can use whatever abstractions
of the hardware are best for them, rather than what the OS designer thought
useful.

We currently build on ARM, x86_64, x86_32, and Beehive processors.
We’re currently also porting to Intel’s recently announced SCC (Single-chip
Cloud Computer), which is a somewhat unconventional variant of x86_32.

One interesting feature of Barrelfish is that you don’t really “port” the OS
to a different architecture; rather, you add support for an additional CPU
driver. Since CPU drivers and monitors only communicate via messages,
Barrelfish will in principle happily boot on a machine with a mixture of dif-
ferent processors.

Farrow: While reading the paper, I found myself getting confused when you
discussed how a thread or process gets scheduled. Could you explain how
this occurs in Barrelfish?

Roscoe: Well, here’s one way to explain this: Barrelfish has a somewhat
different view of a “process” from a monolithic OS, inasmuch as it has a con-
cept of a process at all. It’s probably better to think of Barrelfish as dealing
with “applications” and “dispatchers.”

Since an application should, in general, be able to run on multiple cores, and
Barrelfish views the machine as a distributed system, it follows that an ap-
plication also, at some level, is structured as a distributed system of discrete
components which run on different cores and communicate with each other
via messages.

Each of these “components,” the representative of the application on the
core, so to speak, is called a “dispatcher.” Unlike a UNIX process (or thread),
dispatchers don’t migrate—they are tied to cores. When they are desched-
uled by the CPU driver for the core, their context is saved (as in UNIX), but
when they are rescheduled, this is done by upcalling the dispatcher rather
than resuming the context. This is what Psyche and Scheduler Activations
did, to first approximation (and K42, which is what we took the term “dis-
patcher” from, and Nemesis, and a few other such systems).

Farrow: So how do you support a traditional, multi-threaded, shared-mem-
ory application like OpenMP, for example?

Roscoe: Well, first of all, each dispatcher has, in principle, its own virtual
address space, since each core has a different MMU. For a shared-memory
application, clearly these address spaces should be synchronized across the
dispatchers that form the application so that they all look the same, where-
upon the cache coherence hardware will do the rest of the work for us. We
can achieve this either by messages or by sharing page tables directly, but
in both cases some synchronization between dispatchers is always required
when mappings change.

As an application programmer, you don’t need to see this; the dispatcher li-
brary handles it. Incidentally, the dispatcher library also handles the applica-
tion’s page faults—another idea we borrowed from Nemesis and Exokernel.

Application threads are also managed by the dispatchers. As long as a
thread remains on a single core, it is scheduled and context-switched by the

20	 ; LO G I N : VO L . 35, N O. 2

dispatcher on that core (which, incidentally, is a much nicer way to imple-
ment a user-level threads package than using signals over UNIX). Note that
the CPU driver doesn’t know anything about threads, it just upcalls the
dispatcher that handles these for the application, so lots of different thread
models are possible.

To migrate threads between cores (and hence between dispatchers), one dis-
patcher has to hand off the thread to another. Since the memory holding the
thread state is shared, this isn’t too difficult. It’s simply a question of making
sure that at most one dispatcher thinks it owns the thread control block at a
time. The dispatchers can either do this with spinlocks or by sending mes-
sages.

Farrow: Why should a multikernel work better than a monolithic kernel on
manycore systems? In your paper, you do show better performance than a
Linux kernel when running the same parallel tasks, but you also point out
that the current Barrelfish implementation is much simpler/less functional
than the current Linux kernel.

Roscoe: Our basic argument is to look at the trends in hardware and try to
guess (and/or influence) where things are going to be in 10 years.

The main difference between a multikernel like Barrelfish and a monolithic
OS like Linux, Windows, or Solaris is how it treats cache-coherent shared
memory. In monolithic kernels, it’s a basic foundation of how the system
works: the kernel is a shared-memory multi-threaded program. A multiker-
nel is designed to work without cache-coherence, or indeed without shared
memory at all, by using explicit messages instead.

There are four reasons why this might be important:

First, cache-coherent shared memory can be slower than messages, even on
machines today. Accessing and modifying a shared data structure involves
moving cache lines around the machine, and this takes hundreds of ma-
chine cycles per line. Alternatively, you could encode your operation (what
you want to be done to the data structure) in a compact form as a message,
and send it to the core that has the data in cache. If the message is much
smaller than the data you need to touch, and the message can be sent ef-
ficiently, this is going to be fast.

“Fast” might mean lower latency, but more important is that cores are gener-
ally stalled waiting for a cache line to arrive. If instead you send messages,
you can do useful work while waiting for the reply to come back. As a result,
the instruction throughput of the machine as a whole is much higher, and
the load on the system interconnect is much lower—there’s just less data
flying around.

Ironically, in Barrelfish on today’s hardware, we mostly use cache-coherent
shared memory to implement our message passing. It’s really the only mech-
anism you’ve got on an x86 multiprocessor, aside from inter-processor inter-
rupts, which are really expensive. Even so, we can send a 64-byte message
from one core to another with a cost of only two interconnect transactions
(a cache invalidate and a cache fill), which is still much more efficient than
modifying more than three or four cache lines of a shared data structure.

The second reason is that cache-coherent shared memory can be too hard to
program. This sounds counterintuitive—it exists in theory to make things
easier. It’s not about shared-memory threads vs. messages per se either,
which is an old debate that’s still running. The real problem is that hardware
is now changing too fast, faster than system software can keep up.

; LO G I N : A PRI L 201 0	 TH E BA RRE LFI SH MU LTI K E RN E L : A N I NTE RV I EW WITH TI MOTH Y ROSCO E	 21

It’s a bit tricky, but ultimately not too hard to write a correct parallel pro-
gram for a shared-memory multiprocessor, and an OS is to a large extent a
somewhat special case of this. What’s much harder, as the scientific comput-
ing folks will tell you, is to get good performance and scaling out of it. The
usual approach is to specialize and optimize the layout of data structures,
etc., to suit what you know about the hardware. It’s a skilled business, and
particularly skilled for OS kernel developers.

The problem is that as hardware gets increasingly diverse, as is happening
right now, you can’t do this for general mass-market machines, as they’re all
too different in performance characteristics. Worse, new architectures with
new performance tradeoffs are coming out all the time, and it’s taking longer
and longer for OS developers, whether in Microsoft or in the Linux com-
munity, to come out with optimizations like per-core locks or read-copy-
update—there’s simply too much OS refactoring involved every time.

With an OS built around inter-core message passing rather than shared
data structures, you at least have a much better separation between the
code responsible for OS correctness (the bit that initiates operations on the
replicated data) and that responsible for making it fast (picking the right
consistency algorithm, the per-core data layout, and the message passing
implementation). We’d like to think this makes the OS code more agile as
new hardware comes down the pipe.

The third reason is that cache-coherent shared memory doesn’t always help,
particularly when sharing data and code between very different processors.
We’re beginning to see machines with heterogeneous cores, and from the
roadmaps this looks set to continue. You’re going to want to optimize data
structures for particular architectures or cache systems, and a one-size-fits-
all shared format for the whole machine isn’t going to be very efficient. The
natural approach is to replicate the data where necessary, store it in a format
appropriate to each core where a replica resides, and keep the replicas in
sync using messages—essentially what we do in Barrelfish.

The fourth reason is that cache-coherent shared memory doesn’t always
exist. Even a high-end PC these days is an asymmetric, non-shared memory
multiprocessor: GPUs, programmable NICs, etc., are largely ignored by mod-
ern operating systems and are hidden behind device interfaces, firmware
blobs, or, at best, somewhat primitive access methods like CUDA.

We argue that it’s the job of the OS to manage all the processors on a ma-
chine, and Barrelfish is an OS designed to be able to do that, regardless of
how these programmable devices can communicate with each other or the
so-called “main” processors.

It’s not even clear that “main” CPUs will be cache-coherent in the future.
Research chips like the Intel SCC are not coherent, although they do have
interesting support for inter-core message passing. I’m not sure there’s any
consensus among the architects as to whether hardware cache-coherence
is going to remain worth the transistor budget, but there’s a good chance
it won’t, particularly if there is system software whose performance simply
doesn’t need it.

Barrelfish is first and foremost a feasibility study for this—knowing what we
now do about how to build distributed systems, message passing, program-
ming tools, knowledge representation and inference, etc., we can build an
OS for today’s and tomorrow’s hardware which is at least competitive with
current performance on a highly engineered traditional OS and which can
scale out more effectively and more easily in the future.

If a handful of researchers can do that, it sounds like a result.

22	 ; LO G I N : VO L . 35, N O. 2

REFERENCE

[1] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Re-
becca Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania, “The Multikernel: A New OS Architecture for Scalable Multicore
Systems,” Proceedings of the 22nd ACM Symposium on OS Principles, Big Sky,
MT, USA, October 2009: http://www.barrelfish.org/barrelfish_sosp09.pdf.

N.B.: The Barrelfish team also includes researchers Jan Rellermeyer, Rich-
ard Black, Orion Hodson, Ankush Gupta, Raffaele Sandrini, Dario Simone,
Animesh Trivedi, Gustavo Alonso, and Tom Anderson.

