
32	 ; LO G I N : VO L . 3 4, N O. 2

J o h n D o u c e u r , J e r e m y E l s o n ,
J o n H o w e l l , a n d J a c o b R . L o r c h , w i t h
R i k F a rr o w

leveraging legacy
code for Web
browsers
John Douceur manages the Distributed Systems
Research Group in the Redmond lab of Microsoft Re-
search. His interests are designing algorithms, data
structures, and protocols for distributed systems.

johndo@microsoft.com

Jeremy Elson has worked in sensor networks,
distributed systems, and occasional hare-brained
schemes. He also enjoys flying and likes bicycling
to work.

jelson@microsoft.com

Jon Howell works at the intersection of security and
scalability in distributed systems. His recent proj-
ects focus on the convergence of utility computing
and Web-delivered applications.

howell@microsoft.com

Jacob Lorch is a Researcher in the Systems and Net-
working group at Microsoft Research. His research
interests include distributed systems, online games,
Web security, and energy management.

lorch@microsoft.com

W e b b r ow s e r s h av e b e c om e a d e
facto user interface for many online applica-
tions. But because browser applications are
typically written in specialized Web lan-
guages, the vast quantity of existing tools,
libraries, and applications are unavailable
to Web developers. Xax provides a secure
execution container that can run legacy
code written in arbitrary languages. With
a small porting effort, legacy applications
can be turned into Xax applications, which
execute natively but independently of the
underlying OS.

Modern Web applications are driving toward the
power of fully functional desktop applications such
as email clients (e.g., Gmail, Hotmail, Outlook
Web Access) and productivity apps (e.g., Google
Docs). Web applications offer two significant ad-
vantages over desktop apps: security—in that the
user’s system is protected from buggy or malicious
applications—and OS independence. Both of these
properties are normally provided by a virtual ex-
ecution environment that implements a type-safe
language, such as JavaScript, Flash, or Silverlight.
However, this mechanism inherently prohibits the
use of non-type-safe legacy code. Since the vast
majority of extant desktop applications and librar-
ies are not written in a type-safe language, the
enormous base of legacy code is currently unavail-
able to the developers of Web applications.

In a paper published at OSDI ’08 [1], the authors
demonstrated running the GhostScript PDF viewer,
the eSpeak speech synthesizer, a Python inter-
preter, and an OpenGL demo that renders 3D ani-
mation. In total, it took roughly two person-weeks
of effort to port 3.3 million lines of code to use the
simple Xax interface. This existing code was writ-
ten in several languages and produced with various
tool chains, and it runs in multiple browsers on
multiple operating systems.

Xax provides native-code-level performance in a
secure and OS-independent manner. Xax relies on
four mechanisms:

The picoprocess, a native-code execution abstrac-■■

tion that is secured via hardware memory isola-
tion and a very narrow system-call interface, akin
to a streamlined hardware virtual machine
The Platform Abstraction Layer (PAL), which ■■

provides an OS-independent Application Binary
Interface (ABI) to Xax picoprocesses

; LO G I N : A pr il 20 0 9	le v e r aging legac y co d e fo r Web b rowse r s	 33

Hooks to existing browser mechanisms to provide applications with system ■■

services, such as network communication, user interface, and local storage,
that respect browser security policies via the Xax Monitor
Lightweight modifications to existing tool chains and code bases, for retar-■■

geting legacy code to the Xax picoprocess environment

Picoprocess

Most operating systems rely on hardware memory protection mechanisms
to isolate processes from one another. Process isolation prevents one pro-
cess from interfering with another process by reading or writing its program
code or data. But process-level isolation provides insufficient protection for
running downloaded code within a browser, as the browser itself is a pro-
cess owned by the user.

Browsers do run downloaded code, such as JavaScript, Java, and Silverlight,
but these are type-safe languages. These languages are interpreted within
the browser that enforces a security policy, for example, the Same Origin
Policy and limited access to filesystems. Legacy code expects to have com-
plete access to a system via the system call API, and thus it cannot be lim-
ited by the browser.

Xax introduces the abstraction of the picoprocess. A picoprocess can be
thought of as a stripped-down virtual machine without emulated physi-
cal devices, MMU, or CPU kernel mode. Alternatively, a picoprocess can be
thought of as a highly restricted OS process that is prevented from making
kernel calls. In either view, a picoprocess is a single hardware-memory-iso-
lated address space with strictly user-mode CPU execution and a very nar-
row interface to the world outside the picoprocess, as illustrated in Figure 1.

F i g u r e 1 : T h e P i c o p r o c e s s g e t s i s ola t e d w h e n t h e b oo t b lo c k
a r r a n g e s t o i n t e r c e p t f u t u r e s y s t e m c all s

The Xax Monitor is a user-mode process that creates, isolates, and manages
each picoprocess and that provides the functionality of xaxcalls. The Xax
Monitor launches the picoprocess, which runs as a user-level OS process,
thus leveraging the hardware memory isolation that the OS already enforces
on its processes. Before creating a new picoprocess, the Xax Monitor first
allocates a region of shared memory, which will serve as a communication
conduit between the picoprocess and the Monitor. Then the picoprocess is
created as a child process of the Xax Monitor process.

This child process begins by executing an OS-specific boot block, which
performs three steps. First, it maps the shared memory region into the child
process’s address space, thereby completing the communication conduit.

34	 ; LO G I N : VO L . 3 4, N O. 2

Second, it makes an OS-specific kernel call that permanently revokes the
child process’s ability to make subsequent kernel calls, thereby completing
the isolation. Third, it passes execution to the OS-specific PAL, which in
turn loads and passes execution to the Xax application.

The boot block is part of the TCB (Trusted Computing Base), even though it
executes inside the child process. The boot block uses kernel mechanisms
to control access to system calls. The Linux version uses the ptrace() sys-
tem call, so that all subsequent system calls get trapped and passed to the
Xax Monitor. If the Xax Monitor fails (exits), the picoprocess’s system calls
will no longer be trapped, a weakness in this present Linux implementation.
Using ptrace() also hurts performance, as ptrace() was designed for debug-
ging, with the kernel notifying the monitoring process when a system call is
made and after the system call completes, but before results get passed back
to the monitored process.

The Windows version makes a kernel call to establish an interposition on all
subsequent syscalls via our XaxDrv driver. Because every Windows thread
has its own pointer to a table of system call handlers, XaxDrv is able to iso-
late a picoprocess by replacing the handler table for that process’s thread.
The replacement table converts every user-mode syscall into an inter-process
call (IPC) to the user-space Xax Monitor.

Platform Abstraction Layer

The Platform Abstraction Layer (PAL) translates the OS-independent ABI
into the OS-specific xaxcalls of the Xax Monitor. The PAL is included with
the OS-specific Xax implementation; everything above the ABI is native code
delivered from an origin server. The PAL runs inside the Xax picoprocess, so
its code is not trusted. Isolation is provided by the xaxcall interface (dashed
border in Figure 1); the PAL merely provides ABI consistency across host op-
erating systems (wiggly line in Figure 1).

For memory allocation and deallocation, the ABI provides two calls. The first:

void *xabi_alloc(void *start, long len);

maps len zero-filled bytes of picoprocess memory, starting at start if speci-
fied, and returns the address. Then:

int xabi_free(void *start);

frees the memory region beginning at start, which must be an address re-
turned from xabi_alloc. It returns 0 for success or -1 for error.

As described in the next section, the picoprocess appears to the browser as a
Web server, and communication is typically over HTTP. When the browser
opens a connection to the picoprocess, this connection can be received by
using this call:

int xabi_accept();

This returns a channel identifier, analogous to a UNIX file descriptor or a
Windows handle, connected to an incoming connection from the browser. It
returns -1 if no incoming connection is ready.

The picoprocess can also initiate connection to the origin server that pro-
vided the picoprocess application. To initiate a connection to the home
server, the picoprocess uses the call:

int xabi_open_url(const char *method, const char *url);

This returns a channel identifier connected to the given URL, according to
the specified method, which may be “get,” “put,” or “connect.” It requests

; LO G I N : A pr il 20 0 9	le v e r aging legac y co d e fo r Web b rowse r s	 35

that the Xax Monitor fetch and cache the URL according to the Same Origin
Policy (SOP) rules for the domain that provided the Xax picoprocess.

The operations that can be performed on an open channel are read, write,
poll, and close. The read and write operations:

int xabi_read(int chnl, char *buf, int len);
int xabi_write(int chnl, char *buf, int len);

transfer data on an open channel and return the number of bytes transferred
(0 if the channel is not ready, -1 if the channel is closed or failed). The poll
operation:

int xabi_poll(xabi_poll_fd *pfds, int npfds, bool block);

indicates the ready status of a set of channels by updating events. If the
value of block is true, it does not return until at least one requested event is
ready, thereby allowing the picoprocess to yield the processor. It returns the
number of events ready but does not return 0 if the value of block is true.
Finally, the close operation:

int xabi_close(int chnl);

closes an open channel. It returns 0 for success or -1 for error.

During picoprocess boot, the loader needs to know the URL from which to
fetch the application image. Xax uses a general loader that reads the appli-
cation URL from the query parameters of the URL that launched the pico-
process. The following PAL call, which is normally used only by the loader,
provides access to these parameters:

const char **xabi_args();

It returns a pointer to a NULL-terminated list of pointers to arguments spec-
ified at instantiation. (Note that there is no corresponding xaxcall; the pa-
rameters are written into the PAL during picoprocess initialization.)

Lastly, the ABI provides a call to exit the picoprocess when it is finished:

void xabi_exit();

Although the PAL runs inside the picoprocess, it is not part of the applica-
tion. More pointedly, it is not delivered with the OS-independent application
code. Instead, the appropriate OS-specific PAL remains resident on the client
machine, along with the Xax Monitor and the Web browser, whose imple-
mentations are also OS-specific. When a Xax application is delivered to the
client, the app and the PAL are loaded into the picoprocess and linked via
a simple dynamic-linking mechanism: The ABI defines a table of function
pointers and the calling convention for the functions.

A library called libxax exports a set of symbols (xabi_read, xabi_open_url,
etc.) that obey the function linkage convention of the developer’s tool chain.
This shim converts each of these calls to the corresponding ABI call in the
PAL. The shim thus provides a standard API to Xax applications.

The Xax Monitor

The Xax Monitor has the job of providing the services indicated by the xax-
call interface. Some of these services are straightforward for the Xax Monitor
to perform directly, such as memory allocation/deallocation, access to URL
query parameters, and picoprocess exit. The Xax Monitor also provides a
communication path to the browser, via which the Xax picoprocess appears
as a Web server. This communication path enables the Xax application to
use read and write calls to serve HTTP to the browser. From the browser’s

36	 ; LO G I N : VO L . 3 4, N O. 2

perspective, these HTTP responses appear to come from the remote ori-
gin server that supplied the Xax app. It is clear that this approach is secure,
since the Xax application is unable to do anything that the origin server
could not have done by serving content directly over the Internet. The cur-
rent Xax Monitor provides this browser interface by acting as a client-side
proxy server.

Using the picoprocess-to-browser communication path, the Xax applica-
tion can employ JavaScript code in the browser to perform functions on its
behalf, such as user interface operations, DOM manipulation, and access to
browser cookies. The evaluated applications employ a common design pat-
tern: The Xax app sends an HTML page to the browser, and this page con-
tains JavaScript stubs that translate messages from the picoprocess into
JavaScript function invocations.

Lightweight Code Modification

Porting legacy applications took surprisingly little effort. This is surprising
because the legacy code was written to run atop an operating system, so it
was not obvious that the OS-specific code could be eliminated or replaced
without crippling the applications. As an example, a quick test using graph-
viz and a Python interpreter found that this application made 2725 syscalls
(39 unique). Porting this code to Xax would seem to require an enormous
emulation of OS functionality. However, using lightweight modifications, it
was possible to port this code, about a million lines, in just a few days.

Although the particular modifications required are application-dependent,
they follow a design pattern that covers five common aspects: disabling irrel-
evant dependencies, restricting application interface usage, applying failure-
oblivious computing techniques, internally emulating syscall functionality,
and, when ultimately necessary, providing syscall functionality via xaxcalls.

The first step is to use compiler flags to disable dependencies on irrelevant
components. Not all libraries and code components are necessary for use
within the Web-application framework, and removing them reduces the
download size of the Web app and also reduces the total amount of code
that needs to be ported. For Python/graphviz, by disabling components such
as pango and pthreads, 699 syscalls (16 unique) were eliminated.

The second step is to restrict the interfaces that the application uses. For
instance, an app might handle I/O either via named files or via stdin/std-
out, and the latter may require less support from the system. Restricting
the interface is achieved in various ways, such as by setting command-line
arguments or environment variables. For Python/graphviz, an entry-point
parameter that changes the output method from “xlib” to “svg” was used,
eliminating 367 syscalls (21 unique).

The third step is to identify which of the application’s remaining system calls
can be handled trivially. In some cases, it is adequate to return error codes
indicating failure, in a manner similar to failure-oblivious computing [2]. For
Python/graphviz, it was sufficient to simply reject 125 syscalls (11 unique:
getuid32, rt_sigaction, fstat64, rt_sigprocmask, ioctl, uname, gettimeofday,
connect, time, fcntl64, and socket).

The fourth step is to emulate syscall functionality within the syscall interpo-
sition layer (see Figure 1). For instance, Python/graphviz reads Python li-
brary files from a file system at runtime. The authors packaged these library
files as a tarball and emulated a subset of filesystem calls using libtar to ac-
cess the libraries. The tarball is read-only, which is all Python/graphviz re-

; LO G I N : A pr il 20 0 9	le v e r aging legac y co d e fo r Web b rowse r s	 37

quires. For some of the other ported applications, the authors also provided
read/write access to temporary files by creating a RAM disk in the interposi-
tion layer. Code in the interposition layer looks at the file path to determine
whether to direct calls to the tarball, to the RAM disk, or to somewhere else,
such as a file downloaded from the origin server. For Python/graphviz, they
used internal emulation to satisfy 1409 syscalls (14 unique), 943 of which
fail obliviously.

The fifth and final step is to provide real backing functionality for the re-
maining system calls via the Xax ABI. For Python/graphviz, most of the re-
maining syscalls are for user input and display output, which get routed
to the UI in the browser. The authors provided this functionality for the
remaining 137 syscalls (11 unique: setsockopt, listen, accept, bind, read,
write, brk, close, mmap2, old_mmap, and munmap).

The first three steps are application-specific, but for the final two steps,
much of the syscall support developed for one app can be readily reused for
other apps. The internally emulated tar-based file system was written to sup-
port eSpeak and later reused to support Python. Similarly, the backing func-
tionality for the mmap functions and networking functions (listen, accept,
bind . . .) are used by all of the example applications.

For any given application, once the needed modifications are understood,
the changes become mechanical. Thus, it is fairly straightforward for a devel-
oper to maintain both a desktop version and a Xax version of an app, using
a configure flag to specify the build target. This is already a common prac-
tice for a variety of applications that compile against Linux, BSD, and Win32
syscall interfaces.

Performance

To evaluate performance, microbenchmarks and macrobenchmarks were
run to measure CPU- and I/O-bound performance. All measurements were
done on a 2.8-GHz Intel Pentium 4.

Xax’s use of native CPU execution, adopted to achieve legacy support, also
leads to native CPU performance. The first microbenchmark [Table 1, col-
umn (a)] computed the SHA-1 hash of H.G. Wells’s The War of the Worlds.
Xax performs comparably to the Linux native host. The Windows native
binary was compiled with a different compiler (Visual Studio versus gcc),
likely producing the improved performance of the Windows native cases
over Xax.

Environment Tool Computation Syscall Allocation

SHA-1 close 16 MB

(a) (b) (c)

Linux native gcc 5,930,000 430 27,120

Linux Xax gcc 5,970,000 69,400 202,600

XP native VS 4,540,000 1,126 31,390

XP Xax gcc 6,170,000 16,880 235,300

Vista native VS 4,580,000 1,316 40,900

Vista Xax gcc 6,490,000 59,900 612,000

Ta b l e 1 : M i c r o b e n c h m a r k s i n u n i t s of m a c h i n e c y c l e s ,
1 / (2 . 8 x 1 0 9) s e c ; m a x [(s i g m a) / (m u)] = 6 . 6 %

38	 ; LO G I N : VO L . 3 4 , N O. 2

The benefits of native execution allowed the authors to accept overheads as-
sociated with hardware context switching. However, the simple noninvasive
user-level implementations lead to quite high overheads. Table 1, column
(b) reports the cost of a null xaxcall compared with a null native system call
(close(-1)). Table 1, column (c) reports the cost of allocating an empty 16-MB
memory region. The Xax overhead runs 7–161x.

Limitations and Future Work

For related work, we refer you to Section 7 of the OSDI paper [1]. In terms
of security, the authors argue that Xax is secure by its small TCB. However,
a production implementation deserves a rigorous inspection to ensure both
that the kernel syscall dispatch path for a picoprocess is indeed closed and
that no other kernel paths, such as exception handling or memory manage-
ment, are exploitable by a malicious picoprocess. The authors suggest ex-
ploring alternative implementations that exclude more host OS code from
the TCB, such as a Mac OS implementation that uses Mach processes or a
VM-like implementation that completely replaces the processor trap dispatch
table for the duration of execution of a picoprocess.

Rich Web applications, Xax or otherwise, will require browser support (such
as remote differential compression) for efficiently handling large programs,
and support for offline functionality. Because Xax applications access re-
sources via the browser, any browser enhancements that deliver these fea-
tures are automatically inherited by the Xax environment.

Integrating Xax with the browser using a proxy is expedient, but for sev-
eral reasons it would be better to directly integrate with the browser. First,
Xax currently rewrites the namespace of the origin server; this is an abuse
of protocol. Instead, the browser should provide an explicit <embed> object
with which a page can construct and name a picoprocess for further refer-
ence. Second, the proxy is unaware of when the browser has navigated away
from a page, and when it is thus safe to terminate and reclaim a picoprocess.
Third, the proxy cannot operate on https connections. For these reasons, the
authors plan to integrate Xax directly into popular browsers.

Other issues include supporting conventional threading models, using a
more mainstream C library such as glibc (here dietlibc was used), and using
relocatable code (since Xax uses statically linked code).

Conclusions

Xax is a browser plug-in model that enables developers to adapt legacy code
for use in rich Web applications, while maintaining security, performance,
and OS independence.

Xax’s security comes from its use of the picoprocess minimalist isolation ■■

boundary and browser-based services; Xax’s TCB is orders of magnitude
smaller than alternative approaches.
Xax’s OS independence comes from its use of picoprocesses and its plat-■■

form abstraction layer; Xax applications can be compiled on any toolchain
and run on any OS host.
Xax’s performance derives from native code execution in picoprocesses.■■

Xax’s legacy support comes from lightweight code modification.■■

Over decades of software development in non-type-safe languages, vast
amounts of design, implementation, and testing effort have gone into pro-
ducing powerful legacy applications. By enabling developers to leverage this

; LO G I N : A pr il 20 0 9	le v e r aging legac y co d e fo r Web b rowse r s	 39

prior effort into a Web application deployment and execution model, we an-
ticipate that Xax may change the landscape of Web applications.

references

[1] John R. Douceur, Jeremy Elson, Jon Howell, and Jacob R. Lorch,
“Leveraging Legacy Code to Deploy Desktop Applications on the Web”:
http://www.usenix.org/events/osdi08/tech/full_papers/douceur/douceur
_html/index.html.

[2] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, T. Leu,
and W.S. Beebee, Jr., “Enhancing Server Availability and Security through
Failure-Oblivious Computing”: http://www.usenix.org/events/osdi04/tech/
rinard.html.

