
; LO G I N : A pr il 201 0	 From Ta sk s to A ssu r ance s : Re d efining System A dmini str ation	 29

A lv a L . C o u c h

from tasks to assur-
ances: redefining
system administration

Alva Couch is an associate professor of computer
science at Tufts University, where he and his stu-
dents study the theory and practice of network and
system administration. He served as program chair
of LISA ’02 and was a recipient of the 2003 SAGE
Outstanding Achievement Award for contributions
to the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

A n a lt e r n at i v e c o n c e p t o f t h e j o b
of the system administrator leverages exist-
ing techniques of systems engineering and
provides a foundation for a more synergistic
relationship between system administrators
and users.

Historically, there has been much confusion about
what a “system administrator” is and does. One
great success of the past decade is that we managed
to define system administration in terms of the
tasks the typical system administrator performs.
This definition includes a taxonomy of system ad-
ministration tasks [1], as well as the Job Descriptions
for System Administrators booklet [2]. So far, these
have served well as a de facto definition of the pro-
fession of system administration. We have obtained
much leverage from this definition, including that
the profession of system administration is now
included as an option on the 2010 census.

But defining the profession in terms of tasks has a
dark side; it invites naive observers to assume—as
they do for plumbers and electricians—that our
tasks define our profession [3]. In fact, our actual
deliverables are much more abstract, includ-
ing availability, integrity, and security. These are
elements of the social contract between system
administrators and users. I propose that this social
contract, and not the tasks, is the real definition of
the profession. What we are is not “what we do”
but, rather, “what assurances we provide.” Tasks
support assurances, but are not the essence of the
profession.

This is probably obvious to the average system ad-
ministrator, but not at all obvious to management,
who still on average consider system administra-
tion to be a task-based profession. We are to some
extent “victims of our own success” in defining
the profession via tasks. While tasks are easy to
understand, social contracts are more abstract.
How can we even write down the contract? Is the
social contract defined in that ethereal thing called
“policy,” or something else? In the following, we
explore some approaches to documenting the oft
invisible and implicit social contract that is—
already—a central component of the profession of
system administration.

This article arose from teaching requirements
analysis to aspiring software engineers last fall.
The key principle of requirements analysis is to
separate “requirements” from “design,” in the sense
that what a system should do (“requirements”) is

30	 ; LO G I N : VO L . 35, N O. 2

separate from how that is accomplished (“design”). Separating requirements
from design has many positive effects, including allowing the designer the freedom
to address requirements in creative ways. I asked myself, “Can these principles
be applied to system administration to obtain similar benefits?” I realized
that the prevalent definition of the profession in terms of tasks is actually
“design,” and that we seldom write down requirements in any other form.
This article is the result of that train of thought.

This article might be loosely considered the third in a series. In the first
article [4], I described the semantic wall between “high-level” and “low-
level” specifications of system configuration and concluded that a new way
of thinking is necessary to utilize “high-level” specifications. In the second
article [5], I challenged the popular definition of system administration
as managing system configuration, and redefined the profession as “clos-
ing open worlds,” i.e., creating zones of predictable system behavior in an
otherwise unpredictable world. In this article I take the next step, consid-
ering which worlds to close. This step comes with its own quandaries: the
user wants the administrator to close “every” world, and boundaries must
be drawn between what is “supported” and what is not. The decision as to
which worlds to close is a social contract between system administrator and
user.

From Tasks to Assurances

My first step is to drastically redefine the profession in a subtle but profound
way. System administrators do not “perform tasks” or “apply expertise” but,
rather, “provide assurances.” An assurance is a clear statement of intent to
address some user need. The set of assurances that a system administrator
provides are part of the social contract between administrator and users. In
very much the same way, while a plumber or electrician needs the prereq-
uisites of being able to plumb or wire your house, in actuality these profes-
sionals honor a social contract that includes requirements for quality and
reliability of the work they perform.

Converting between the old task-based definition and the new contract-
based definition can be tricky. Sometimes the conversion between tasks
and assurances is easy to make. For example, a system administrator is
often seen as “managing printing” (a task), while the real job is “assuring
that printing works” (a contractual obligation). Sometimes an assurance is
based upon ability to perform a hopefully very infrequent task: for example,
“recover from disasters” (a task) becomes “assure data integrity” (a contrac-
tual obligation). Some simply stated assurances are very difficult to map to
tasks, e.g., “provide high-availability file service” requires mastery of many
interrelated tasks.

The Social Contract

The social contract between administrator and user includes many facets.
The most obvious of these are “ethics” and “privacy” assurances, which are
now increasingly defined in writing as part of the job. But, at a deeper level,
the social contract includes the assurances that the system administrator
group makes about system behavior, as well as the priority of each assur-
ance. A high-priority assurance will be addressed before a lower-priority
assurance: if both the file server and a user application die at the same time,
for example, the file server obviously takes priority.

; LO G I N : A pr il 201 0	 From Ta sk s to A ssu r ance s : Re d efining System A dmini str ation	 31

Priorities

Priorities are almost never documented in practice, and I think they should
be! At one time or another, every system administrator gets into the situation
of having to assure too much and has to make difficult decisions. What if
a crucial program drops out of the user environment at the same time that
the file server becomes unreliable? Luckily, a good manager is often there
to defend decisions, but the priorities of assurances are often known far in
advance. Writing them down changes the job from a “management decision”
into “working from a pattern.”

Flexibility

As in systems engineering, the main reason for describing assurances rather
than tasks (“requirements” rather than “design”) is to give the system ad-
ministrator flexibility in providing those assurances. Assuring data integrity
is a rather complex obligation, involving techniques for backup, recovery,
and data security. The beauty of documenting assurances is that when some
heretofore unknown technology comes along (e.g., using unused disk space
as online backup), the assurance does not change, even though the tasks
that provide that assurance might change drastically.

Reusability

Are assurances reusable? The good news is that the kinds of assurances a
system administrator makes do not vary much from site to site, that is, the
list of assurances is (somewhat) reusable and relatively high-level compared
to the task-based description of the job. Some of the most basic are pres-
ent everywhere, including assurances of ethical behavior and appropriate
safeguards for personal privacy. The taxonomy of assurances is really quite
simple compared to the taxonomy of tasks. The bad news is that the priori-
ties of various assurances differ greatly based upon the site. For example,
empowering the user to do self-directed work might be the highest-priority
assurance at an academic site and the lowest-priority assurance at a bank.

Assurances Are Not Policy

One might think that the definition of the job of system administrator arises
from that ethereal thing we call “policy.” It does not. “Policy” describes what
systems and users should do, not who assures them and what forms that
assurance takes. Many assurances that a system administrator makes are an
implicit part of policy; use of a service implies reliability of the service. The
transformation that turns policy into the social contract comes from asking,
“What assurances are required to implement policy?”

Assurances and Requirements

At the most basic level, assurances for system administration are a list of
system behaviors that should form a set of reasonable expectations on the
part of users. At a deeper level, assurances are driven by (and are a proper
superset of) user requirements: the things that users need in order to get
their work done. The skilled system administrator converts the list of user
requirements into a set of assurances by adding the implicit assurances of
security, integrity, stability, etc., just as an electrician does not ask a cus-
tomer whether to make outside wiring waterproof! At the next level, require-
ments become a set of service level objectives (SLOs) or even service level

32	 ; LO G I N : VO L . 35, N O. 2

agreements (SLAs) defining response-time assurances: if and when things go
wrong, how long should it take to correct problems? For example, an expec-
tation is that “printing should work” and an SLO for that is that “a malfunc-
tioning printer should be repaired in one day or less.”

System administration is a rather unusual profession in that the actual
behavioral requirements often take second place to the techniques and prac-
tices by which behaviors are assured, and documentation of practices often
serves as the sole documentation of requirements. One obvious reason for
this is that documentation of practice is currently the only common language
we have for describing behavior! It is easy in this situation to confuse that
documentation with requirements and, when we do that, our practice be-
comes a parody of satisfying user needs rather than the real thing.

For example, consider the task of managing printing. The “tasks” include
doing various things that ostensibly keep printing working, including man-
aging the service, repairing printers, etc. Our documentation of managing
printing includes details on how to accomplish these tasks. But these tasks
by themselves cannot be converted easily into SLOs. The corresponding as-
surance, by contrast, is much simpler: “Everyone is able to print in a timely
fashion.” This is easily converted into an SLO.

We are very lucky that the task of describing behaviors and requirements
has been studied in great detail by others. In systems engineering and
software engineering practice, this practice is called “requirements analysis”
[6]. A “requirement” is something that the managed system should do, some
behavior it should exhibit. There are many ways to document requirements,
and there are several established techniques for accurately teasing require-
ments from user desires. One way to describe requirements is through
first documenting “use cases,” from which we then extract and describe a
“requirements model.”

Use Cases

Our first step in establishing a language for describing behavior is the same
as in software or systems engineering. “Use cases” describe what the user
should be able to do: for example, “users should be able to send and receive
electronic mail.” Note that the use case does not specify how or why any
behavior should be assured, and is thus much simpler and broader than a
practice for assuring behavior.

Several issues arise immediately when we write down the use cases. First,
use cases are not definitive; they describe some things that should be pos-
sible, but not absolutely everything. To assure the use cases, we are left to
fill in the details of other things that should be possible. Use cases describe
mission-critical behavioral objectives but not peripheral objectives that users
might desire. For example, “checks should be printable” is included but
“personal greeting cards should be printable” is not. Use cases often include
SLOs for how quickly something should happen, which can even, in some
cases, become SLAs on how quickly something must happen. There is a big
difference, for example, between the use case statements “sales transactions
should be posted within two seconds” and “sales transactions must be posted
within two seconds.” Finally, use cases should not describe in any way how
objectives are to be assured.

; LO G I N : A pr il 201 0	 From Ta sk s to A ssu r ance s : Re d efining System A dmini str ation	 33

Requirements Modeling

The next step is to abstract the use cases into patterns and concise represen-
tations. In software engineering, this phase is called “requirements analysis.”
Requirements analysis involves determining the classes of users and services
(from the use cases) and documenting the relationships between classes of
users (e.g., assignment-of-privilege classes to user classes and documenting
inheritance between kinds of user and privilege classes). This is commonly
referred to as a “modeling step,” and the process is called “requirements
modeling.”

One powerful tool in requirements modeling is to express capabilities in
terms of similarities between user roles, using object-oriented modeling.
For example, there might be two kinds of users, “doctors” and “nurses,”
with different privileges. It might be that “doctors” are allowed to do things
“nurses” cannot, but “doctors” can do anything “nurses” can do. Regardless
of the real-world relationships between doctors and nurses, the behavior of
the system in response to their queries is a simple inheritance relationship
between behavioral classes: “doctor” system behavior is a subclass of “nurse”
system behavior.

Homogeneity and heterogeneity

In system administration, the terms “homogeneity” and “heterogeneity”
usually refer to variation in the operating systems or hardware deployed at a
site; we say that a site with a mix of Windows and Linux is “heterogeneous,”
for example, while a Linux-only site is “homogeneous.” In requirements
analysis, however, it is the user classes and behaviors that are homogeneous
or heterogeneous, and not the managed systems! Users are “heterogeneous”
if there are many user classes with different privileges, and “homogeneous”
if all users have more or less the same privilege. Behavior is “heterogeneous”
if there are different behaviors for each user class and “homogeneous” if not.
These are properties of the mission and structure of the organization and
not of the hardware on everyone’s desks.

Like operating system heterogeneity, requirements heterogeneity costs more
to assure. Thus it is prudent to question whether heterogeneity that natu-
rally arises in requirements is necessary. For example, suppose that there is
a requirement that user George has access to software to which no one else
has access. This is going to be expensive, and one should ensure that this is
really a requirement before proceeding. I believe that in many cases, hetero-
geneity of requirements is no less expensive than if George had a different
operating system on his desktop machine.

Ambiguity

Once you have written down the explicit requirements, a pattern will
emerge that is not unique to system administration. What you do not write
down is as important as what you do. In any high-level description of
requirements there will be some necessary ambiguity. Whether the require-
ments are useful at all depends on how we handle this ambiguity.

Suppose, for example, that one requirement is that “George should be able
to compile files with gcc.” Alas, this just isn’t enough to describe precisely
what George should be able to do. It does not say which header files should
be present, or whether the kernel sources should be present to make kernel
headers available. There are a multitude of factors exterior to gcc that might

34	 ; LO G I N : VO L . 35, N O. 2

affect whether George can compile his files with gcc. George’s real require-
ments are thus ambiguous, based upon your description.

Drift

Ambiguity is not nearly as bad in itself as in its social consequences. Anyone
who goes to the trouble of writing down requirements will quickly discover
that users are doing things that are outside the requirements—and getting
away with them. In a modern computing environment, there is a prevalent
idea that anything you are allowed to do is “supported” (or “assured”). But
things you just happen to be allowed to do that are not requirements may
go away at any time, due to policy changes, side effects of other changes, or
simple mistakes.

A few years ago, at the beginning of the anti-spam effort, Tufts’ Department
of Computer Science closed down all access to SMTP from outside Tufts
except for a few designated servers. The result was an outcry from students
who had been running their own SMTP servers inside our network. The
affected students claimed that our actions were costing them money by
prohibiting business communications to their computers. The students were
given a polite choice between relocating their business computing outside
the Tufts network, and facing disciplinary charges for operating private busi-
nesses inside the university network!

This is an extreme example of a more general phenomenon that makes it dif-
ficult to specify requirements. Requirements are not what one can manage to
do but, rather, what one should be able to do. They are not about what users
want but, instead, about what users need in order to accomplish useful work,
which is their end of the social contract.

Refinement

Users are fairly good at describing their functional requirements, but less
able to voice their requirements for privacy, security, integrity, and avail-
ability. Thus, the system administrator must often augment the list of user
needs with implicit needs that users usually cannot voice. In requirements
analysis, we might call the derived requirements a “refinement” of the basic
user requirements.

Refinement is a matter of listing the requirements that are obvious to system
administrators but not to the user. A good refinement consists of new re-
quirements that are “obvious once written down.” If one is refining correctly,
the user’s response will be, “Of course I need that.”

Baselining

One useful technique for the system administrator is to define behavioral
requirements in terms of a baseline set of behaviors. This is a set of behav-
iors everyone should have access to in order to get their work done. It is a
handy way of distinguishing between what users need (baseline behaviors)
and what users want (non-baseline behaviors).

For example, at Tufts we have placed a limit on what users can expect from
the support organization by establishing a “baseline configuration” for a
desktop computer. This configuration satisfies a set of requirements neces-
sary for interoperating with Tufts network services. But it has another social
function, which is to define and delimit the responsibility of the support
organization. Systems that fail to function according to the baseline will be

; LO G I N : A pr il 201 0	 From Ta sk s to A ssu r ance s : Re d efining System A dmini str ation	 35

returned to a baseline state, but functions that users desire outside the base-
line are not supported.

The distinction between baseline and non-baseline behaviors can lead to
major cost savings. Some organizations have reported that deploying thin
clients that support only baseline functions (and, for example, prohibit
the installation of custom software) results in up to 50% savings in cost of
operations. Allowing users to install seemingly innocent software (e.g., MP3
players) can lead to substantially increased support costs.

As another example, in some system administration circles the words
“reasonable faculty member” are an oxymoron. My support staff and I have
an unusual social contract. I need high volatility of software configura-
tion, much higher than staff can provide. So the staff provides a baseline
configuration that I do not touch. I install my own software on top of this
baseline, being careful not to change anything in the baseline itself. If I need
a baseline change, I ask them to make it so that it becomes persistent. In this
way my systems are co-managed by myself and my staff in a nearly ideal
way, with staff doing what they do best and me doing what I do best. Their
side of the social contract is to provide reliability and recovery; my side is
not to make their job difficult. They have recovered from complete system
failure by building a new system to my baseline requirements, after which I
made the few customizations I needed and everything came back up. Thus
high synergy can be obtained from proper use of baselining as a basis for a
two-way social contract.

Requirements and Design

Another reason that we really need a requirements step in system adminis-
tration is that specifying requirements clearly leads to better “designs.” As in
software and systems engineering, in the design step we decide how to con-
figure systems to provide requirements. Design can best satisfy requirements
when those requirements are minimally constrained. For example, specify-
ing the hardware composition of a user’s workstation in the requirements
step is very limiting, especially if the specified machine proves incapable of
functions the user requires. It is better to have the option of satisfying re-
quirements by replacing a user’s workstation with another physical machine.

Effective design does not just satisfy requirements but also minimizes cost of
operations. For example, even if only George needs gcc, it might be easiest
to install it everywhere. This is a design decision, while the needs are a re-
quirements decision. This gives other users additional privileges “by design”
and not “according to requirements,” in order to reduce management cost
rather than to satisfy needs. There has been some controversy—especially in
defense circles—about providing any capabilities to users that they do not
need, but in the modern Linux environment, the homogeneity of a common
core of software is more or less assumed.

Rethinking the Profession

In summary, I have redefined the system administration process as provid-
ing a set of assurances, derived from a refined set of user requirements,
augmented with the requirements of our profession, and implemented via
baselining and proactive tracking of ambiguities and drift in requirements
and assurances. Why go to such trouble?

There are many reasons for documenting requirements. They clarify the ac-
tual job of system administrator. They leave one free to assure users of their

36	 ; LO G I N : VO L . 35, N O. 2

requirements in the best possible ways. They protect the system administra-
tor from outrageous demands. They appropriately focus discussion upon
the mission of the enterprise. Using techniques from systems engineering,
they can be used to predict cost of management and suggest an appropriate
number of system administrators to hire.

One obvious reason that clear requirements are beneficial is that one can
measure objectively whether requirements are met. It has often been said
that the better a system administrator is doing, the less people know his or
her name. By defining tangible and realistic requirements, rather than broad
and sweeping impossibilities, we provide something that can be measured
and offer a fairer estimate of system administrator performance than the
alternative of remaining anonymous!

In a deep sense, our profession is about “closing open worlds,” i.e., creating
islands of predictability in which useful work can be accomplished, in an
otherwise unpredictable universe. Some islands that we create are due to
requirements; others are due to design considerations. Some islands of pre-
dictability rise up out of no clear intention on anyone’s part! Understanding
the landscape of predictability is the real job of the system administrator.

Caveat: That understanding does not solve the ongoing and significant prob-
lems system administrators have with public relations. A local discount store
I frequent has a large sign on the door: “Confusion is our most important
product.” At present, many users think that this sign describes their system
administrators! We need to get to the point where users understand instead
that “Peace of mind is our most important product” and that the assurances
we make are far more important and crucial than the services we provide.

This article is only a beginning at straightening out some long-term confu-
sion about the profession. We started by defining a taxonomy of tasks, We
now must face the harder problem of defining and managing a taxonomy
of assurances and expectations. Most important, we have to see “managing
systems” for what it is: beating a dead horse. When we can instead “manage
assurances,” the profession will truly be “at the next level.”

references

[1] Rob Kolstad et al., “The System Administration Book of Knowledge”:
http://ace.delos.com/taxongate.

[2] Tina Darmohray, ed., Job Descriptions for System Administrators, Short
Topics in System Administration 8, USENIX Association, 2001.

[3] Alva Couch, “Should the Root Prompt Require a Road Test?” ;login:,
vol. 32, no. 4, August 2007.

[4] Alva Couch, “From x=1 to (setf x 1): What Does Configuration Manage-
ment Mean?” ;login:, vol. 33, no. 1, February 2008.

[5] Alva Couch, “Configuration Management Phenomenology,” ;login:,
vol. 35, no. 1, February 2010.

[6] See, e.g., Roger Pressman, Software Engineering: A Practitioner’s Approach,
7th ed. (McGraw-Hill, 2010), chapters 5–7.

