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W h i l e  f l a s h  m e m o r y  h a s  t r a d i - 
tionally been the province of embedded and 
portable consumer devices, there has been 
recent interest in using flash devices to run 
primary file systems for laptops as well as 
file servers. Compared with magnetic disk 
drives, flash can substantially improve reli-
ability and random I/O performance while 
reducing power consumption. However, file 
systems originally designed for magnetic 
disks are not optimal for flash memory. In 
this article we examine a flash device used 
as a disk replacement and how a file system 
that delegates block allocation to the device 
driver outperforms the ext3 [15] file system 
when used with the same device. 

Past research work has focused on building firm-
ware and software to support the traditional layers 
of abstractions used in file systems. For example, 
techniques such as the flash translation layer 
(FTL) are typically implemented in a solid-state 
disk controller that exports a traditional disk drive 
abstraction [3, 5, 6, 12]. Systems software then 
uses a traditional block storage interface to sup-
port file systems and database systems designed 
and optimized for magnetic disk drives. Since flash 
memory has very different performance character-
istics from magnetic disks (there is no seek or rota-
tion latency), we wanted to study and design new 
abstraction layers, including a file system to exploit 
the potential of next-generation NAND flash stor-
age devices. 

We describe the design and implementation of the 
Direct File System (DFS) and the virtualized flash 
memory (storage) abstraction layer it uses for Fu-
sionIO’s ioDrive hardware. The virtualized storage 
abstraction layer provides a very large, virtualized 
block-addressed space, which can greatly simplify 
the design of a file system while providing back-
ward compatibility with the traditional block stor-
age interface. Instead of pushing the FTL into disk 
controllers, this layer combines virtualization with 
intelligent translation and allocation strategies for 
hiding the bulk erasure latencies and performing 
wear leveling required by flash memory devices. 

DFS is designed to take advantage of the virtual-
ized flash storage layer for simplicity and perfor-
mance. A traditional file system is known to be 
complex and typically requires four or more years 



38	 ; LO G I N :  VO L .  35,  N O.  2

to become mature. The complexity is largely due to three factors: complex 
storage block allocation strategies, sophisticated buffer cache designs, and 
methods to make the file system crash-recoverable. DFS uses virtualized 
storage directly as a true single-level store and leverages the virtual to physi-
cal block allocations in the virtualized flash storage layer to avoid explicit 
file block allocations and reclamations. By doing so, DFS uses an extremely 
simple metadata and data layout. As a result, DFS has a short data path to 
flash memory and encourages users to access data directly instead of going 
through a large and complex buffer cache. DFS also leverages the atomic 
update feature of the virtualized flash storage layer to achieve crash recover-
ability. 

We have implemented DFS for the FusionIO’s virtualized flash storage layer 
and evaluated it with a suite of benchmarks [9]. We have shown that DFS 
has two main advantages over the ext3 file system. First, our file system 
implementation is about one-eighth the size of that of ext3, with similar 
functionality. Second, DFS has much better performance than ext3, while 
using the same memory and less CPU. Our micro-benchmark results show 
that DFS can deliver 94,000 I/O operations per second (IOPS) for direct 
reads and 71,000 IOPS direct writes with the virtualized flash storage layer 
on FusionIO’s ioDrive. For direct access performance, DFS is consistently 
better than ext3 on the same platform, sometimes by 20%. For buffered 
access performance, DFS is also consistently better than ext3, sometimes by 
over 149%. Our application benchmarks show that DFS outperforms ext3 by 
7% to 250%, while requiring fewer CPU resources. 

NAND Flash

Flash memory is a type of electrically erasable solid-state memory that has 
become the dominant technology for applications that require large amounts 
of non-volatile solid-state storage. Flash memory consists of an array of indi-
vidual cells, each of which is constructed from a single floating-gate transis-
tor. Flash cells support three operations: read, write (or program), and erase. 
In order to change the value stored in a flash cell it is necessary to perform 
an erase before writing new data. Read and write operations typically take 
tens of microseconds whereas the erase operation may take more than a mil-
lisecond. 

The memory cells in a NAND flash device are arranged into pages which 
vary in size from 512 bytes to as much as 16KB each. Read and write opera-
tions are page-oriented. NAND flash pages are further organized into erase 
blocks; erase operations only apply to entire erase blocks, and any data that 
is to be preserved must be copied. There are two main challenges in build-
ing storage systems using NAND flash. The first is that an erase operation 
typically takes about one or two milliseconds. The second is that an erase 
block may be erased successfully only a limited number of times. 
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Our Approach

F i g u r e  1 :  Fla   s h  s to  r a g e  a b s t r a c t i o n s

Figure 1 shows the architecture block diagrams for existing flash storage 
systems and our proposed architecture. The traditional approach is to pack-
age flash memory as a solid-state disk (SSD) that exports a disk interface 
such as SATA or SCSI. An advanced SSD implements the flash translation 
layer in its controller and maintains a dynamic mapping from logical blocks 
to physical flash pages to hide bulk erasure latencies and to perform wear 
leveling. SSDs use the same electrical and software interfaces as magnetic 
disk drives. The block storage layer above the disk interface supports tradi-
tional file systems, database systems, and other software. This approach has 
the advantage of not disrupting the application-kernel or kernel-physical 
storage interfaces. On the other hand, it has a relatively thick software stack 
and makes it difficult for the software layers and hardware to take full ad-
vantage of the benefits of flash memory. 

We advocate an architecture in which a greatly simplified file system is built 
on top of a virtualized flash storage layer implemented by the cooperation of 
the device driver and novel flash storage controller hardware. The controller 
exposes direct access to flash memory chips to the virtualized flash storage 
layer, which is implemented at the device driver level and can freely cooper-
ate with specific hardware support offered by the flash memory controller. 
The virtualized flash storage layer implements a large virtual block-ad-
dressed space and maps it to physical flash pages. It handles multiple flash 
devices and uses a log-structured allocation strategy to hide bulk erasure 
latencies, perform wear leveling, and handle bad-page recovery. 

The virtualized flash storage layer can still provide backward compatibility 
to run existing file systems and database systems. Existing software can 
benefit from the intelligence in the device driver and hardware. More impor-
tantly, flash devices are free to export a richer interface than that exposed by 
disk-based interfaces. 

Direct File System (DFS) is designed to utilize the functionality provided by 
the virtualized flash storage layer. In addition to leveraging the support for 
wear-leveling and for hiding the latency of bulk erasures, DFS uses the vir-
tualized flash storage layer to perform file block allocations and reclamations 
and uses atomic flash page updates for crash recovery. Our main observa-
tion is that the separation of the file system from block allocations allows the 
storage hardware and block management algorithms to evolve jointly and in-
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dependently from the file system and user-level applications. This approach 
makes it easier for the block management algorithms to take advantage of 
improvements in the underlying storage subsystem. 

virtualized flash storage layer

The virtual flash storage layer provides an abstraction that allows client 
software such as file systems and database systems to take advantage of 
flash memory devices while providing a backward-compatible block storage 
interface. The primary novel feature of the virtualized flash storage layer is 
the provision for a very large, virtual block-addressed space. There are three 
reasons for this design. First, it provides client software with the flexibility 
to directly access flash memory in a single-level store fashion across multiple 
flash memory devices. Second, it hides the details of the mapping from vir-
tual to physical flash memory pages. Third, the flat virtual block-addressed 
space provides clients with a familiar block interface. 

The mapping from virtual blocks to physical flash memory pages deals 
with several flash memory issues. Flash memory pages are dynamically 
allocated and reclaimed to hide the latency of bulk erasures, to distribute 
writes evenly to physical pages for wear-leveling, and to detect and recover 
bad pages to achieve high reliability. Unlike a conventional flash translation 
layer, the mapping supports a very large number of virtual pages—orders of 
magnitude larger than the available physical flash memory pages. 

The virtualized flash storage layer currently supports three operations: read, 
write, and trim or deallocate. All operations are block-based operations, and 
the block size in the current implementation is 512 bytes. The write opera-
tion triggers a dynamic mapping from a virtual to a physical page; thus, 
there is no explicit allocation operation. The deallocate operation deallocates 
a range of virtual addresses and notifies the garbage collector. 

The current implementation of the virtualized flash storage layer is a 
combination of a closed source Linux device driver and FusionIO’s ioDrive 
special-purpose hardware. The ioDrive is a PCI Express card populated with 
either 160GB or 320GB of SLC NAND flash memory. The software for the 
virtualized flash storage layer is implemented as a device driver in the host 
operating system and leverages hardware support from the ioDrive itself. 

The ioDrive uses a novel partitioning of the virtualized flash storage layer 
between the hardware and device driver to achieve high performance. The 
overarching design philosophy is to separate the data and control paths 
and to implement the control path in the device driver and the data path in 
hardware. The data path on the ioDrive card contains numerous individual 
flash memory packages arranged in parallel and connected to the host via 
PCI Express. As a consequence, the device achieves highest throughput 
with moderate parallelism in the I/O request stream. The use of PCI Express 
rather than an existing storage interface such as SCSI or SATA simplifies the 
partitioning of control and data paths between the hardware and the device 
driver. 

The device provides hardware support of checksum generation and check-
ing to allow for the detection and correction of errors in case of the failure of 
individual flash chips. Metadata is stored on the device in terms of physical 
addresses rather than virtual addresses in order to simplify the hardware 
and allow greater throughput at lower economic cost. While individual flash 
pages are relatively small (512 bytes), erase blocks are several megabytes in 
size in order to amortize the cost of bulk erase operations. 
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The mapping between virtual and physical addresses is maintained by the 
kernel device driver. The mapping between 64-bit virtual addresses and 
physical addresses is maintained using a variation on B-trees in memory. 
Each address points to a 512-byte flash memory page, allowing a virtual 
address space of 273 bytes. Updates are made stable by recording them in 
a log-structured fashion: the hardware interface is append-only. The device 
driver is also responsible for reclaiming unused storage using a garbage col-
lection algorithm. Bulk erasure scheduling and wear-leveling algorithms for 
flash endurance are integrated into the garbage collection component of the 
device driver. 

dfs

DFS is a full-fledged implementation of a UNIX file system that is designed 
to take advantage of the virtualized flash storage layer. The implementation 
runs as a loadable kernel module in the Linux 2.6 kernel. The DFS kernel 
module implements the traditional UNIX file system APIs via the Linux VFS 
layer. It supports the usual methods such as open, close, read, write, pread, 
pwrite, lseek, and mmap. The Linux kernel requires basic memory-mapped 
I/O support in order to execute binaries residing on DFS file systems. 

Leveraging Virtualized Flash Storage

We have configured the ioDrive to export a sparse 64-bit logical block ad-
dress space. Since each block contains 512 bytes, the logical address space 
spans 273 bytes. DFS can then use this logical address space to map file 
system objects to physical storage. DFS delegates I-node and file data block 
allocations and deallocations to the virtualized flash storage layer. 

DFS allocates virtual address space in contiguous “allocation chunks.” The 
size of these chunks is configurable at file system initialization time but is 
232 blocks, or 2TB, by default. User files and directories are partitioned into 
two types: large and small. A large file occupies an entire chunk, whereas 
multiple small files reside in a single chunk. When a small file grows to be-
come a large file, it is moved to a freshly allocated chunk. The size of these 
allocation chunks and the maximum size of small files can be chosen in a 
principled manner when the file system is initialized. There have been many 
studies of file size distributions in different environments (e.g., Tanenbaum 
et al. [13], Douceur and Bolosky [8]). By default, small files are those less 
than 32KB. 

F i g u r e  2 :  D FS   lo  g i c al   b lo  c k  add   r e s s  m a p p i n g  f o r  la  r g e  f i l e s . 
O n ly  th  e  w i dth    o f  th  e  f i l e  b lo  c k  n u m b e r  d i f f e r s  f o r  s m all   
f i l e s .
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The current DFS implementation uses a 32-bit I-node number to identify in-
dividual files and directories and a 32-bit block offset into a file. This means 
that DFS can support a total of up to 232 − 1 files and directories (since the 
first I-node number is reserved for the system). The largest supported file 
size is 2TB with 512-byte blocks, since the block offset is 32 bits. The I-node 
itself stores the base virtual address for the logical extent containing the file 
data. This base address together with the file offset identifies the virtual ad-
dress of a file block. Figure 2 depicts the mapping from file descriptor and 
offset to logical block address in DFS. 

The very simple mapping from file and offset to logical block address has 
the added benefit of making it straightforward for DFS to combine multiple 
small I/O requests to adjacent regions of a file into a single larger I/O. This 
strategy can improve performance, because the flash device delivers higher 
transfer rates with larger I/Os. 

DFS Layout and Objects

As shown in Figure 3, there are three kinds of files in the DFS file system. 
The first file is a system file which includes the boot block, superblock, and 
all I-nodes. This file is a “large” file and occupies the first allocation chunk 
at the beginning of the raw device. The boot block occupies the first few 
blocks (sectors) of the raw device. A superblock immediately follows the 
boot block. The remainder of the system file contains all I-nodes as an array 
of block-aligned I-node data structures. 

F i g u r e  3 :  L a y o u t  o f  D FS   s y s t e m  a n d  u s e r  f i l e s  i n  v i r t u al  -
i z e d  f la  s h  s to  r a g e .  T h e  f i r s t  2 T B  a r e  u s e d  f o r  s y s t e m  f i l e s . 
T h e  r e m a i n i n g  2 T B  allo    c at  i o n  c h u n k s  a r e  f o r  u s e r  data     o r 
d i r e c to  r y  f i l e s .  A  la  r g e  f i l e  ta  k e s  th  e  w hol   e  c h u n k ;  m u lt i p l e 
s m all    f i l e s  a r e  p a c k e d  i n to   a  s i n g l e  c h u n k .

Each I-node is identified by a 32-bit unique identifier or I-node number. 
Given the I-node number, the logical address of the I-node within the I-node 
file can be computed directly. Each I-node data structure is stored in a single 
512-byte flash block. Each I-node contains the I-number, base virtual ad-
dress of the corresponding file, mode, link count, file size, user and group 
IDs, any special flags, a generation count, and access, change, birth, and 
modification times with nanosecond resolution. These fields take a total of 
72 bytes, leaving 440 bytes for additional attributes and future use. Since an 
I-node fits in a single flash page, it will be updated atomically by the virtual-
ized flash storage layer. 

The implementation of DFS uses a 32-bit block-addressed allocation chunk 
to store the content of a regular file. Since a file is stored in a contiguous, flat 
space, the address of each block offset can be simply computed by adding 
the offset to the virtual base address of the space for the file. A block read 
simply returns the content of the physical flash page mapped to the virtual 
block. A write operation writes the block to the mapped physical flash page 



; LO G I N :  A pr il   201 0	D  FS :  A F ile   System fo r V i rtuali ze d Fla  sh Sto r age	  43

directly. Since the virtualized flash storage layer triggers a mapping or re-
mapping on write, DFS does the write without performing an explicit block 
allocation. Note that DFS allows holes in a file without using physical flash 
pages, because of the dynamic mapping. When a file is deleted, the DFS will 
issue a deallocation operation provided by the virtualized flash storage layer 
to deallocate and unmap the virtual space of the entire file. 

A DFS directory is mapped to flash storage in the same manner as ordinary 
files. The only difference is its internal structure. A directory contains an 
array of name, I-node number, and type triples. The current implementa-
tion is very similar to that found in FFS [11]. Updates to directories, includ-
ing operations such as rename, which touch multiple directories and the 
on-flash I-node allocator, are made crash-recoverable through the use of a 
write-ahead log. Although widely used and simple to implement, this ap-
proach does not scale well to large directories. The current version of the 
virtualized flash storage layer does not export atomic multi-block updates. 
We anticipate reimplementing directories using hashing and a sparse virtual 
address space made crash recoverable with atomic updates. 

Direct Data Accesses

DFS promotes direct data access. The current Linux implementation of DFS 
allows the use of the buffer cache in order to support memory mapped I/O, 
which is required for the exec system call. However, for many workloads 
of interest, particularly databases, clients are expected to bypass the buffer 
cache altogether. The current implementation of DFS provides direct access 
via the direct I/O buffer cache bypass mechanism already present in the 
Linux kernel. Using direct I/O, page-aligned reads and writes are converted 
by the kernel directly into I/O requests to the block device driver. 

There are two main rationales for this approach. First, traditional buffer 
cache design has several drawbacks. The traditional buffer cache typi-
cally uses a large amount of memory. Buffer cache design is quite complex, 
since it needs to deal with multiple clients, implement sophisticated cache 
replacement policies to accommodate various access patterns of different 
workloads, maintain consistency between the buffer cache and disk drives, 
and support crash recovery. In addition, having a buffer cache imposes a 
memory copy in the storage software stack. 

Second, flash memory devices provide low-latency accesses, especially 
for random reads. Since the virtualized flash storage layer can solve the 
write latency problem, the main motivation for the buffer cache is largely 
eliminated. Thus, applications can benefit from the DFS direct data access 
approach by utilizing most of the main memory space typically used for the 
buffer cache for a larger in-memory working set. 

Crash Recovery

The virtualized flash storage layer implements the basic functionality of 
crash recovery for the mapping from logical block addresses to physical flash 
storage locations. DFS leverages this property to provide crash recovery. 
Unlike traditional file systems that use non-volatile random access memory 
(NVRAM) and their own logging implementation, DFS piggybacks on the 
flash storage layer’s log. 

Since flash memory is a form of NVRAM, DFS leverages the support from 
the virtualized flash storage layer to achieve crash recoverability. When 
a DFS file system object is extended, DFS passes the write request to the 
virtualized flash storage layer, which then allocates a physical page of the 
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flash device and logs the result internally. After a crash, the virtualized flash 
storage layer runs recovery using the internal log. The consistency of the 
contents of individual files is the responsibility of applications, but the on-
flash state of the file system is guaranteed to be consistent. 

Discussion

The current DFS implementation has several limitations. The first is that it 
does not yet support snapshots. The second is that we are currently imple-
menting support for atomic multi-block updates in the virtualized flash 
storage layer. The log-structured, copy-on-write nature of the flash storage 
layer makes it possible to export such an interface efficiently. In the interim, 
DFS uses a straightforward extension of the traditional UFS/FFS directory 
structure. The third is the limitation on the number and on the maximum 
size of files. 

Evaluation

Application Description I/O Patterns 

Quicksort A quicksort on a large dataset Mem-mapped I/O 

N-gram A program for querying  
n-gram data 

Direct, random read 

KNNImpute Processes bioinformatics 
microarray data 

Mem-mapped I/O 

VM Update Update of an OS on several 
virtual machines 

Sequential read & write 

TPC-H Standard benchmark for 
decision support

Mostly sequential read

F i g u r e  4 :  A p p l i c at  i o n s  a n d  th  e i r  c ha  r a c t e r i s t i c s

We are interested in answering two main questions: 

How do the layers of abstraction perform? ■■

How does DFS compare with existing file systems? ■■

To answer the first question, we use a micro-benchmark to evaluate the 
number of I/O operations per second (IOPS) and bandwidth delivered by 
the virtualized flash storage layer and by the DFS layer. To answer the sec-
ond question, we compare DFS with ext3 by using a micro-benchmark and 
an application suite. Ideally, we would compare with existing flash file sys-
tems as well; however, file systems such as YAFFS [10] and JFFS2 [16] are 
designed to use raw NAND flash and are not compatible with the FusionIO 
hardware. 

Wall Time

Application Ext3 DFS Speedup

Quicksort 1268 822 1.54

N-gram (Zipf) 4718 1912 2.47

KNNImpute 303 248 1.22

VM Update 685 640 1.07

TPC-H 5059 4154 1.22

F i g u r e  5 :  A p p l i c at  i o n   b e n c h m a r k  e x e c u t i o n  t i m e 
i m p r ov  e m e n t :  b e s t  o f  D FS   v s .  b e s t  o f  e x t 3
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All of our experiments were conducted on a desktop with an Intel quad core 
processor running at 2.4GHz with a 4MB cache and 4GB DRAM. The host 
operating system was a stock Fedora Core installation running the Linux 
2.6.27.9 kernel. Both DFS and the virtualized flash storage layer imple-
mented by the FusionIO device driver were compiled as loadable kernel 
modules. 

We used a FusionIO ioDrive with 160GB of SLC NAND flash connected via 
PCI-Express x4 [1]. The advertised read latency of the FusionIO device is 
50µs. For a single reader, this translates to a theoretical maximum through-
put of 20,000 IOPS. Multiple readers can take advantage of the hardware 
parallelism in the device to achieve much higher aggregate throughput. For 
the sake of comparison, we also ran the micro-benchmarks on a 32GB Intel 
X25-E SSD connected to a SATA II host bus adapter [2]. This device has an 
advertised typical read latency of about 75µs. 

We have evaluated our design and implementation with both a collection of 
micro-benchmarks and an application benchmark suite. Figure 4 summa-
rizes the applications in the benchmark and their characteristic I/O request 
patterns. Figure 5 shows the elapsed wall time for each of the applications 
for both ext3 and DFS and the speedup, which varies from 1.07 to 2.47. 

The quicksort application is a single-threaded sort of 715 million 24-byte 
key-value pairs memory mapped from a single 16GB file that is four times 
larger than main memory. Although quicksort exhibits good locality of refer-
ence, this benchmark program nonetheless stresses the memory-mapped I/O 
subsystem. 

The n-gram benchmark issues random queries against a single large hash 
table index of the 5-grams in the Google n-gram corpus [7], which contains 
a large set of n-grams and their appearance counts taken from a crawl of the 
Web. The resulting index, which contains 26GB worth of small key-value 
pairs for 5-grams alone, has proved valuable for a variety of computational 
linguistics tasks. We present the results for a Zipf-distributed query distribu-
tion over the 5-grams. 

The KNNImpute [14] benchmark program is a very popular bioinformatics 
code for estimating missing values in data obtains from wet lab microar-
ray experiments. The program is a multi-threaded implementation using 
memory-mapped I/O. 

The virtual machine update benchmark consists of a full operating system 
update of several VirtualBox instances running Ubuntu 8.04 hosted on a 
single server. Since each virtual machine typically runs the same operating 
system but has its own copy, operating system updates can pose a significant 
performance problem in some environments, as each instance needs to apply 
critical and periodic system software updates simultaneously. In our bench-
mark environment there were a total of 265 packages updated, containing 
343MB of compressed data and about 38,000 distinct files. 

The last benchmark program is the standard Transaction Processing Coun-
cil’s Benchmark H (TPC-H) [2]. We used the Ingres database to run the 
benchmark at scale factor 5, which corresponds to about 5GB of raw input 
data and 90GB for the data, indexes, and logs stored on flash once loaded 
into the database. 

Our results show that the virtualized flash storage layer delivers perfor-
mance close to the limits of the hardware, both in terms of IOPS and 
bandwidth. Our results also show that DFS is much simpler than ext3 and 
achieves better performance in both the micro- and application benchmarks 
than ext3, often using less CPU power. Our paper includes the results of 
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several additional benchmarks, including micro-benchmarks. These results 
were excluded from this article due to space constraints. 

Conclusion

This article presents the design, implementation, and evaluation of DFS and 
describes FusionIO’s virtualized flash storage layer. We have demonstrated 
that novel layers of abstraction specifically for flash memory can yield sub-
stantial benefits in software simplicity and system performance. 

We have learned several things from the DFS design process. First, it is pos-
sible to implement DFS so that it is both simple and has short, direct-path 
flash memory. Much of its simplicity comes from leveraging the virtualized 
flash storage layer for large virtual storage space, block allocation and deal-
location, and atomic block updates. 

Second, the simplicity of DFS translates into performance. Our micro-
benchmark results show that DFS can deliver 94,000 IOPS for random reads 
and 71,000 IOPS random writes with the virtualized flash storage layer on 
FusionIO’s ioDrive. The performance is close to the hardware limit. 

Third, DFS is substantially faster than ext3. For direct access performance, 
DFS is consistently faster than ext3 on the same platform, sometimes by 
20%. For buffered access performance, DFS is also consistently faster than 
ext3, and sometimes by over 149%. Our application benchmarks show that 
DFS outperforms ext3 by 7% to 250% while requiring less CPU power. 

We have also observed that the impact of the traditional buffer cache dimin-
ishes when using flash memory. When there are 32 threads, the sequential 
read throughput of DFS is about twice that of direct random reads with DFS, 
whereas ext3 achieves only a 28% improvement over direct random reads 
with ext3. 
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