
; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 37

W i l l i a m K . J o s e p h s o n ,
L a r s A . B o n g o , D a v i d F ly n n ,
a n d K a i L i

DFS: a file system
for virtualized flash
storage
William Josephson is in the PhD program at Princ-
eton University, where he works with Kai Li. His
research interests include high-performance stor-
age and systems support for search in large-scale,
high-dimensional data sets.

wkj@CS.Princeton.EDU

Lars Ailo Bongo is a post-doctoral researcher at the
Lewis-Sigler Institute for Integrative Genomics at
Princeton University. He received his PhD at the
University of Tromsø.His research interests include
system support for bioinformatics applications.

lbongo@Princeton.EDU

As President and CTO of Fusion-io and one of the
company’s founders, David Flynn is the visionary
behind Fusion-io’s innovative technology. Mr. Flynn
is responsible for providing business-focused over-
sight of the company’s research and development
efforts, as well as driving the company’s short- and
long-term technological direction.

dflynn@FusionIO.COM

Kai Li is a Paul M. Wythes and Marcia R. Wythes
Professor in the computer science department of
Princeton University, with research interests in
operating systems, parallel and distributed systems,
storage systems, and analyzing and visualizing
large datasets. He co-founded Data Domain, Inc.,
which pioneered deduplication storage systems.

li@CS.Princeton.EDU

W h i l e f l a s h m e m o r y h a s t r a d i -
tionally been the province of embedded and
portable consumer devices, there has been
recent interest in using flash devices to run
primary file systems for laptops as well as
file servers. Compared with magnetic disk
drives, flash can substantially improve reli-
ability and random I/O performance while
reducing power consumption. However, file
systems originally designed for magnetic
disks are not optimal for flash memory. In
this article we examine a flash device used
as a disk replacement and how a file system
that delegates block allocation to the device
driver outperforms the ext3 [15] file system
when used with the same device.

Past research work has focused on building firm-
ware and software to support the traditional layers
of abstractions used in file systems. For example,
techniques such as the flash translation layer
(FTL) are typically implemented in a solid-state
disk controller that exports a traditional disk drive
abstraction [3, 5, 6, 12]. Systems software then
uses a traditional block storage interface to sup-
port file systems and database systems designed
and optimized for magnetic disk drives. Since flash
memory has very different performance character-
istics from magnetic disks (there is no seek or rota-
tion latency), we wanted to study and design new
abstraction layers, including a file system to exploit
the potential of next-generation NAND flash stor-
age devices.

We describe the design and implementation of the
Direct File System (DFS) and the virtualized flash
memory (storage) abstraction layer it uses for Fu-
sionIO’s ioDrive hardware. The virtualized storage
abstraction layer provides a very large, virtualized
block-addressed space, which can greatly simplify
the design of a file system while providing back-
ward compatibility with the traditional block stor-
age interface. Instead of pushing the FTL into disk
controllers, this layer combines virtualization with
intelligent translation and allocation strategies for
hiding the bulk erasure latencies and performing
wear leveling required by flash memory devices.

DFS is designed to take advantage of the virtual-
ized flash storage layer for simplicity and perfor-
mance. A traditional file system is known to be
complex and typically requires four or more years

38	 ; LO G I N : VO L . 35, N O. 2

to become mature. The complexity is largely due to three factors: complex
storage block allocation strategies, sophisticated buffer cache designs, and
methods to make the file system crash-recoverable. DFS uses virtualized
storage directly as a true single-level store and leverages the virtual to physi-
cal block allocations in the virtualized flash storage layer to avoid explicit
file block allocations and reclamations. By doing so, DFS uses an extremely
simple metadata and data layout. As a result, DFS has a short data path to
flash memory and encourages users to access data directly instead of going
through a large and complex buffer cache. DFS also leverages the atomic
update feature of the virtualized flash storage layer to achieve crash recover-
ability.

We have implemented DFS for the FusionIO’s virtualized flash storage layer
and evaluated it with a suite of benchmarks [9]. We have shown that DFS
has two main advantages over the ext3 file system. First, our file system
implementation is about one-eighth the size of that of ext3, with similar
functionality. Second, DFS has much better performance than ext3, while
using the same memory and less CPU. Our micro-benchmark results show
that DFS can deliver 94,000 I/O operations per second (IOPS) for direct
reads and 71,000 IOPS direct writes with the virtualized flash storage layer
on FusionIO’s ioDrive. For direct access performance, DFS is consistently
better than ext3 on the same platform, sometimes by 20%. For buffered
access performance, DFS is also consistently better than ext3, sometimes by
over 149%. Our application benchmarks show that DFS outperforms ext3 by
7% to 250%, while requiring fewer CPU resources.

NAND Flash

Flash memory is a type of electrically erasable solid-state memory that has
become the dominant technology for applications that require large amounts
of non-volatile solid-state storage. Flash memory consists of an array of indi-
vidual cells, each of which is constructed from a single floating-gate transis-
tor. Flash cells support three operations: read, write (or program), and erase.
In order to change the value stored in a flash cell it is necessary to perform
an erase before writing new data. Read and write operations typically take
tens of microseconds whereas the erase operation may take more than a mil-
lisecond.

The memory cells in a NAND flash device are arranged into pages which
vary in size from 512 bytes to as much as 16KB each. Read and write opera-
tions are page-oriented. NAND flash pages are further organized into erase
blocks; erase operations only apply to entire erase blocks, and any data that
is to be preserved must be copied. There are two main challenges in build-
ing storage systems using NAND flash. The first is that an erase operation
typically takes about one or two milliseconds. The second is that an erase
block may be erased successfully only a limited number of times.

; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 39

Our Approach

F i g u r e 1 : Fla s h s to r a g e a b s t r a c t i o n s

Figure 1 shows the architecture block diagrams for existing flash storage
systems and our proposed architecture. The traditional approach is to pack-
age flash memory as a solid-state disk (SSD) that exports a disk interface
such as SATA or SCSI. An advanced SSD implements the flash translation
layer in its controller and maintains a dynamic mapping from logical blocks
to physical flash pages to hide bulk erasure latencies and to perform wear
leveling. SSDs use the same electrical and software interfaces as magnetic
disk drives. The block storage layer above the disk interface supports tradi-
tional file systems, database systems, and other software. This approach has
the advantage of not disrupting the application-kernel or kernel-physical
storage interfaces. On the other hand, it has a relatively thick software stack
and makes it difficult for the software layers and hardware to take full ad-
vantage of the benefits of flash memory.

We advocate an architecture in which a greatly simplified file system is built
on top of a virtualized flash storage layer implemented by the cooperation of
the device driver and novel flash storage controller hardware. The controller
exposes direct access to flash memory chips to the virtualized flash storage
layer, which is implemented at the device driver level and can freely cooper-
ate with specific hardware support offered by the flash memory controller.
The virtualized flash storage layer implements a large virtual block-ad-
dressed space and maps it to physical flash pages. It handles multiple flash
devices and uses a log-structured allocation strategy to hide bulk erasure
latencies, perform wear leveling, and handle bad-page recovery.

The virtualized flash storage layer can still provide backward compatibility
to run existing file systems and database systems. Existing software can
benefit from the intelligence in the device driver and hardware. More impor-
tantly, flash devices are free to export a richer interface than that exposed by
disk-based interfaces.

Direct File System (DFS) is designed to utilize the functionality provided by
the virtualized flash storage layer. In addition to leveraging the support for
wear-leveling and for hiding the latency of bulk erasures, DFS uses the vir-
tualized flash storage layer to perform file block allocations and reclamations
and uses atomic flash page updates for crash recovery. Our main observa-
tion is that the separation of the file system from block allocations allows the
storage hardware and block management algorithms to evolve jointly and in-

40	 ; LO G I N : VO L . 35, N O. 2

dependently from the file system and user-level applications. This approach
makes it easier for the block management algorithms to take advantage of
improvements in the underlying storage subsystem.

virtualized flash storage layer

The virtual flash storage layer provides an abstraction that allows client
software such as file systems and database systems to take advantage of
flash memory devices while providing a backward-compatible block storage
interface. The primary novel feature of the virtualized flash storage layer is
the provision for a very large, virtual block-addressed space. There are three
reasons for this design. First, it provides client software with the flexibility
to directly access flash memory in a single-level store fashion across multiple
flash memory devices. Second, it hides the details of the mapping from vir-
tual to physical flash memory pages. Third, the flat virtual block-addressed
space provides clients with a familiar block interface.

The mapping from virtual blocks to physical flash memory pages deals
with several flash memory issues. Flash memory pages are dynamically
allocated and reclaimed to hide the latency of bulk erasures, to distribute
writes evenly to physical pages for wear-leveling, and to detect and recover
bad pages to achieve high reliability. Unlike a conventional flash translation
layer, the mapping supports a very large number of virtual pages—orders of
magnitude larger than the available physical flash memory pages.

The virtualized flash storage layer currently supports three operations: read,
write, and trim or deallocate. All operations are block-based operations, and
the block size in the current implementation is 512 bytes. The write opera-
tion triggers a dynamic mapping from a virtual to a physical page; thus,
there is no explicit allocation operation. The deallocate operation deallocates
a range of virtual addresses and notifies the garbage collector.

The current implementation of the virtualized flash storage layer is a
combination of a closed source Linux device driver and FusionIO’s ioDrive
special-purpose hardware. The ioDrive is a PCI Express card populated with
either 160GB or 320GB of SLC NAND flash memory. The software for the
virtualized flash storage layer is implemented as a device driver in the host
operating system and leverages hardware support from the ioDrive itself.

The ioDrive uses a novel partitioning of the virtualized flash storage layer
between the hardware and device driver to achieve high performance. The
overarching design philosophy is to separate the data and control paths
and to implement the control path in the device driver and the data path in
hardware. The data path on the ioDrive card contains numerous individual
flash memory packages arranged in parallel and connected to the host via
PCI Express. As a consequence, the device achieves highest throughput
with moderate parallelism in the I/O request stream. The use of PCI Express
rather than an existing storage interface such as SCSI or SATA simplifies the
partitioning of control and data paths between the hardware and the device
driver.

The device provides hardware support of checksum generation and check-
ing to allow for the detection and correction of errors in case of the failure of
individual flash chips. Metadata is stored on the device in terms of physical
addresses rather than virtual addresses in order to simplify the hardware
and allow greater throughput at lower economic cost. While individual flash
pages are relatively small (512 bytes), erase blocks are several megabytes in
size in order to amortize the cost of bulk erase operations.

; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 41

The mapping between virtual and physical addresses is maintained by the
kernel device driver. The mapping between 64-bit virtual addresses and
physical addresses is maintained using a variation on B-trees in memory.
Each address points to a 512-byte flash memory page, allowing a virtual
address space of 273 bytes. Updates are made stable by recording them in
a log-structured fashion: the hardware interface is append-only. The device
driver is also responsible for reclaiming unused storage using a garbage col-
lection algorithm. Bulk erasure scheduling and wear-leveling algorithms for
flash endurance are integrated into the garbage collection component of the
device driver.

dfs

DFS is a full-fledged implementation of a UNIX file system that is designed
to take advantage of the virtualized flash storage layer. The implementation
runs as a loadable kernel module in the Linux 2.6 kernel. The DFS kernel
module implements the traditional UNIX file system APIs via the Linux VFS
layer. It supports the usual methods such as open, close, read, write, pread,
pwrite, lseek, and mmap. The Linux kernel requires basic memory-mapped
I/O support in order to execute binaries residing on DFS file systems.

Leveraging Virtualized Flash Storage

We have configured the ioDrive to export a sparse 64-bit logical block ad-
dress space. Since each block contains 512 bytes, the logical address space
spans 273 bytes. DFS can then use this logical address space to map file
system objects to physical storage. DFS delegates I-node and file data block
allocations and deallocations to the virtualized flash storage layer.

DFS allocates virtual address space in contiguous “allocation chunks.” The
size of these chunks is configurable at file system initialization time but is
232 blocks, or 2TB, by default. User files and directories are partitioned into
two types: large and small. A large file occupies an entire chunk, whereas
multiple small files reside in a single chunk. When a small file grows to be-
come a large file, it is moved to a freshly allocated chunk. The size of these
allocation chunks and the maximum size of small files can be chosen in a
principled manner when the file system is initialized. There have been many
studies of file size distributions in different environments (e.g., Tanenbaum
et al. [13], Douceur and Bolosky [8]). By default, small files are those less
than 32KB.

F i g u r e 2 : D FS lo g i c al b lo c k add r e s s m a p p i n g f o r la r g e f i l e s .
O n ly th e w i dth o f th e f i l e b lo c k n u m b e r d i f f e r s f o r s m all
f i l e s .

42	 ; LO G I N : VO L . 35, N O. 2

The current DFS implementation uses a 32-bit I-node number to identify in-
dividual files and directories and a 32-bit block offset into a file. This means
that DFS can support a total of up to 232 − 1 files and directories (since the
first I-node number is reserved for the system). The largest supported file
size is 2TB with 512-byte blocks, since the block offset is 32 bits. The I-node
itself stores the base virtual address for the logical extent containing the file
data. This base address together with the file offset identifies the virtual ad-
dress of a file block. Figure 2 depicts the mapping from file descriptor and
offset to logical block address in DFS.

The very simple mapping from file and offset to logical block address has
the added benefit of making it straightforward for DFS to combine multiple
small I/O requests to adjacent regions of a file into a single larger I/O. This
strategy can improve performance, because the flash device delivers higher
transfer rates with larger I/Os.

DFS Layout and Objects

As shown in Figure 3, there are three kinds of files in the DFS file system.
The first file is a system file which includes the boot block, superblock, and
all I-nodes. This file is a “large” file and occupies the first allocation chunk
at the beginning of the raw device. The boot block occupies the first few
blocks (sectors) of the raw device. A superblock immediately follows the
boot block. The remainder of the system file contains all I-nodes as an array
of block-aligned I-node data structures.

F i g u r e 3 : L a y o u t o f D FS s y s t e m a n d u s e r f i l e s i n v i r t u al -
i z e d f la s h s to r a g e . T h e f i r s t 2 T B a r e u s e d f o r s y s t e m f i l e s .
T h e r e m a i n i n g 2 T B allo c at i o n c h u n k s a r e f o r u s e r data o r
d i r e c to r y f i l e s . A la r g e f i l e ta k e s th e w hol e c h u n k ; m u lt i p l e
s m all f i l e s a r e p a c k e d i n to a s i n g l e c h u n k .

Each I-node is identified by a 32-bit unique identifier or I-node number.
Given the I-node number, the logical address of the I-node within the I-node
file can be computed directly. Each I-node data structure is stored in a single
512-byte flash block. Each I-node contains the I-number, base virtual ad-
dress of the corresponding file, mode, link count, file size, user and group
IDs, any special flags, a generation count, and access, change, birth, and
modification times with nanosecond resolution. These fields take a total of
72 bytes, leaving 440 bytes for additional attributes and future use. Since an
I-node fits in a single flash page, it will be updated atomically by the virtual-
ized flash storage layer.

The implementation of DFS uses a 32-bit block-addressed allocation chunk
to store the content of a regular file. Since a file is stored in a contiguous, flat
space, the address of each block offset can be simply computed by adding
the offset to the virtual base address of the space for the file. A block read
simply returns the content of the physical flash page mapped to the virtual
block. A write operation writes the block to the mapped physical flash page

; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 43

directly. Since the virtualized flash storage layer triggers a mapping or re-
mapping on write, DFS does the write without performing an explicit block
allocation. Note that DFS allows holes in a file without using physical flash
pages, because of the dynamic mapping. When a file is deleted, the DFS will
issue a deallocation operation provided by the virtualized flash storage layer
to deallocate and unmap the virtual space of the entire file.

A DFS directory is mapped to flash storage in the same manner as ordinary
files. The only difference is its internal structure. A directory contains an
array of name, I-node number, and type triples. The current implementa-
tion is very similar to that found in FFS [11]. Updates to directories, includ-
ing operations such as rename, which touch multiple directories and the
on-flash I-node allocator, are made crash-recoverable through the use of a
write-ahead log. Although widely used and simple to implement, this ap-
proach does not scale well to large directories. The current version of the
virtualized flash storage layer does not export atomic multi-block updates.
We anticipate reimplementing directories using hashing and a sparse virtual
address space made crash recoverable with atomic updates.

Direct Data Accesses

DFS promotes direct data access. The current Linux implementation of DFS
allows the use of the buffer cache in order to support memory mapped I/O,
which is required for the exec system call. However, for many workloads
of interest, particularly databases, clients are expected to bypass the buffer
cache altogether. The current implementation of DFS provides direct access
via the direct I/O buffer cache bypass mechanism already present in the
Linux kernel. Using direct I/O, page-aligned reads and writes are converted
by the kernel directly into I/O requests to the block device driver.

There are two main rationales for this approach. First, traditional buffer
cache design has several drawbacks. The traditional buffer cache typi-
cally uses a large amount of memory. Buffer cache design is quite complex,
since it needs to deal with multiple clients, implement sophisticated cache
replacement policies to accommodate various access patterns of different
workloads, maintain consistency between the buffer cache and disk drives,
and support crash recovery. In addition, having a buffer cache imposes a
memory copy in the storage software stack.

Second, flash memory devices provide low-latency accesses, especially
for random reads. Since the virtualized flash storage layer can solve the
write latency problem, the main motivation for the buffer cache is largely
eliminated. Thus, applications can benefit from the DFS direct data access
approach by utilizing most of the main memory space typically used for the
buffer cache for a larger in-memory working set.

Crash Recovery

The virtualized flash storage layer implements the basic functionality of
crash recovery for the mapping from logical block addresses to physical flash
storage locations. DFS leverages this property to provide crash recovery.
Unlike traditional file systems that use non-volatile random access memory
(NVRAM) and their own logging implementation, DFS piggybacks on the
flash storage layer’s log.

Since flash memory is a form of NVRAM, DFS leverages the support from
the virtualized flash storage layer to achieve crash recoverability. When
a DFS file system object is extended, DFS passes the write request to the
virtualized flash storage layer, which then allocates a physical page of the

44	 ; LO G I N : VO L . 35, N O. 2

flash device and logs the result internally. After a crash, the virtualized flash
storage layer runs recovery using the internal log. The consistency of the
contents of individual files is the responsibility of applications, but the on-
flash state of the file system is guaranteed to be consistent.

Discussion

The current DFS implementation has several limitations. The first is that it
does not yet support snapshots. The second is that we are currently imple-
menting support for atomic multi-block updates in the virtualized flash
storage layer. The log-structured, copy-on-write nature of the flash storage
layer makes it possible to export such an interface efficiently. In the interim,
DFS uses a straightforward extension of the traditional UFS/FFS directory
structure. The third is the limitation on the number and on the maximum
size of files.

Evaluation

Application Description I/O Patterns

Quicksort A quicksort on a large dataset Mem-mapped I/O

N-gram A program for querying
n-gram data

Direct, random read

KNNImpute Processes bioinformatics
microarray data

Mem-mapped I/O

VM Update Update of an OS on several
virtual machines

Sequential read & write

TPC-H Standard benchmark for
decision support

Mostly sequential read

F i g u r e 4 : A p p l i c at i o n s a n d th e i r c ha r a c t e r i s t i c s

We are interested in answering two main questions:

How do the layers of abstraction perform? ■■

How does DFS compare with existing file systems? ■■

To answer the first question, we use a micro-benchmark to evaluate the
number of I/O operations per second (IOPS) and bandwidth delivered by
the virtualized flash storage layer and by the DFS layer. To answer the sec-
ond question, we compare DFS with ext3 by using a micro-benchmark and
an application suite. Ideally, we would compare with existing flash file sys-
tems as well; however, file systems such as YAFFS [10] and JFFS2 [16] are
designed to use raw NAND flash and are not compatible with the FusionIO
hardware.

Wall Time

Application Ext3 DFS Speedup

Quicksort 1268 822 1.54

N-gram (Zipf) 4718 1912 2.47

KNNImpute 303 248 1.22

VM Update 685 640 1.07

TPC-H 5059 4154 1.22

F i g u r e 5 : A p p l i c at i o n b e n c h m a r k e x e c u t i o n t i m e
i m p r ov e m e n t : b e s t o f D FS v s . b e s t o f e x t 3

; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 45

All of our experiments were conducted on a desktop with an Intel quad core
processor running at 2.4GHz with a 4MB cache and 4GB DRAM. The host
operating system was a stock Fedora Core installation running the Linux
2.6.27.9 kernel. Both DFS and the virtualized flash storage layer imple-
mented by the FusionIO device driver were compiled as loadable kernel
modules.

We used a FusionIO ioDrive with 160GB of SLC NAND flash connected via
PCI-Express x4 [1]. The advertised read latency of the FusionIO device is
50µs. For a single reader, this translates to a theoretical maximum through-
put of 20,000 IOPS. Multiple readers can take advantage of the hardware
parallelism in the device to achieve much higher aggregate throughput. For
the sake of comparison, we also ran the micro-benchmarks on a 32GB Intel
X25-E SSD connected to a SATA II host bus adapter [2]. This device has an
advertised typical read latency of about 75µs.

We have evaluated our design and implementation with both a collection of
micro-benchmarks and an application benchmark suite. Figure 4 summa-
rizes the applications in the benchmark and their characteristic I/O request
patterns. Figure 5 shows the elapsed wall time for each of the applications
for both ext3 and DFS and the speedup, which varies from 1.07 to 2.47.

The quicksort application is a single-threaded sort of 715 million 24-byte
key-value pairs memory mapped from a single 16GB file that is four times
larger than main memory. Although quicksort exhibits good locality of refer-
ence, this benchmark program nonetheless stresses the memory-mapped I/O
subsystem.

The n-gram benchmark issues random queries against a single large hash
table index of the 5-grams in the Google n-gram corpus [7], which contains
a large set of n-grams and their appearance counts taken from a crawl of the
Web. The resulting index, which contains 26GB worth of small key-value
pairs for 5-grams alone, has proved valuable for a variety of computational
linguistics tasks. We present the results for a Zipf-distributed query distribu-
tion over the 5-grams.

The KNNImpute [14] benchmark program is a very popular bioinformatics
code for estimating missing values in data obtains from wet lab microar-
ray experiments. The program is a multi-threaded implementation using
memory-mapped I/O.

The virtual machine update benchmark consists of a full operating system
update of several VirtualBox instances running Ubuntu 8.04 hosted on a
single server. Since each virtual machine typically runs the same operating
system but has its own copy, operating system updates can pose a significant
performance problem in some environments, as each instance needs to apply
critical and periodic system software updates simultaneously. In our bench-
mark environment there were a total of 265 packages updated, containing
343MB of compressed data and about 38,000 distinct files.

The last benchmark program is the standard Transaction Processing Coun-
cil’s Benchmark H (TPC-H) [2]. We used the Ingres database to run the
benchmark at scale factor 5, which corresponds to about 5GB of raw input
data and 90GB for the data, indexes, and logs stored on flash once loaded
into the database.

Our results show that the virtualized flash storage layer delivers perfor-
mance close to the limits of the hardware, both in terms of IOPS and
bandwidth. Our results also show that DFS is much simpler than ext3 and
achieves better performance in both the micro- and application benchmarks
than ext3, often using less CPU power. Our paper includes the results of

46	 ; LO G I N : VO L . 35, N O. 2

several additional benchmarks, including micro-benchmarks. These results
were excluded from this article due to space constraints.

Conclusion

This article presents the design, implementation, and evaluation of DFS and
describes FusionIO’s virtualized flash storage layer. We have demonstrated
that novel layers of abstraction specifically for flash memory can yield sub-
stantial benefits in software simplicity and system performance.

We have learned several things from the DFS design process. First, it is pos-
sible to implement DFS so that it is both simple and has short, direct-path
flash memory. Much of its simplicity comes from leveraging the virtualized
flash storage layer for large virtual storage space, block allocation and deal-
location, and atomic block updates.

Second, the simplicity of DFS translates into performance. Our micro-
benchmark results show that DFS can deliver 94,000 IOPS for random reads
and 71,000 IOPS random writes with the virtualized flash storage layer on
FusionIO’s ioDrive. The performance is close to the hardware limit.

Third, DFS is substantially faster than ext3. For direct access performance,
DFS is consistently faster than ext3 on the same platform, sometimes by
20%. For buffered access performance, DFS is also consistently faster than
ext3, and sometimes by over 149%. Our application benchmarks show that
DFS outperforms ext3 by 7% to 250% while requiring less CPU power.

We have also observed that the impact of the traditional buffer cache dimin-
ishes when using flash memory. When there are 32 threads, the sequential
read throughput of DFS is about twice that of direct random reads with DFS,
whereas ext3 achieves only a 28% improvement over direct random reads
with ext3.

references

[1] FusionIO ioDrive specification sheet: http://www.fusionio.com/products/
iodrive/.

[2] Intel X25-E SATA solid-state drive: http://download.intel.com/design/
flash/nand/extreme/extreme-sata-ssd-datasheet.pdf.

[3] Understanding the Flash Translation Layer (FTL) Specification: Technical
report AP-684, Intel Corporation, December 1998.

[4]TPC Benchmark H Decision Support (Transaction Processing Perfor-
mance Council, 2008): http://www.tpc.org/tpch.

[5] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, and R.
Panigrahy, “Design Tradeoffs for SSD Performance,” Proceedings of the 2008
USENIX Annual Technical Conference (USENIX Association, 2008).

[6] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A Design for High-Per-
formance Flash Disks,” ACM Operating Systems Review, vol. 41, no. 2 (April
2007).

[7] T. Brants and A. Franz, Web 1T 5-gram Version 1, 2006.

[8] J.R. Douceur and W.J. Bolosky, “A Large Scale Study of File-System Con-
tents,” Proceedings of the 1999 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems (1999).

; LO G I N : A pr il 201 0	D FS : A F ile System fo r V i rtuali ze d Fla sh Sto r age	 47

[9] W. Josephson, L. Bongo, D. Flynn, and K. Li, “DFS: A File System for Vir-
tualized Flash Storage,” Proceedings of FAST ’10: 8th USENIX Conference on File
and Storage Technologies (USENIX Association, 2010), pp. 85–100.

[10] C. Manning, “YAFFS: The NAND-Specific Flash File System,”
LinuxDevices.Org, September 2002.

[11] M.K. McKusick, W.N. Joy, S.J. Leffler, and R.S. Fabry, “A Fast File Sys-
tem for UNIX,” ACM Transactions on Computer Systems, vol. 2, no. 3, August
1984.

[12] A. Rajimwale, V. Prabhakaran, and J.D. Davis, “Block Management in
Solid State Devices,” unpublished technical report, January 2009.

[13] A.S. Tanenbaum, J.N. Herder, and H. Bos, “File Size Distribution in
UNIX Systems: Then and Now,” ACM SIGOPS Operating Systems Review,
vol. 40, no. 1 (January 2006), pp. 100–104.

[14] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastieevor, R.
Tibshirani, D. Botstein, and R.B. Altman, “Missing Value Estimation Meth-
ods for DNA Microarrays,” Bioinformatics, vol. 17, no. 6 (2001), pp. 520–525.

[15] S. Tweedie, “Ext3, Journaling Filesystem,” Ottowa Linux Symposium,
July 2000.

[16] D. Woodhouse, “JFFS: The Journalling Flash File System,” Ottowa Linux
Symposium, 2001.

