
48 ; LO G I N : VO L . 35, N O. 2

J a k e w i R e s a n d a n d R e w w a R F i e l d

beyond blocks and
files

Jake Wires received his M.S. in computer science
from the University of British Columbia. He cur-
rently works in the Datacenter and Cloud Division at
Citrix, where his focus is storage virtualization.

Jake.Wires@Citrix.com

Andrew Warfield is an assistant professor in the
Department of Computer Science at the University
of British Columbia.

andy@cs.ubc.ca

v I r t ua l m ac h I n es (vm s) c h a n g e h ow
file and storage systems need to work. Most
conventional file systems were designed
with the assumption that files would be ac-
cessed only through the operating system’s
file interface. This assumption seemed
innocuous when operating systems owned
their hardware, but virtual machines use
virtual disks owned by virtual machine
monitors (VMMs)—and now VMMs want
an interface to access VM files too. Pres-
ently, VMMs are mostly limited to operating
at the block layer, but in order to efficiently
provide features such as versioning and
deduplication they need to operate at the
file system layer. Moreover, the problem of
managing large numbers of VMs would be
greatly simplified if VMMs better under-
stood files. New file systems designed for
use in virtualized operating systems should
expose a file interface to VMMs and should
better express data dependencies so that
files can be safely manipulated from out-
side VMs.

As fans of virtualization may already well know,
too much convenience can be a burden. In an era
where the proliferation of real, expensive hardware
already frequently motivates “spring cleaning”
mass emails from IT departments, the emerging
ability of users to spawn virtual machines at their
pleasure can lead to managerial headaches. For
example, while a system administrator might be
quite pleased when she first discovers how easy
it is to create a thousand Windows XP VMs, her
spirits may falter a bit after she finds that each VM
must be customized with individual SIDs and AD
credentials if it is to be very useful on the corpo-
rate LAN. And she may grow downright frustrated
when, a few months after distributing all these
shiny new VMs, she finds that every one of them
needs to be upgraded—without disrupting any
changes users might have made.

Current technologies offer appealing solutions for
managing the storage consumed by VMs, but man-
aging the data produced by VMs is still very much
an open problem. In many ways, this is an issue
of perspective: the advent of VMMs challenges
the traditional view that a disk and its files belong

; LO G I N : A pr I L 201 0 B E yO N d B LO Ck s A N d F I LEs 49

primarily to an operating system. The more popular VMs become, the more
important it will be to expose OS data to VMMs in meaningful ways.

The familiar debate between block and file-oriented interfaces is no less
germane to VMs than physical hardware, although virtualization may add a
few new twists. The block interface, as the argument goes, is sublime in its
simplicity: it is stateless, straightforward, and OS-agnostic. The file system
interface, on the other hand, is often more relevant: it defines much richer
storage abstractions and is better aligned with the way users typically reason
about their data. This relevance comes at a cost, though:

File systems are complex and often intricately entwined with other com-■■

ponents of the operating system, such as page caches and virtual memory
managers.
File systems must satisfy sophisticated consistency requirements along ■■

performance-critical data paths.
File systems tend to exhibit much greater variation across operating sys-■■

tems.

In general, it is easier for VMMs to interpose on guest VMs at the block layer
than at the file system layer. Essential features such as thin provisioning
and fast cloning are simple to implement behind the block interface, where
they can easily support legacy OSes. Additional features such as versioning
and deduplication can be implemented at the block layer as well, although
purists might offer arguments for moving these features into the file system.
There is very little benefit, for instance, in versioning things like Windows
page files and hibernation files—old versions of such files are, for all practi-
cal purposes, worthless—but when operating at the block level, it is very
difficult to avoid doing so. The upshot in this case is that with block-level
versioning, disk snapshots intended to preserve a few kilobytes of user data
may end up wasting gigabytes of disk space.

But putting matters of expediency aside, these block-level technologies share
a noteworthy characteristic: they all contribute to making a mess of the
otherwise simple block layer. While cloning a virtual disk is almost free,
merging diverged clones is nearly impossible. Copy-on-write disks provide
a quick path to versioning, but they introduce cumbersome dependency
chains. Deduplication can reclaim storage space, but it also effectively in-
validates disks for use with any tools that don’t understand the deduplicator
metadata. It may be tempting to ignore these issues when one’s main con-
cern is ticking feature check-boxes, but as systems begin to see extended use
in the real world, the growing accumulation of interdependent but divergent
virtual disks can pose unwieldy problems.

If block-level implementations suffer from such drawbacks, why don’t VMMs
start plugging into file systems? One major obstacle is that, irrespective of all
the hooks and probes and monitors we have thus far attached to VMs, file
systems have remained black boxes, and efforts to expose their interfaces to
the VMM seem to call for more of the pickax than the scalpel. Even if it is
feasible to teach VMMs about the on-disk layout of file systems, this alone
would not be enough to provide features such as versioning and deduplica-
tion, because of issues such as write ordering and cache consistency within
the VM. Interposing on VM file systems is a major effort that would require
OS-specific implementations, introduce considerable security risks, and
likely require a great deal of maintenance over time as VM file systems grow
and evolve.

Such challenges have led to the proposal of new storage abstractions such
as object-based disks and file/block hybrids like “flocks” (not your standard
mutex primitive—perhaps it’s inevitable that we’ll one day hear clamoring

50 ; LO G I N : VO L . 35, N O. 2

for the widespread adoption of “biles”). These abstractions offer some in-
triguing new properties. Imagine, for instance, that object-based storage had
been adopted 10 or 20 years ago: VMMs would be well positioned to provide
features like file-grained versioning and single-instance storage while still
hiding behind an arguably tractable, OS-agnostic interface.

But what, after all, is in a name? That which we call a file, by any other
name would be as complex. While most OS interfaces are designed to isolate
system resources, file systems (and particularly file system namespaces) are
peculiar in that they offer opportunities to introduce odd dependencies and
circumvent isolation. With a bit of hand waving we can relegate the prob-
lem of files to object-based disks, and in so doing we can even congratulate
ourselves a bit for better separating storage and namespace implementations,
but ultimately we’re left with containers of application-level information.
If VMMs were able to manipulate these containers they could provide new
features to a variety of OSes, but would we really be satisfied?

An especially prickly example here is VM upgrades. Administrators would
like the ability to push OS and application updates down onto VM images
without disturbing individual users’ data. If VMMs recognized file objects,
they could enforce read-only or copy-on-write policies for system-admin-
istered files, offering greater confidence that these files could be upgraded
safely. But it seems doubtful that policies could be derived which would offer
users the flexibility they demand while still guaranteeing that their personal
customizations would be completely impervious to disruption, direct or
otherwise, by system updates. In the end, no matter how transparent the
structure of persistent data becomes, there will always be some amount of
semantic information that will reside beyond the purview of administrators
and limit their ability to safely manipulate VM disk images.

But maybe there are things we can do to mitigate these problems. For start-
ers, the emerging presence of large VM deployments warrants a reevalua-
tion of what a file is and who it is for. Perhaps we should even look beyond
blocks and files to see if we can’t find better ways of structuring VM seman-
tics. Developing more effective methods of expressing data dependencies
and enforcing isolation in the storage stack should be a high priority. As
well, new standards of scalability are called for; just as current file systems
allow us to manage thousands of files, new storage environments should let
us manage thousands of file systems.

