
; LO G I N : A pr il 201 0	P r actical Pe rl Tool s : Let M e Hel p Yo u G et Regu la r	 53

D a v i d N . B l a n k - E d e l m a n

practical Perl tools:
let me help you get
regular
David N. Blank-Edelman is the director of technology
at the Northeastern University College of Computer
and Information Science and the author of the
O’Reilly book Automating System Administration
with Perl (the second edition of the Otter book),
available at purveyors of fine dead trees every-
where. He has spent the past 24+ years as a system/
network administrator in large multi-platform envi-
ronments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ’05 conference
and one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

Di f f e r e n t p e o p l e h av e v e r y d i f f e r -
ent opinions of Perl as a language, but I
think you might find a healthy majority who
agree on the value of the regular expression
engine it introduced. You probably get no
better vote of confidence in the language
world than to have a feature and sometimes
its syntax copied almost verbatim. Python,
Ruby, Java, .NET, the list goes on, all support
some version of Perl-ish regular expressions.
There’s even a C library called “PCRE—Perl
Compatible Regular Expressions,” found at
http://www.pcre.org/, which can bring that
power to your program. Perl 6 aims to intro-
duce further innovation on this front (see
http://perlcabal.org/syn/ for more details).

In the meantime, there are a number of ways to
make the existing support even more useful and
powerful. This column will show you a few Perl
regular expression–related modules in that vein.

Regexp Porn

If you want to get really serious about regular
expressions, and I’d like to suggest that you do
because they are often key to Perl programs, there’s
one book you need to read. Go buy Jeffrey Friedl’s
Mastering Regular Expressions. I’m not saying this
just to shill for a fellow O’Reilly author. The book’s
a little short on plot and character development,
but it is truly the best text on the subject. It will
improve your ability to write and understand regu-
lar expressions in a number of languages and tools
besides Perl (such as awk/grep).

Don’t Write Your Own Regular Expressions

Regular readers of this column are familiar with
this shtick where I say something is the best thing
since split() bread in the first breath and then tell
you not to use it in the second, unless . . .

Here’s the latest one: don’t write your own regu-
lar expressions for common items. First check
to make sure it isn’t already included in the
Regexp::Common family of modules. Lots and lots
of effort by smart people (certainly smarter than
me) has gone into creating a collection of robust,
reusable regular expressions for a whole slew of
things. In just the Regexp::Common distribution it-
self, you can find regular expressions for matching:

54	 ; LO G I N : VO L . 35, N O. 2

credit card numbers ■■

Social-Economical Numbers (e.g., social security numbers) ■■

URIs of all sorts ■■

strings with balanced delimiters ■■

lists ■■

IP addresses ■■

numbers ■■

profanity ■■

whitespace ■■

postal codes■■

Using Regexp::Common is pretty simple. First you load the module and
specify which subset of regular expressions you’d like to use:

use Regexp::Common qw /net/;

Regexp::Common will then populate a tied hash called %RE that will be
filled with the patterns you need. We can then use that hash in the regular
expression match of our choice, like so:

/^$RE{net}{IPv4}$/ and print “$_ is a dotted decimal IP address\n”;

The module uses further sub-hash syntax to select more specific options,
such as:

/^$RE{net}{IPv4}{oct}{-sep => ‘:’}$/ # matches colon-separated octal IP addresses

Many of the pattern sets take an option -keep, as in:

$contains_ipaddr =~ /$RE{net}{IPv4}{-keep}/;

The -keep option lets you capture all or parts of the match. In this last ex-
ample, $1 gets set to the full match and $2 through $5 store the components
of the match. For example, if $contains_ipaddr was the string ‘Your address
is 192.168.0.5’, $1 would contain 192.168.0.5, $2 would be 192, $3 would
be 168, and so on.

And It’s a Tie

The following idea is either incredibly useful or it is just a parlor trick,
depending on your specific needs. I say that so you’ll use it with caution.
Mutating the standard hash semantics always makes your scripts a little
harder to maintain, because it defies the usual expectations of the code
reader. But perhaps it will be worth it to you.

There exist two modules, Tie::RegexpHash and Tie::Hash::Regex, that bring
some regular expression magic to your hash data structures. The former
lets you write code to store a regular expression as the hash key instead of a
scalar. Here’s the example from the documentation:

use Tie::RegexpHash;

my %hash;

tie %hash, ‘Tie::RegexpHash’;

$hash{ qr/^5(\s+|-)?gal(\.|lons?)?/i } = ‘5-GAL’;

$hash{‘5 gal’};	 # returns “5-GAL”
$hash{‘5GAL’};	 # returns “5-GAL”
$hash{‘5 gallon’};	 # also returns “5-GAL”

Tie::Hash::Regex takes this idea in a different direction. Instead of storing
the regular expression as the key, as we just saw, Tie::Hash::Regex first tries

; LO G I N : A pr il 201 0	P r actical Pe rl Tool s : Let M e Hel p Yo u G et Regu la r	 55

the usual exact match during a key lookup. If that fails, it then attempts a
regular expression match to find that key. From its documentation:

use Tie::Hash::Regex;
my %h;

tie %h, ‘Tie::Hash::Regex’;

$h{key}	 = ‘value’;
$h{key2}	 = ‘another value’;
$h{stuff}	 = ‘something else’;

print $h{key};	 # prints ‘value’
print $h{2}; 	 # prints ‘another value’
print $h{‘̂ s’};	 # prints ‘something else’

Muchos Matching

There is a class of problems you are bound to run into at some point that
entails having to run a (potentially large) number of matches over the same
text. For example, if you need to find out if a mail message contains a cer-
tain set of keywords, you may find yourself initially writing code that looks
like this:

my @keywords = qw(urgent acute critical dire exigent pressing serious grave);

foreach my $keyword in (@keywords){
	 do_something() if $text =~ /$keyword/;
}

If you have a large set of keywords or a large set of repetitions, this gets old/
inefficient very quickly, because you are spinning up the regexp engine and
forcing it to traipse through the same text over and over again. One standard
way to improve on this method is to use regular expression alternation and
do a single match on the text, as in:

my @keywords = qw(urgent acute critical dire exigent pressing serious grave);
quotemeta is used to neuter regexp chars in the keyword list
my $match = join ‘|’, map { quotemeta } @keywords;
do_something() if $text =~ /$match/;

This is far more efficient even (and especially) if the keyword list is very
large. But we can do better than this. The Text::Match::FastAlternatives mod-
ule is meant to handle exactly this case. It will analyze your list and create a
“matcher” which you can use on the text you are checking:

use Text::Match::FastAlternatives;
my @keywords = qw(urgent acute critical dire exigent pressing serious grave);
my $keymatch = Text::Match::FastAlternatives->new(@keywords);
do_something() if $keymatch->match($text);

People who follow the latest developments in Perl might say at this point,
“Wait! But what about the trie-based optimization improvements in 5.10?
Don’t they make the regexp alternative code we just saw fast too?” It is an
excellent question, albeit incomprehensible for those people who don’t follow
the latest developments in Perl. One of the cool things the Perl developers
added in the 5.10 release was some modifications to the regular expression
engine that would automatically handle alternation cases like this using a
more efficient internal representation. If you use 5.10 and above, you get
this speedup for free. Text::Match::FastAlternatives is actually faster than the
improved regular expression engine, so it is still potentially the best option

56	 ; LO G I N : VO L . 35, N O. 2

for even 5.10+ users. See the Text::Match::FastAlternatives documentation
for more details.

But what if we’re dealing with something a little more complicated than a
list of keywords? What if, instead, we had a set of regular expressions we
needed to check against a piece of text? If you need something more in that
direction, you would be well served to look at the Regexp::Assemble module.
Its documentation says:

Regexp::Assemble takes an arbitrary number of regular expressions and
assembles them into a single regular expression (or RE) that matches all
that the individual REs match.

As a result, instead of having a large list of expressions to loop over, a tar-
get string only needs to be tested against one expression. This is interest-
ing when you have several thousand patterns to deal with. Serious effort
is made to produce the smallest pattern possible.

It is also possible to track the original patterns, so that you can determine
which, among the source patterns that form the assembled pattern, was
the one that caused the match to occur.

The example from the documentation looks like this:

use Regexp::Assemble;

my $ra = Regexp::Assemble->new;
$ra->add(‘ab+c’);
$ra->add(‘ab+-’);
$ra->add(‘a\w\d+’);
$ra->add(‘a\d+’);
print $ra->re; # prints a(?:\w?\d+|b+[-c])

Turning on pattern tracking (so you can figure out which regexp matched) is
a matter of adding a track => 1 option to the new() call above and using the
source() method. There is one fiddly bit related to pattern tracking and secu-
rity for people running versions of Perl earlier than 5.10, so be sure to read
the documentation before you start to use this feature. When you do consult
the docs, you’ll discover that the module has a fairly rich set of features. For
example, it can read the list of patterns to assemble directly from a file using
add_file(). It can also return the assembled pattern as a string so you can
store it for later use.

One last Regexp::Assemble tip to mention before moving on to our last
module of this column: Regexp::Assemble does a good job of creating “the
smallest pattern possible,” but another author has written an add-on module
called Regexp::Assemble::Compressed which purports to “assemble more
compressed regular expressions.” It is a subclass of Regexp::Assemble,
so you would use it in the same way as its parent module. I haven’t had
a chance to test it, but you might want to give it a look if smaller results
would be helpful.

Do It All at Once

So far we’ve only talked about using regular expressions for matching pur-
poses. For the last module I’d like to mention, let’s consider the other main
use of regular expressions: substitution. One cool module you may not have
heard of is Regexp::Subst::Parallel, which claims to “safely perform multiple
substitutions in parallel.” Let’s take a simple example of how this could
be useful. Imagine we had to change the gender of the English words in a

; LO G I N : A pr il 201 0	P r actical Pe rl Tool s : Let M e Hel p Yo u G et Regu la r	 57

piece of text. If we wanted to do this by running a set of regular expressions
against the text, we’d quickly run into trouble if our code looked like this:

$text =~ s/ \bshe\b/he/;
$text =~ s/ \bhe\b/she/;
$text =~ s/ \bher\b/him/;
$text =~ s/ \bhim\b/her/;
$text =~ s/ \bfemale\b/male/;
$text =~ s/ \bmale\b/female/;

. . . and so on

Ordinarily we’d be forced to switch to a different parsing and transform
approach, but Regexp::Subst::Parallel lets us write code that will do the
intended substitutions:

use Regexp::Subst::Parallel;
my $text = subst($text,
	 qr/ \bshe\b/	 => ‘he’,
	 qr/ \bhe\b/	 => ‘she’,
	 qr/ \bher\b/	 => ‘him’,
	 qr/ \bhim\b/	 => ‘her’,
	 qr/ \bfemale\b/	 => ‘male’,
	 qr/ \bmale\b/	 => ‘female’,
);

Hopefully, after this set of tips you are feeling more regular already. Take
care, and I’ll see you next time.

