
58 ; LO G I N : VO L . 35, N O. 2

p e t e R B a e R g a lV i n

Pete’s all things Sun:
open source and free
deduplication

Peter Baer Galvin is the chief technologist for Corpo-
rate Technologies, a premier systems integrator and
VAR (www.cptech.com). Before that, Peter was the
systems manager for Brown University’s Computer
Science Department. He has written articles and
columns for many publications and is co-author of
the Operating Systems Concepts and Applied Operat-
ing Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.
Peter blogs at http://www.galvin.info and twitters
as “PeterGalvin.”

pbg@cptech.com

I n t h e p r e v I o u s I s s u e o f ; LOGIN :
I concluded the column with a quick
 introduction to the new deduplication fea-
ture of OpenSolaris. In this issue of “Pete’s
All Things Sun” I dive deeper into the details
of how to gain access to that feature, how it
works, and how to use it.

overview

There is certainly a lot of industry-wide interest in
deduplication. Companies like Data Domain (now
purchased by EMC) were founded on the premise
that companies are willing to add complexity (e.g.,
appliances) in exchange for reducing the number
of blocks used to store their data. For instance,
deduplication seems to be a perfect addition to a
backup facility. Consider the power of a device that
can be a backup target: as it receives blocks of a
backup stream, it throws out blocks it has previ-
ously stored, replacing that block with a pointer to
the duplicate block.

A quick logic exercise of analyzing the types of
data that are being backed up should convince you
that there is quite a lot of duplication in general
(operating system images, binaries, and repeated
backups of the same user and application data)
and that there is quite a huge potential for savings
of disk space via deduplication. Virtual machine
images are very deduplicatable, for example, while
user and application files are less so. But even
when data is not intrinsically duplicated, from the
time it is created through its life-cycle there may
end up being many, many copies of it. Consider
that deduplication can be used as part of a business
continuance (disaster recovery) scenario, in which
the deduplicated on-disk backup is replicated to a
second site. Only sending a given block once can
be quite a savings in network bandwidth, as well as
the obvious savings of only needing enough storage
at the second site to hold one copy of each block.

It’s an established pattern in IT that a new feature
implemented first by a startup as part of a separate
product goes on to become a standard component
of other companies’ products. That pattern cer-
tainly seems true of Sun’s implementation of dedu-
plication as part of ZFS, included in an open source
and free OpenSolaris distribution. The announce-
ment of the integration of deduplication into ZFS
and details of the implementation are available in
a blog post by Jeff Bonwick, Sun’s lead engineer on
the project [1]. I would expect to see deduplication,

; LO G I N : A pr I L 201 0 pE TE’s A LL Th I N Gs su N : O pE N sO u rCE A N d FrE E d E du pLI C ATI O N 59

just like snapshots, thin provisioning, compression, replication, and myriad
other features, becoming a component of many storage devices. Thus, even
if you are not interested in ZFS deduplication, you may be interested in how
deduplication works and what problems it can solve.

How it works

Deduplication works by “thumb-printing,” in which an entity (either a file
or a block, typically) is checksummed, resulting in a hash value. Hashing
is very effective, providing in almost all cases a unique value for a unique
entity. If the values match, the entities are probably the same, and the new
entity is not stored; rather, a pointer is stored pointing to the already stored
matching entity.

The checksumming occurs at one of two possible times, depending on the
implementation. The checksum analysis is overhead, taking up CPU cycles
and I/O cycles as an inbound block is checksummed, and that result is
checked against the checksums of all other blocks currently stored. For that
reason and others, some implementations perform deduplication in post-
processing. That is, they store all entities on write request, and then later
compare the entities and remove duplicates. That is how NetApp dedupli-
cates on their filers.

Alternately, the deduplication can occur at the time of writing, which is how
Data Domain and ZFS deduplication works. This case takes a performance
penalty at write time, but does not use up as much space as the post-pro-
cessing method.

ZFS deduplication, as with other features of ZFS such as compression, only
works on data written after the specific feature is enabled. If a lot of data al-
ready exists in a ZFS pool, there is no native way to have that deduplicated.
Any new data will be deduplicated rather than written, but for the existing
data to be deduplicated, that data would need to be copied to another pool
(for example) or replicated to a ZFS file system with enabled deduplication.

In ZFS, once deduplication is enabled, the ZFS variable dedupratio shows
how much effect deduplication is having on data in a ZFS pool. ZFS has file
system checksumming enabled by default. Deduplication uses checksum-
ming too, and enables a “stronger” checksum for the file system when en-
abled. (,“Stronger” means less likely to have a hash collision. See Bonwick’s
blog for more details.) By default it uses sha256. As mentioned above, hash-
ing almost always results in matches only when the hashed entities exactly
match. But there is a long way between “almost” and “always.” Hashes can
have collisions in which hashes of two non-matching entities have the same
values. In those cases, there could be corruption as one entity is thrown out
and replaced by a pointer to the other entity, even though the entities are
not the same. See the discussion below about the ZFS deduplication “verify”
option for details on how to solve this problem within ZFS.

Getting to the right bits

Deduplication was integrated into OpenSolaris build 128. That takes a little
explanation. Solaris is Sun’s current commercial operating system. OpenSo-
laris has two flavors—the semiannual supportable release and the frequently
updated developer release. The current supportable release is called 2009.06
and is available for download [2]. Also at that location is the SXCE latest
build. That distribution is more like Solaris 10—a big ol’ DVD including
all the bits of all the packages. OpenSolaris is the acknowledged future of

60 ; LO G I N : VO L . 35, N O. 2

Solaris, including a new package manager (more like Linux) and a live-CD
image that can be booted for exploration and installed as the core release. To
that core more packages can be added via the package manager.

For this example I started by downloading the 2009.06 OpenSolaris distri-
bution. I then clicked on the desktop install icon to install OpenSolaris to
my hard drive (in this case inside VMware Fusion on Mac OS X, but it can
be installed anywhere good OSes can live). My system is now rebooted into
2009.06. The good news is that 2009.06 is a valid release to run for produc-
tion use. You can pay for support on it, and important security fixes and
patches are made available to those with a support contract. The bad news
is that deduplication is not available in that release. Rather, we need to point
my installation of OpenSolaris at a package repository that contains the
latest OpenSolaris developer release. Note that the developer release is not
supported, and performing these next steps on OpenSolaris 2009.06 makes
your system unsupported by Sun. But until an official OpenSolaris distribu-
tion ships that includes the deduplication code, this is the only way to get
ZFS deduplication.

host1$ pfexec pkg set-publisher -O http://pkg.opensolaris.org/dev
opensolaris.org
Refreshing catalog
Refreshing catalog 1/1 opensolaris.org
Caching catalogs ...

Now we tell OpenSolaris to update itself, creating a new boot environment
in which the current packages are replaced by any newer packages:

host1$ pfexec pkg image-update
Refreshing catalog
Refreshing catalog 1/1 opensolaris.org
Creating Plan . . .
DOWNLOAD PKGS FILES XFER (MB)
entire 0/690 0/21250 0.0/449.4
SUNW1394 1/690 1/21250 0.0/449.4
. . .

A clone of opensolaris-1 exists and has been updated and activated. On the
next boot the Boot Environment opensolaris-2 will be mounted on /. Reboot
when ready to switch to this updated BE. You should review the release notes
posted at [3] before rebooting.

A few hundred megabytes of downloads later, OpenSolaris adds a new grub
(on x86) boot entry as the default boot environment, pointing at the updated
version. A reboot to that new environment brings up the latest OpenSolaris
developer distribution, in this case build 129:

host1$ cat /etc/release
 OpenSolaris Development snv_129 X86
 Copyright 2009 Sun Microsystems, Inc. All Rights Reserved.
 Use is subject to license terms.
 Assembled 04 December 2009

At this point, ZFS deduplication is available in this system.

host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup off default

; LO G I N : A pr I L 201 0 pE TE’s A LL Th I N Gs su N : O pE N sO u rCE A N d FrE E d E du pLI C ATI O N 61

testing Deduplication

Now that we have the deduplication bits of OpenSolaris, let’s try using them:

host1$ pfexec zfs set dedup=on rpool
cannot set property for ‘rpool’:
pool and or dataset must be upgraded to set this property or value

Hmm, the on-disk ZFS format is from the 2009.06 release. We need to up-
grade it to gain access to the deduplication feature.

host1$ zpool upgrade
This system is currently running ZFS pool version 22.

The following pools are out of date and can be upgraded. After being up-
graded, these pools will no longer be accessible by older software versions.
VER POOL
--- ------------
14 rpool

Use zpool upgrade -v for a list of available versions and their associated fea-
tures.

host1$ zpool upgrade -v
This system is currently running ZFS pool version 22.

The following versions are supported:
VER DESCRIPTION
--- --
 1 Initial ZFS version
 2 Ditto blocks (replicated metadata)
 3 Hot spares and double parity RAID-Z
 4 zpool history
 5 Compression using the gzip algorithm
 6 bootfs pool property
 7 Separate intent log devices
 8 Delegated administration
 9 refquota and refreservation properties
10 Cache devices
11 Improved scrub performance
12 Snapshot properties
13 snapused property
14 passthrough-x aclinherit
15 user/group space accounting
16 stmf property support
17 Triple-parity RAID-Z
18 Snapshot user holds
19 Log device removal
20 Compression using zle (zero-length encoding)
21 Deduplication
22 Received properties

For more information on a particular version, including supported releases, see
http://www.opensolaris.org/os/community/zfs/version/N, where N is the
version number.

host1$ pfexec zpool upgrade -a
This system is currently running ZFS pool version 22.

Successfully upgraded ‘rpool’

62 ; LO G I N : VO L . 35, N O. 2

Now we are ready to start using deduplication.

host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup off default
host1$ pfexec zfs set dedup=on rpool
host1$ zfs get dedup rpool
NAME PROPERTY VALUE SOURCE
rpool dedup on local
host1$ zpool list rpool
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.7G 9.19G 53% 1.00x ONLINE -

To test out the space savings of deduplication, let’s start with a fresh zpool.
I added another virtual disk to my OpenSolaris virtual machine. Now let’s
make a pool, turn on deduplication, copy the same file there multiple times,
and observe the result:

host1$ pfexec zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.8G 9.08G 54% 1.05x ONLINE -
host1$ pfexec zpool create test c7d1
host1$ zpool list
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
rpool 19.9G 10.8G 9.08G 54% 1.05x ONLINE -
test 19.9G 95.5K 19.9G 0% 1.00x ONLINE -
host1$ zfs get dedup test
NAME PROPERTY VALUE SOURCE
test dedup off default
host1$ pfexec zfs set dedup=on test
host1$ zfs get dedup test
NAME PROPERTY VALUE SOURCE
test dedup on local
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 21K 20G 1% /test
host1$ ls -l /kernel/genunix
-rwxr-xr-x 1 root sys 3358912 2009-12-18 14:37 /kernel/genunix
host1$ pfexec cp /kernel/genunix /test/file1
host1$ pfexec cp /kernel/genunix /test/file2
host1$ pfexec cp /kernel/genunix /test/file3
host1$ pfexec cp /kernel/genunix /test/file4
host1$ pfexec cp /kernel/genunix /test/file5
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 14M 20G 1% /test
host1$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.43M 19.9G 0% 4.00x ONLINE -

So, a file approximately 3MB in size and copied five times to a deduplicated
ZFS pool seemingly takes up 14MB but in reality only uses 3.43MB (this
space use must include the file, but also deduplication data structures and
other metadata).

Also, according to PSARC (architecture plan) 557, deduplication also applies
to replication, so in essence a deduplicated stream is used when replicating
data [4]. Let’s take a look. Fortunately, I have another (virtual) OpenSolaris
system to use as a target of the replication (which we will call host2):

; LO G I N : A pr I L 201 0 pE TE’s A LL Th I N Gs su N : O pE N sO u rCE A N d FrE E d E du pLI C ATI O N 63

host2$ pfexec zpool create test c7d1
host2$ pfexec zfs set dedup=on test
host2$ zfs list test
NAME USED AVAIL REFER MOUNTPOINT
test 73.5K 19.6G 21K /test

Now I take a snapshot on host1 (as that is the entity that can be replicated)
and send it to host2:

host1$ pfexec zfs snapshot test@dedup1
host1$ pfexec zfs send -D test@dedup1 | ssh host2 pfexec /usr/sbin/zfs
receive -v test/backup@dedup1
Password:
receiving full stream of test@dedup1 into test/backup@dedup1
received 3.30MB stream in 1 seconds (3.30MB/sec)

On the receiving end, we find:

host2$ zfs list test
NAME USED AVAIL REFER MOUNTPOINT
test 16.4M 19.6G 21K /test
host2$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.48M 19.9G 0% 5.00x ONLINE -

Sure enough, ~3MB were sent as part of the replication, and although the
receiving system thinks it has ~16MB of date, it only has ~3.4MB.

Unfortunately, the current zfs send -D functionality is only a subset of what
is really needed. With -D, within that send, a given block is only sent once
(and thus deduplicated). However, if additional duplicate blocks are writ-
ten, executing the same zfs send -D again would send the same set of blocks
again. There is no knowledge by ZFS of whether a block already exists at
the destination of the send. If there was such knowledge, then zfs send
would only transmit a given block once to a given target. In that case ZFS
could become an even better replacement for backup tape: a ZFS system in
production replicating to a ZFS system at a DR site, only sending blocks that
the DR site has not seen before. Hopefully, such functionality is in the ZFS
development pipeline.

Let’s try that final experiment. First I’ll create more copies of the file, then
create another snapshot and send it to host2:

host1$ pfexec cp /kernel/genunix /test/file6
host1$ pfexec cp /kernel/genunix /test/file7
host1$ pfexec cp /kernel/genunix /test/file8
host1$ pfexec cp /kernel/genunix /test/file9
host1$ df -kh /test
Filesystem Size Used Avail Use% Mounted on
test 20G 30M 20G 1% /test
host1$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.45M 19.9G 0% 9.00x ONLINE -
host1$ pfexec zfs snapshot test@dedup2
host1$ pfexec zfs send -D test@dedup2 | ssh host2 pfexec /usr/sbin/zfs
receive -v test/backup2@dedup2
Password:
receiving full stream of test@dedup2 into test/backup2@dedup2
received 3.34MB stream in 1 seconds (3.34MB/sec)

64 ; LO G I N : VO L . 35, N O. 2

Note that, even though host2 already had all the blocks it needed, one copy
of the file was sent again because the sending host has no knowledge of
what the receiving host already has stored. On the receiving side:

host2$ df -kh /test/backup
Filesystem Size Used Avail Use% Mounted on
test/backup 20G 17M 20G 1% /test/backup
host2$ df -kh /test/backup2
Filesystem Size Used Avail Use% Mounted on
test/backup2 20G 30M 20G 1% /test/backup2
host2$ zpool list test
NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT
test 19.9G 3.46M 19.9G 0% 14.00x ONLINE -

Even though host2 was sent the extraneous copy of the file, it discarded it,
leaving it to store only one copy of the file.

additional analysis

No hash algorithm is perfect, in that two blocks only have the same hash
if they are exactly the same. There is a very small chance that two blocks
could have matching hashes even if they are not identical. By default ZFS
trusts the hash values and will declare a block to be a duplicate if the hash
matches. To increase safety you can set ZFS to do a byte-by-byte comparison
of two blocks if the hashes match, to ensure that the blocks are identical
before declaring them to be duplicates.

$ pfexec zfs set dedup=verify rpool

Of course this will negatively affect performance, using more CPU time per
duplicate block.

On another performance note, the jury is still out on the performance im-
pact of deduplication in ZFS. Theoretically, the increased overhead of check-
ing for an existing matching hash whenever a block is about to be written
may be counterbalanced by the saved write I/Os when there is a duplicate
block that need not be written. But, in fact, it is too early to tell what the net
result will be.

Deduplication can cause a bit of confusion about exactly what is using how
much space. For example, the results of du can be grossly wrong if the data
in the directories has been well deduplicated. Only zpool list is dedupe-
aware at this point. df and even other ZFS commands are not aware of
deduplication and will not provide use information taking deduplication
into account.

Conclusion

As it stands, ZFS deduplication is a powerful new feature. Once integrated
into production-ready operating system releases and appliances, it could
provide a breakthrough in low-cost data reduction and management. I plan
to track that progress here, so stay tuned. For more details on the current
state of ZFS deduplication, including bugs, features, and performance, please
see the ZFS wiki [5].

tidbits

As of this writing, Oracle has just acquired Sun Microsystems. Likely this
will mean long-term changes with respect to which of Sun’s products come

; LO G I N : A pr I L 201 0 pE TE’s A LL Th I N Gs su N : O pE N sO u rCE A N d FrE E d E du pLI C ATI O N 65

to market and how Sun customers continue on as Oracle/Sun customers.
At first blush (and first announcement), however, there seem to be very few
changes for Sun customers. There were no massive layoff announcements
(as some analysts had predicted), and so far, very little change in product
direction. SPARC and x86 servers, storage arrays, Java, and Solaris all ap-
pear to have bright futures, as Oracle not only continues those products
but increases the R&D budgets for most of them. At least in the immediate
shadow of the merger, all seems to be well in Sun’s product portfolio and
direction. For more details on Sun under Oracle, including replays of the
Oracle presentations about the purchase, have a look at http://www.oracle
.com/us/sun/.

refereNCeS

[1] http://blogs.sun.com/bonwick/entry/zfs_dedup.

[2] http://www.opensolaris.com/get/index.jsp.

[3] http://opensolaris.org/os/project/indiana/resources/relnotes/200906/x86/.

[4] http://arc.opensolaris.org/caselog/PSARC/2009/557/20091013_lori.alt.

[5] http://hub.opensolaris.org/bin/view/Community+Group+zfs/dedup.

