
64	 ; LO G I N : VO L . 3 4, N O. 2

D a v i d N . B l a n k - E d e l m a n

practical Perl tools:
polymorphously
versioned
David N. Blank-Edelman is the Director of Tech-
nology at the Northeastern University College of
Computer and Information Science and the author
of the O’Reilly book Perl for System Administration
(with a second edition due out very soon). He has
spent the past 24+ years as a system/network ad-
ministrator in large multi-platform environments,
including Brandeis University, Cambridge Technol-
ogy Group, and the MIT Media Laboratory. He was
the program chair of the LISA ’05 conference and
one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

Tod ay w e ’ r e g oi n g t o ta l k a b o u t
how Perl can improve life in the land of the
version control system (VCS). I think you
would be hard pressed to find anyone doing
a serious amount of programming these
days who doesn’t use a VCS of some sort.
But for those of you who are new to the biz,
let me spend a paragraph or two bringing
you up to speed.

The basic idea behind any VCS is that there is
value in tracking all copies of the data, even and
especially the intermediate copies, that make up
some project. By tracking I mean “recording who
worked on what piece of data, when, and what pre-
cisely they did.” If this can be done well, it does
wonders toward coordinating work being done by
a number of people working on the same project so
that the end result is congruent.

On top of this, two immensely helpful side effects
emerge:

You can determine who did what to something 1.	
and when (especially crucial for debugging).
You can revert to a previous working version 2.	
when a new version causes something to break or
recover when something was deleted in error.

The obvious thing for you to do is to keep all of the
Perl code you write under some sort of version con-
trol system, but that’s not what we’re going to talk
about in this column. If that was the only message
of this column, I could simply say “do it” and then
let you get back to flossing the cat or whatever you
had planned to do today. Instead, we’re going to
look at how to use Perl to automate and augment
several VCS packages. The particular VCS packages
we’re going to use in this column are those I’m most
familiar with: RCS, Subversion, and Git. I’m going
to assume you already have a little familiarity with
them when I write about them in this column.

Note: This selection is not meant as a slight to any
of the other interesting VCS packages, of which
there are many (see http://en.wikipedia.org/wiki/
Comparison_of_revision_control_software for a
comparison). Rabid users of Mercurial, Bazaar,
DARCS, Monotone, etc., are more than welcome to
write me to let me know how much I’m suffering
on a daily basis by not using their favorite system.
(I’m always looking for new cool tools.) I’d also be
remiss if I didn’t mention the one Perl-based VCS,
SVK (http://svk.bestpractical.com/view/HomePage).
I have not used it, but it looks as though it has
some very impressive distributed VCS features.

; LO G I N : A pr il 20 0 9	 pr actical Pe rl tool s : p ol ymo rph o usly v e r sione d	 65

Automating the Revision Control System (RCS)

If you have only used the newer VCS packages, the notion of using RCS
might seem a bit anachronistic. This may be like using a cotton gin for sys-
tem administration but I assure you that RCS still has its place. Unlike the
other systems we’re going to look at, it has a few properties that come in
handy in the right situations:

RCS is lightweight and fairly portable (there are RCS ports for most operat-1.	
ing systems).
RCS is 2.	 file-based (unlike SVN, which is directory-based, and git, which is
content-based). This works in your favor if you just need to keep a file or
two under version control.
RCS largely assumes strict locking will be used. Sometimes it makes no 3.	
sense to have two people be able to work on the same file at once and have
their changes merged in the end. System configuration files are one such
example where there’s good reason to serialize access.
Files under RCS almost always live right in the same place they are ar-4.	
chived versus some nebulous and nonspecific “working directory.” (/etc/
services has to be in /etc; it does you no good if it lives just in a working
directory somewhere else on the system.)

RCS is a good place to start our Perl discussion because it offers a simple exam-
ple of the basic modus operandi we’re going to see for each of these systems. To
work with RCS from Perl, you use a Perl module called (surprise) Rcs.

First we load the module and let it know where it should expect to find the
RCS binaries installed on your system. Most of the VCS modules are actually
wrappers around your existing VCS binaries. Although that may be a little
wasteful in terms of resources (e.g., Perl has to spin up some other program),
this is more than made up for by the portability it provides. The module
author does not have to maintain glue code to some C library that could
change each time a new version is released or distribute libraries with the
module that will also stale quickly.

Here’s the start of all of our RCS code:

use Rcs;

Rcs->bindir(‘/usr/bin’);

Once we’ve got that set up, we ask for a new Rcs object through which we’ll
perform all of our Rcs operations. To do anything we first have to tell the
object just what file we’re going to manipulate:

my $rcs = Rcs->new;
$rcs->file(‘/etc/services’);

At this point we can start issuing Rcs commands using object methods
named after the commands. Let’s say we wanted to check a file out for use,
modify it, and then check it back in again. That code would look like this:

$rcs->co(‘-l’); # check it out locked

do something to the file
...

$rcs->ci(‘-u’, # check it back in, but leave unlocked version in situ
	 ‘-m’
		 . ‘Modified by ‘
		 . (getpwuid($<))[6] .	 ‘ (‘
		 . (getpwuid($<))[0] .	 ‘) on ‘
		 . scalar localtime);

66	 ; LO G I N : VO L . 3 4, N O. 2

The last line of this code is in some ways the most interesting. For version
control to be really useful, it is important to provide some sort of informa-
tion each time a change is written back to its archive. At the bare minimum,
I recommend making sure you log who made the change and when. Here’s
what the log messages might look like if you used this code:

revision 1.5
date: 2009/05/19 23:34:16; author: dnb; state: Exp; lines: +1 -1
Modified by David N. Blank-Edelman (dnb) on Tue May 19 19:34:16 2009

revision 1.4
date: 2009/05/19 23:34:05; author: eviltwin; state: Exp; lines: +1 -1
Modified by Divad Knalb-Namlede (eviltwin) on Tue May 19 19:34:05 2009

revision 1.3
date: 2009/05/19 23:33:35; author: dnb; state: Exp; lines: +20 -0
Modified by David N. Blank-Edelman (dnb) on Tue May 19 19:33:16 2009

Eagle-eyed readers might note that the VCS itself should be recording the
user and date automatically. That’s true, except (a) sometimes your code
runs as another user (e.g., root) and you want the uid and not the effective
uid logged, and (b) the VCS records the time it hit the archive, but more
interesting is probably the time the change was made. If your code takes a
while before it gets to the part where it performs the VCS operation, the time
information you care about might not get recorded.

This is the very basics for RCS use. The Rcs module also has methods such
as revisions()/dates() to provide the list of revisions of a file and rcsdiff()
to return the difference between two revisions. With methods like this you
could imagine writing code that would analyze an RCS archive and provide
information about how a file has changed over time. If you ever wanted to
be able to search for a string found any time in a file’s history, it would be
fairly easy to write code to do that, thanks to this module.

Automating Subversion (SVN)

There are a few modules that allow you to operate on Subversion repositories
in a similar fashion to the one we just saw (i.e., using an external program
to automate operations versus calling the SVN libraries directly). The two I’d
recommend you consider using are SVN::Agent and SVN::Class. I’m going
to show you one example from each because they both have their strengths.
SVN::Agent is the simpler of the two:

use SVN::Agent;

SVN::Agent looks for the svn binaries in your path
$ENV{PATH} = ‘/path/to/svnbins’ . ‘:’ . $ENV{PATH};

this assumes we’ve already got a working dir with files in it,
if not, we could use the checkout() method
my $svn = SVN::Agent->load({ path => ‘/path/to/working_dir’ });

$svn->update;	 # update working dir with latest info in repos

print “These are the files that are modified:\n”;
print join(“\n”,@{$svn->modified});

$svn->add(‘services’)’; # add the file services to the changes list

$svn->prepare_changes;

$svn->commit(‘Files checked in by’

; LO G I N : A pr il 20 0 9	 pr actical Pe rl tool s : p ol ymo rph o usly v e r sione d	 67

		 . (getpwuid($<))[6] .	 ‘ (‘
		 . (getpwuid($<))[0] .	 ‘) on ‘
		 . scalar localtime);

Most of that code should be fairly straightforward. The one line that is less
than obvious is the call to prepare_changes. SVN::Agent keeps separate lists
of the modified, added, deleted, etc., files in the working directory. When we
said $svn->add(‘services’) we added the services file to the added list. To
give you the flexibility to choose which items should be committed to the
repository, SVN::Agent keeps a separate changes list of files and dirs to be
committed. This list starts out empty. The prepare_changes method copies
the other lists (added, modified, etc.) in the change list so that the commit()
method can do its stuff.

The second SVN module, SVN::Class, is interesting because it is essentially
an extension of the excellent Path::Class module. Path::Class is a worthy re-
placement for the venerable File::Spec module. I’m sure we’ll see it again in
later columns, but, briefly, it provides an OS-independent, object-oriented
way to work with file/directory names and filesystem paths. SVN::Class ex-
tends it by adding on the same sort of methods you’d expect in an SVN
module [e.g., add(), commit(), delete()]. If you are using Path::Class in your
programming, this will lend a consistent feel to your programs. Here’s a very
simple example:

use SVN::Class;

my $svnfile = svn_file(‘services’);

$svnfile->svn(‘/usr/bin/svn’); # explicitly set location of svn command

$svnfile->add;

# ...	 perform some operation on that file, perhaps using the Path::Class
#	 open() method

my $revision = $svnfile->commit(‘File checked in by’
		 . (getpwuid($<))[6] .	 ‘ (‘
		 . (getpwuid($<))[0] .	 ‘) on ‘
		 . scalar localtime);

die “Unable to commit file ‘services’:” . $svnfile->errstr
	 unless $revision;

SVN::Path does not have the same sort of interface to collectively commit()
items as SVN::Agent, which may or may not be a plus in your eyes. It could
be argued that an interface that forces you to actively call a commit() object
for every file or directory makes for clearer code (versus using some backend
data structure). However, SVN::Class does have some methods for querying
the objects it uses (e.g., repository information, author of a file). I’d recom-
mend picking the module that suits your style and the particular task.

Automating Git

For the last peek at automating a VCS from Perl we’re going to look at Git,
the wunderkind that has been storming the open source world. In fact, Perl
development itself is now conducted using Git (and for a fun geek story, read
about the transition at http://use.perl.org/articles/08/12/22/0830205.shtml).

Driving Git from Perl via Git::Wrapper is as simple as using it from the com-
mand line. You start in a similar fashion as the other wrappers we’ve seen:

68	 ; LO G I N : VO L . 3 4, N O. 2

use Git::Wrapper;

my $git = Git::Wrapper->new(‘/path/to/your/repos’);

From this point on the $git object offers methods with the exact same name
of each of the standard Git commands. If you look at the code of the module
itself, you’ll see that it has virtually no internal knowledge of how Git works.
This means you have to understand Git’s commands and semantics really
well, because you’ll get virtually no help from the module. That’s a plus if
you think Git does things perfectly and the module should get out of the
way, but a minus if you were hoping for some (syntactic) sugar-coated meth-
ods to make your life easier.

Probably the best way to learn this module is to first get a good handle on
Git itself from either the official doc [1] or a good book such as Pragmatic
Version Control Using Git [2].

Automate All (Many) of Them

If you spotted a certain commonality among these modules (or perhaps rep-
etition in my description of them), you are not alone. Max Kanat-Alexander
decided to see if he could take a lesson from DBI and create VCI, the generic
Version Control Interface. Just like DBI, where Tim Bunce created one in-
terface for performing the operations generic to any number of databases,
VCI tries to provide a similar framework for the various VCI packages. The
distribution ships with submodules to provide support for Bazaar, Cvs, Git,
Mercurial, and Subversion. The documentation is full of warnings about the
alpha nature of the effort, but it is worth your consideration, especially if
you have to switch between VCS packages on a regular basis.

VCS Augmentation

To end this column I want to briefly mention that Perl can be useful not
only for automating VCS packages but also for augmenting them. Leaving
aside SVK, the most extreme example (it builds upon parts of Subversion to
make it into a whole new beast), there are a number of excellent modules
and scripts that make working with these packages easier. Here are just a
few to get you started:

SVN::Access makes maintaining the Subversion repository access control ■■

file easy. This is handy if you programmatically provision SVN repositories.
SVN::Mirror can help keep a local repository in sync with a remote one.■■

App::SVN::Bisect provides a command-line tool to make bisecting a reposi-■■

tory (searching for a particular change by splitting the commits in half, and
then in half again, and then in half again) easy.
App::Rgit executes a command on every ■■ Git repository found in a directory
tree.
Github::Import allows for easy importing of a project into the Git commu-■■

nity repository hub github.com.

If you haven’t thought of using Perl with your favorite VCS package before,
hopefully this column has given you some ideas on how to head in that di-
rection. Take care, and I’ll see you next time.

references

[1] http://git-scm.com/.

[2] T. Swicegood, Pragmatic Version Control Using Git (Pragmatic Bookshelf,
2008).

