
74	 ; LO G I N : VO L . 3 4, N O. 2

D a v e J o s e p h s e n

iVoyeur: top 5 2008
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and is Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

H av e y o u e v e r b e e n s o b u s y t h at
the phrase “I’ve been busy” rings hollow and
cliche in your ears? In the past year, desper-
ate to position ourselves to scale at the pace
our tiny company is growing, my cohort and
I have ripped out, redesigned, and replaced
our entire production infrastructure. Our
routers went from IOS to JunOS to BSD, and
our balancers from Alteons to Mod_proxy_
balancer to balancer clusters using Carp
to those using ClusterIP. Static routes over
IPSEC VPNs have been replaced with OSPF
routes over SSL VPNs. We fought through
PCI certifications, designed IP and DNS
standards, and implemented BGP-based
datacenter fail-over systems. Anyway . . . I’ve
been busy.

So busy, in fact, that for the first time since I dis-
covered USENIX, I didn’t make it to a single con-
ference this year, USENIX or otherwise. January
finds me shell-shocked, wondering where the time
went, and curious as to what great work I missed
out on in 2008. Fed up with being in the dark,
I immediately declared a paper-reading weekend
and set about going through conference proceed-
ings to see what went on outside the cave I’ve been
trapped in. I wasn’t disappointed; as usual, the pa-
pers track of the various USENIX Cons in 2008
put me to shame. I might as well be a janitor. Been
busy? Well, if you’ve been missing out on some
great work, let me help you out with this list of my
top 5 favorite monitoring-related papers of 2008.

We’ll start with number 5, a paper called “Error
Log Processing for Accurate Failure Prediction” [1].
This paper is from the new USENIX workshop on
the analysis of system logs. With apologies to the
authors of this paper whose intent was to explore
failure prediction, this paper caught my atten-
tion because of the several clever log preprocessing
techniques they used on free-form system logs to
make them more machine-readable. These included
removing data such as numbers from the logs,
using Levenshtein distance to categorize and group
similar individual events, and making use of a
technique called tupling to identify multiple event
entries that correspond to the same actual error.
The log preparation sections in the preamble of this
paper are of immediate practical use to folks who
have a lot of logs and are looking for some quick
ways to get a handle on them.

; LO G I N : A pr il 20 0 9	iVo y eu r : to p 5 20 0 8	 75

Speaking of logs, number 4, a tool paper called “Picviz: Finding a Needle in
a Haystack” [2], applies a visualization technique called parallel coordinate
plots to system logs. If you’ve read Greg Conti’s excellent book Security Data
Visualization, then you’ve seen parallel coordinate plots used to great effect to
plot port scans. These graphs take any number of variables and assign them
columns in the vertical plane. A single element of data made up of those
variables is then represented as a line in the horizontal plane. Figure 1 is an
example parallel coordinate plot of SSH logins shamelessly stolen from the
Picviz Web site.

F i g u r e 1 : T h i s p a r all e l c oo r d i n a t e p lo t m a k e s i t e a s y t o s p o t
“ s u s p i c i o u s ” s s h c o n n e c t i o n s t h a t o r i g i n a t e f r o m m u lt i p l e
s o u r c e s b u t u s e t h e s a m e u s e r ID .

The Picviz paper has a lot of elements that I like in a good paper. They’ve
identified and solved a problem for me; catching odd stuff going on in a
large amount of log data is difficult, and Picviz makes it easier. Behind the
paper is a GPL’d tool that I can get my hands on and play with right now.
Too often, promising work never goes very far for lack of an available imple-
mentation. And, speaking of implementation, I really like Picviz’s design,
which mimics that of GraphViz. The authors have created a mark-up lan-
guage for drawing parallel coordinate plots, which means I can write glue
code to connect it to existing parsers and monitoring apps.

They didn’t stop at providing a framework; they used their own mark-up
language to write a GUI for lighter-weight, interactive, or real-time use. I’d
use Picviz over something like Conti’s Rumint [3] when I want something
less purpose-specific and more flexible. I can graph whatever I want with
Picviz whether my data originated from log files, PCAP dumps, or NetFlow
logs. I can use it to bolt parallel coordinate plots onto existing dashboards,
and it works equally well as a forensics or real-time IDS tool. Good work.

The writers of my third favorite monitoring-related paper in 2008 had a fas-
cinating problem, that of being ignored. It seems that botnet attacks against
Web applications have increasingly abandoned the traditional brute-force
scanning mechanisms in favor of clever Google searches. This is bad news
for folks trying to write honeypots, since unless your honeypot gets indexed
in a way that piques the interest of the attacker, no traffic will arrive at your
honeypot. So the problem becomes getting a single machine to respond to

Time Auth type Source Login

76	 ; LO G I N : VO L . 3 4 , N O. 2

search robots in a way that makes it attractive to whatever the botnets hap-
pen to be into that week.

Their rather ingenious solution, described in “To Catch a Predator: A Natural
Language Approach for Eliciting Malicious Payloads” [4], was to use natural
language processing techniques to generate dynamic responses to the in-
dexing services based on real host interactions. The methodology they used
to glean their training data was clever, as is their solution to a rather sticky
problem. And although this work is probably not immediately useful to
those of us outside botnet research, I think their methodology could really
blow the roof off the honeynet, tar pit, and protocol misdirection scene. It
seems like the kind of technique that would find unexpected practical appli-
cation all over the place. Good work.

Number 2 on the list is a paper called “CloudAV: N-Version Antivirus in the
Network Cloud” [5]. I’ve long been flummoxed by the concept of multi-ver-
sion programming. I’ve read several papers arguing about the reliability it
adds or doesn’t and whether its core assumption of statistical independence
is borne out or not. I have a pretty good mental picture of how it’s sup-
posed to work, but I’ve never been able to come up with a problem domain
into which it seems to fit. The concept is, given some problem, you write N
different software solutions and compare the results. Folks argue whether
it’s actually possible to come up with N independent ways to solve a single
problem (in other words, there’s an assumption the N solutions can be statis-
tically independently derived, and this doesn’t hold water). Folks also argue
whether solving a problem N times gives you a better solution or not, or they
wonder why you would want to do that work.

Well this paper solidified my thinking: malware detection is a great prob-
lem domain for multi-version programming. It’s a problem, in fact, for which
most of us have used N-version programming without ever realizing it.
Every moderate-sized to large company I’ve ever worked for has used at least
two different anti-virus programs from competing vendors, usually at least
one at the mail gateway and another on the desktop. That viruses sometimes
hit the desktop that aren’t caught by the MX might suggest that competing
anti-virus software is independent enough in practice to work, or maybe not.
Perhaps the viruses hit the desktops from a different vector, or maybe there
was a temporal problem with updates. In practice, it doesn’t really matter.
Having some heterogeneity there always seemed like a good idea.

I’ll be honest: I hate the entire realm of malware detection. I’ve always put
a large space between myself and those unfortunate enough to be tasked
with managing the corporate/campus/whatever AV system. That software
has been a buggy, intrusive, ill-thought-out nightmare for years. CloudAV,
however, if the implementation does what the paper says it does, has single-
handedly made AV not suck anymore (or at least reduced the suck factor by
several orders of magnitude). They’ve taken the multi-version programming
concept to the extreme, implementing ten anti-virus engines and two behav-
ioral detection engines on a central Xen host running a VM for each engine.
They then install lightweight clients on each host that trap file-creation sys-
tem calls, blocking them while sending the new file to a broker in front of
the scan engines. The broker, before sending the file back for scanning, re-
cords metadata about the file in a database and checks it against hashsums
of already scanned files, preserving network bandwidth and creating a gold
mine of forensic data.

The client can run in three modes: transparently allowing all user actions
while sending files to the scan server; blocking user actions and warning
the user if a suspicious file is encountered; or blocking user actions and ulti-

; LO G I N : A pr il 20 0 9	iVo y eu r : to p 5 20 0 8	 77

mately preventing them regardless of what the end user thinks. I’m not clear
on how policy is enforced in the system (e.g., what prevents end users from
killing the client locally, a question I expect was asked in the session), but
IMO whatever problems it has are certainly more than made up for in what
it delivers.

Right off the bat it provides a model the malware hasn’t accounted for, so it
goes a long way toward limiting the malware’s ability to detect and attack
the AV system itself. It eliminates the need to maintain definitions on end-
user systems, as well as eliminating pretty much every other virus-software
integration problem that so plagues the desktops of the heathen solitaire
proletariat. It completely insulates you from management decisions regard-
ing AV vendor licensing; you’ll never have to rip out McAfee on 1000 work-
stations to install Sophos instead, for example. And as a bonus it gives you a
powerful forensics tool. Have a data sensitivity standard? CloudAV can tell
you every host that touched a given file and in what context. Crazy good
work. The only two problems it has are that I can’t download it now, and I
can’t buy it now.

Finally, my number 1 pick in 2008 is “Sysman: A Virtual File System for
Managing Clusters” [6], although a more accurate title might be “Sysman, a
Virtual File System for Managing Whatever You Have Plugged into the Wall.”
First off, I should warn you that I’m a bit of a sucker for filesystem inter-
faces. You might have guessed this if you’ve read my recent NagFS articles. I
know XML is all the rage, and configuration management doesn’t equate to
remote control, but nothing beats /proc when it comes to management sim-
plicity and leveraging existing skills. OpsWare understood this when they
created its Global Shell (GS) before the company was purchased by HP. Long
have I wished for an OpsWare GS that I could afford. We’ve even discussed
rolling it ourselves several times in FUSE. The one year I don’t get to go to
LISA, along comes Sysman to scratch that itch. I really wish I had been at
this session—I have a lot of questions.

Curiously, the Sysman authors don’t seem to have heard of OpsWare Global
Shell, but no matter, they appear to have gotten it right the first time. Sys-
man creates a filesystem containing directories that represent devices on the
network. These devices can be detected and set up automatically and their
features automatically become subdirectories inside Sysman. Upon detecting
Linux servers, for example, Sysman will create a subdirectory representing
the server and subdirectories inside the server directory corresponding to
the server’s proc and sys directories. Reading from /sysman/10.10.1.111/proc/
cpuinfo will return the contents of the cpuinfo file in the proc directory on
server 10.10.1.111. A “commands” file provides access to remote command
execution: write to a server’s commands file to send it a command and then
read from its commands file to glean the last command’s output.

Filesystem interfaces are great because you can bring all of your existing
scripting skills to bear, and existing tools gain enormous amounts of power.
Imagine how easy Nagios Event Handlers are to write given a Sysman file-
system, for example. Have a down Apache daemon? Just do:

echo ‘/etc/init.d/apache restart’ > /sysman/apachehost/commands

There are considerations, of course, including security and stability, but
you get my drift. If CloudAV has the potential to actually get me interested
in reining in the malware problem, then Sysman has the potential to com-
pletely turn my world on its ear. A filesystem interface to my entire data-
center? Are you kidding me? It would be the most enabling thing to happen
to me since I learned regular expressions. Simple, powerful, elegant: great

78	 ; LO G I N : VO L . 3 4, N O. 2

work. Now, where can I get it? There’s an eight-year-old version on Source-
Forge that I doubt is very functional. What gives, guys? Been busy?

references

[1] F. Salfner and S. Tschirpke, “Error Log Processing for Accurate Failure
Prediction,” WASL ’08: http://www.usenix.org/events/wasl08/tech/full
_papers/salfner/salfner_html.

[2] S. Tricaud, “Picviz: Finding a Needle in a Haystack,” WASL ’08: http://
www.usenix.org/events/wasl08/tech/full_papers/tricaud/tricaud_html.

[3] Rumint, open source network and security visualization tool: http://
www.rumint.org/.

[4] S. Small, J. Mason, F. Monrose, N. Provos, and A. Stubblefield, “To Catch
a Predator: A Natural Language Approach for Eliciting Malicious Payloads,”
Security ’08, http://www.usenix.org/events/sec08/tech/full_papers/small/
small_html/index.html. [Editor’s note: The authors of this paper also wrote a
related article that appears in the December 2008 issue of ;login:.]

[5] J. Oberheide, E. Cooke, and F. Janhanian, “CloudAV: N-Version Antivirus
in the Network Cloud,” Security ’08: http://www.usenix.org/events/sec08/
tech/full_papers/oberheide/oberheide_html/index.html.

[6] M. Banikazemi, D. Daly, and B. Abali, “Sysman: A Virtual File System
for Managing Clusters,” LISA ’08: http://www.usenix.org/events/lisa08/tech/
full_papers/banikazemi/banikazemi_html/index.html.

