
16	 ; LO G I N : VO L . 3 4, N O. 1

M a r k D e h u s a n d D i r k G r u n w a l d

STORM: simple
tools for resource
management
Mark Dehus recently graduated with his M.S. in
Computer Science from the University of Colorado
at Boulder. His focus is virtualization and large-
scale systems administration, and his current
research includes virtualization management
systems, content delivery/distribution networks,
and applications of virtualization toward computer
science education.

mark.dehus@colorado.edu

Dirk Grunwald received his Ph.D. from the Uni-
versity of Illinois in 1989 and has been a faculty
member at the University of Colorado since that
time. He is interested in the design of digital
computer systems, including aspects of computer
architecture, runtime systems, operating systems,
networking, and storage. His current research ad-
dresses resource and power control in microproces-
sor systems, power-efficient wireless networking,
and managing very large storage systems.

dirk.grunwald@colorado.edu

C l o u d c o m p u t i n g h as b e c o m e all
the rage, because it allows an organization
to forget about the added management
associated with having a single operating
system tied to a single physical piece of
hardware. In this article we discuss a cloud
system built using standard tools to further
reduce the amount of overhead in computer
administration by simplifying software con-
figuration. We also introduce the notion of
layered virtual appliances, an approach we
consider to be critical for the success of any
large-scale cloud management software.

STORM [1] is a system built with the overworked
system administrator in mind. It is designed to
simplify the configuration and management in-
volved with running applications as much as
possible. Using the provided Web interface, an ad-
ministrator can quickly provision desired software
without having to worry about the middle layers
such as Apache installation and configuration.

The overall STORM system, illustrated in Figure 1,
consists of four primary entities:

The STORM Manager: The control subsystem ■■

for the cloud, which is itself an instance of a
virtual appliance. This allows for the manage-
ment framework to receive the benefits that come
along with being an appliance.
The Virtual Appliance server: The physical hard-■■

ware running any hypervisor supported by our
underlying API, libvirt [2].
A Channel Server: The server responsible for ■■

F i g u r e 1 : T h e lo g i c a l a r r a n g e m e n t of t h e fo u r p r i m a r y
e n t i t i e s i n S T O RM

; LO G I N : Fe b rua ry 20 0 9	S TO RM : Si m ple Tool s fo r Reso u rce M a n ag em e nt	 17

serving RSS to the STORM manager. The RSS feed contains information
about available appliances.
An Image Server: The server that strictly serves up disk images. It may be ■■

integrated with the channel server if scalability is not required.

The STORM manager, being the central control system for the cloud, is re-
sponsible for handling incoming requests from either the administrator via
the provided Web front end or from an authorized appliance instance (i.e., a
virtual machine). These requests can range from creating new appliance in-
stances to registering MX records.

Several types of requests require the STORM manager to communicate with
any given appliance server; this communication is accepted by libvirtd or a
custom daemon called stormd, depending on the request. To authenticate
the STORM manager, a signed certificate is presented by the manager upon
connection. The daemons then verify this signature against a locally stored
CA certificate. Libvirt does this authentication internally, and for consis-
tency reasons we reproduced this same scheme for stormd using M2Crypto.

To provide a complete solution, we implemented services such as DNS,
DHCP, LDAP, and Kerberos, all of which are handled by the STORM man-
ager and can be controlled through the provided Web interface. Appliances
can reach the authentication and authorization mechanisms through the re-
served internal DNS record “storm.local” and required configuration items
can be obtained through the secure XML-RPC interface.

Traditional and layered appliances are distributed to individual cloud sys-
tems by the appliance developers. Each appliance developer should have at
least one server available to feed RSS, disk images, and associated XML. For
scalability, disk images should be provided from separate servers, or some
kind of HTTP load balancer should be used.

The RSS supplied by the channel server is very generic and does not require
many attributes to define a channel (see Figure 1). This same principle also
applies to the XML associated with an appliance. We do not currently have
any mechanism for developers to automatically generate the required RSS
and XML. However, given the simplicity of the RSS and XML, it would be
trivial to develop a tool to do this.

Layered Appliances

The traditional approach to virtual appliances replicates data by having a
single disk image for each given application. When one obtains two tradi-
tional appliances that have software in common, this software is stored on
the system twice.

For example, take an appliance that provides Wordpress and another that
provides MediaWiki. Each requires an underlying substrate of software, such
as MySQL, Apache, and PHP. With a traditional appliance the underlying
software ends up being stored twice on separate disk images. To address this
issue, we invented the concept of a layered appliance.

Layered appliances reduce redundancy by sharing common substrate. This
provides several other benefits as well, including the ability to simultaneously
apply updates across multiple instances, caching of data across multiple vir-
tual machines, and the capability of taking snapshots of individual layers.

Our virtual appliance approach consists of four layers:

A common operating system substrate: The substrate contains the basic ■■

components needed by all virtual appliances; the Ubuntu “Just Enough
OS” (JEOS) platform is a representative example of this.

18	 ; LO G I N : VO L . 3 4, N O. 1

An appliance-specific component: This component provides the application ■■

and necessary libraries; an example might be the Postfix program, LDAP
and MySQL libraries for remote mail delivery, and other necessary libraries.
A deployment-specific component: This customizes the combination of ■■

the operating system substrate and the appliance-specific component; an
example might be the configuration files for Postfix, MySQL, NFS, and
LDAP. The deployment-specific component essentially captures changes to
the underlying appliance component (e.g., the appliance component would
typically include off-the-shelf configurations provided by an OS distribu-
tion). The deployment-specific component would be the result of an appli-
ance maintainer editing the specific configuration files to customize those
files for the local environment.
An instance-specific component: This uses information provided by the ■■

STORM server to configure a specific instance of a more general appliance.
For example, that instance-specific information may configure the domain
name to be “mail.foo.com” instead of “mail.bar.com.”

STORM and the UnionFS

In STORM we used a project called UnionFS [3] to provide the desired func-
tionality for layering. UnionFS allows one to specify a series of directories
and have them presented as a single virtual directory. We chose to imple-
ment the layering within the base substrate (operating system layer), allow-
ing developers to build nonlayered appliances if so desired.

When a layered virtual appliance is deployed, several disk images are pre-
sented as devices and set as writable or read-only devices depending on the
layer they provide. The init script within the initrd image mounts each de-
vice to a directory and then unions all of the directories appropriately to a
single root. It will do its best to detect the write/read-only status of all de-
vices; however, if the detection fails, then it relies on the following logic:

/dev/sdaX mounts as read-only.■■

/dev/sdbX mounts as read-write.■■

/dev/sdcX mounts as read-only.■■

/dev/sddX mounts as read-write, excluding /dev/sdd4, which is always ■■

reserved for swap.

An important thing to note is that UnionFS is not designed for I/O-intensive
applications, and it adds significant overhead in these applications. These
types of applications already suffer a substantial impact when being virtual-
ized [4, 5]; therefore we suggest considering alternatives for any I/O-inten-
sive application.

So Why Use UnionFS?

An alternative to UnionFS that immediately comes to mind is directly mount
ing disk images to the proper locations within the filesystem. We decided
against doing this for several reasons, but the most important ones were:

When using directly mounted disk images the developer would have to ■■

specify where the disk images should be mounted. The STORM manager
would then have to get mapping information (i.e., specifying which disk
image is mapped to what device) for every instance. Furthermore, conflicts
can occur when using direct mounts. An example of this would be multiple
disk images both needing to be mapped to /usr/bin.
To share the operating system between multiple instances, the root direc-■■

tory would have to be marked as read-only. This can potentially lead to

; LO G I N : Fe b rua ry 20 0 9	S TO RM : Si m ple Tool s fo r Reso u rce M a n ag em e nt	 19

data loss if an application attempts to write to a location that has no writ-
able disk image mounted to it. This is somewhat of a limitation for current
hypervisors, as they do not currently have locking mechanisms that would
allow for better sharing.
Developers and system administrators would have to learn yet another ■■

custom configuration management tool.

Overall, using UnionFS allowed for a much cleaner solution, because we didn’t
have to build the extra infrastructure to maintain and distribute directory-
mapping information. It allowed us to have a single instance layer that sat on
top of all the others with write capabilities only given to that specific instance.

Going Forward

The resurgence of virtualization and the construction of fiber networks have
greatly impacted the information technology landscape. These two advances
have made cloud computing competitive and reliable. Corporations, universi-
ties, and institutions that lack sufficient knowledge to capitalize on the advan-
tages provided by virtualization are unable to move toward it. The STORM
system successfully allows these entities to capitalize on virtualization without
requiring large expenditures in virtual machine manager expertise.

One may ask, what things will cloud computing allow us to do next? Once
things become more established, I imagine we will see capabilities for cross-
cloud computing. Administrators will watch their virtual machines “pack
their bags” and move out west for more sun (assuming data centers become
solar powered [6]). Sophisticated and yet simple tools will be required to
manage virtual machines in cross-cloud computing. It is our plan to con-
tinue STORM development as one of these management tools.

For more information and details about STORM, we suggest reading our
paper published in the LISA ’08 Proceedings [1].

references

[1] Mark Dehus and Dirk Grunwald, “STORM: Simple Tools for Resource
Management,” Proceedings of LISA ’08: 22nd Large Installation System Adminis-
tration Conference (USENIX Association, 2008).

[2] The virtualization API: http://libvirt.org.

[3] David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok, “UnionFS:
User- and Community-Oriented Development of a Unification File System,”
Proceedings of the 2006 Ottawa Linux Symposium, pp. 349–362, 2006.

[4] D.I. Wolinsky, A. Agrawal, P.O. Boykin, J.R. Davis, A. Ganguly, V.
Paramygin, Y.P. Sheng, and R.J. Figueiredo, ”On the Design of Virtual Ma-
chine Sandboxes for Distributed Computing in Wide-Area Overlays of
Virtual Workstations,” Proceedings of the 2nd International Workshop on Virtual-
ization Technology in Distributed Computing, p. 8.

[5] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield, “Xen and the Art of
Virtualization,” SOSP ’03: Proceedings of the Nineteenth ACM Symposium on Op-
erating Systems Principles, pp. 164–177, New York, 2003.

[6] Stacey Higginbotham, “Data Centers Will Follow the Sun and Chase the
Wind”: http://earth2tech.com/2008/07/25/data-centers-will-follow-the-sun
-and-chase-the-wind.

