
26	 ; LO G I N : VO L . 3 4, N O. 1

C o r e y B r u n e

Python: an untapped
resource in system
administration
Corey Brune is currently a Master Consultant in
Plano, Texas. He has been a UNIX Engineer for over
13 years, specializing in systems development, net-
working, architecture, and performance and tuning.
His latest project is the development of parsers for
performance tuning and capacity planning.

cbrune@sim10tech.com

His t o r icall y, s y s t e m ad m i n is t r a -
tors chose Perl as their preferred scripting
language. However, the functionality of
Python may surprise those not familiar with
the language. I hope to illustrate the ben-
efits of Python within system administra-
tion while highlighting script functionality
within a password-file-to-LDAP conversion
script.

Python is an ideal language for beginning and ex-
pert programmers. Organizations such as Google,
the New York Stock Exchange, and NASA have
benefited from Python. Furthermore, Python is
used behind Red Hat menu systems as well as Bit-
Torrent clients. As a system administrator, I find
Python to be an exciting and rewarding open-
source language. Many first-time users are sur-
prised at the speed at which the code falls into
place when beginning to program. However, it is
in the large and demanding projects that you will
find Python most beneficial. This is where you will
find increased manageability and time savings as
opposed to other languages. Not only does Python
aid in rapid deployment, but its functionality, ease
of use, portability, and dependability result in has-
sle-free administration. Furthermore, it is compat-
ible with all standard operating systems.

Python’s ease of use is achieved primarily in the
language’s maintainability and elimination of code
redundancy. Elimination of code redundancy is
important, since duplicating code consumes time
and resources. In regard to maintainability, you
will notice that reading scripts is made easy. For
example, Perl can be time-consuming and diffi-
cult to maintain, primarily with large programs.
You want a script that can be easily read and sup-
ported, especially when modifying past or unfa-
miliar programs. Syntax is easy to use, read, and
understand. This is primarily achieved with the
language’s straightforward code and similarity to
the English language. Since it is object-oriented, it
lends itself to easily creating modules and reducing
code duplication. Python also supports Functional
Programming (FP), leaving it up to the program-
mer to use Object Oriented Programming (OOP) or
FP. Furthermore, a user can easily reuse previously
created code, and specific modules can be tested
rather than the entire program.

My goal in highlighting this script is to illustrate
the ease in which the code falls together while

; LO G I N : Fe b rua ry 20 0 9	P y th on : a n Unt a ppe d Reso u rce in System A dm ini str ation	 27

spotlighting process interactions. Furthermore, I hope to demonstrate code
simplicity while defining methodology.

Password-to-LDAP Conversion Script

You can find the entire listing for this script online [1]. In this article, I will
just cover the highlights of the script as a way of describing Python syntax. I
will also show how modules make it easy to perform system administration
tasks.

Similarly to Perl and Java, Python’s extensive library contains built-in mod-
ules that may be used to simplify and reduce development time. These in-
clude import pwd, sys, os, csv, and subprocess.

Note that Python statements do not end in a terminating semicolon; rather,
the terminator is the end of the logical line itself.

The def keyword is used to declare a method:

def main(argv):

The main declaration accepts a list named argv. argv is similar to Perl’s
@ARGV or C language’s **argv and contains the command-line arguments
passed to the program.

Exception handling is how errors are managed within a program. For exam-
ple, consider the following:

try:

	 <code>
except IOError, (errno, strerror):
	 sys.exit(‘I/O error (%s): %s’ % (errno, strerror))

except ValueError:
	 sys.exit(‘Could not find x in string %s: %s’ % (pwLine, sys.exc_info()[0]))

When an exception is thrown, the programmer decides whether the script
will exit, call another method, or prompt for user action. Multiple exceptions
may be nested in a try block. The sys.exc_info () method returns the last
exception caught.

Parsing Comma Separated Value (csv) files is simplified with the csv mod-
ule. Instead of using methods such as split () to parse these files, the csv.
reader() or csv.writer() methods allow for a standard mechanism for read-
ing or writing csv files:

fd = csv.reader(open(‘shadow’,’r’), delimiter=’:’)

The delimiter argument allows reading or writing different csv files. Notice
that the results of open() are used as the argument to csv.reader(). This
syntax is common usage throughout Python.

Here is an example of file IO with Python:

ldifOut = open(ldifFile, ‘w+’)
ldifOut.close()

The first argument is the filename, and the second argument is the mode.
There are different modes available depending on the type of operation re-
quired: read (r), read-append(r+), write (w), write-append (w+), or append
(a+). The return value is a file object assigned to the variable ldifOut. The
close() method closes the file object.

28	 ; LO G I N : VO L . 3 4 , N O. 1

Lists are one of the most dynamic data types in Python. Open and close
brackets with comma-delimited values declare a list. The example here de-
clares an empty list, pwLine:

pwLine = []

Lists may be indexed, split, and searched. Furthermore, they may be used as
a stack or queue and may contain other data types.

In the following code:

for row in fd:
	 if row[1] in ‘*LK*’ ‘NP’ ‘*’ ‘!!’:
	 continue

the for loop iterates through the file object fd until the end of file. Con-
ditionals and loops are terminated with a colon. Unlike other languages,
loops, conditionals, and other statements are “grouped by using indentation”
(python.org). The if statement says if row[1] matches *LK*, NP, **, or !!, to
continue to the next line in the file, since these are local accounts such as
root or nobody.

Python contains many of the C standard UNIX/Linux system functions and
usage is similar to C functions. The pwd.getpwnam() method generates the
list of users to be converted to the LDAP script:

String = pwd.getpwnam(line[0])

The argument passed is line [0] , which is the username.

The pwd.getpwnam() method returns a tuple. Tuples, like strings, are
read-only or immutable data types. To modify the tuple, we convert the
tuple to a list:

pwLine = list(String)

Python offers many types of conversion methods, such as int (), float(), and
str().

The code:

index = pwLine.index(‘x’)
pwLine.pop(index)
pwLine.insert(index, line[1])

illustrates some of the methods available for list manipulation. pwLine.
index(‘x’) returns an integer value to where the value was found. If the
value is not found, a ValueError exception is thrown. pwLine.pop(index)
removes and returns the value at index. pwLine.insert(index, line [1]) in-
serts the encrypted password (line [1]) into the list at index.

Using the write () method allows for updating or writing files:

ldifOut.write(‘dn: cn=’ + pwLine[0] + ‘,’ + fullDN + ‘ \n’)

The arguments to write () illustrate how to use string concatenation with the
+ sign. You can access individual elements in a list or string by using brack-
ets []. In the example here, pwLine [0] accesses the first data element. Note
that lists and strings start at index number 0.

The subprocess module is the preferred mechanism when interacting with
processes:

output = subprocess.Popen(ldapStr, shell=True, stdout=subprocess.PIPE)

; LO G I N : Fe b rua ry 20 0 9	P y th on : a n Unt a ppe d Reso u rce in System A dm ini str ation	 29

output.wait()
stdout_value = output.communicate()[0]

subprocess.Popen() is used to invoke ldapadd and the associated argu-
ments. shell=True indicates that the command will be passed to the shell;
otherwise os.execvp () is executed. stdout=subproces.PIPE contains a
pipe to control the output. Other pipes may be created for stderr and stdin.
The variable output is assigned a Popen object. wait() is called to allow for
the process to finish. Process output is then retrieved with the communi-
cate () [0] method.

Every module or method has many convenient built-in methods. These are
denoted by underscores on either side of the name, for example:

if __name__ == ‘__main__’:
 main(sys.argv[1:])

The build-in method _ _name_ _ defines the module’s name. The next
line passes sys.argv[1:] to main(). List elements may be accessed by
listname[start index:end index]. In this example, the list sys.argv[1:]
will pass elements starting at index 1 through the last element.

General Notes

Python uses indentation for code blocks, such as loops and conditionals,
rather than semicolons, braces, or parentheses. Statements do not require
semicolons for termination.

Python contains built-in data types referred to as numbers, strings, lists, tuples,
and dictionaries. These data types are represented by characters such as pa-
rentheses, brackets, and braces. Every data type is an object and has associ-
ated methods for manipulation.

File parsing is made simple in Python with the module re. If you are famil-
iar with Perl, you will notice that Regular Expression Syntax is similar. Py-
thon has the capability to handle large files such as XML, CSV, binary, and
text files.

Conclusion

Although I have only skimmed the surface of Python’s functionality and
syntax, I hope to have provided a foundation for further exploration. The
application range for Python crosses over many domains such as system
administration, game programming, Web programming, and research and
development. The extensive library and maintainability of code make this
a versatile language. Examples of functionality are highlighted in the inter
action of processes, file parsing, and exceptions. If you have dabbled with
Python in the past, this is an opportunity to revisit the language. Soon after
programming in Python, you may find its range spreading into all aspects of
administration. For further information and resources visit www.python
.org/.

reference

[1] http://www.sim10tech.com/code/python/passwd2ldap.py.

