
J u n e 2 0 1 3   v o l . 3 8 , N o . 3
ELE C T R ON I C S U P P LE M EN T

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 1

FAST ’13: 11th USENIX Conference on File and
Storage Technologies
San Jose, CA

February 12-15, 2013

Opening Remarks
Summarized by Rik Farrow (rik@usenix.org)
Keith Smith began FAST ’13 by telling us that 127 papers
were submitted and 24 accepted, and that the attendance had
almost reached the same level as 2012, which was the record
year for attendance. There were 20 full-length papers, four
short ones, nine with just academic authors, five industry-only
authors and 10 collaborations. Smith said he enjoyed having
people from academia and industry in the same room talking.

FAST is a systems conference, and the top topics in submit-
ted papers were those tagged with file-system design and
solid state storage. Cloud storage has increased over time, as
has caching, while file-system architectures have actually
been decreasing.

There were more than 500 paper reviews, totaling more than
350,000 words of commentary (about the length of the book
David Copperfield).

Yuanyuan Zhou, the co-chair, presented the best paper
awards. Unioning of the Buffer Cache and Journaling Layers
with Non-Volatile Memory by Lee et al. won the Best Short
Paper award, and A Study of Linux File System Evolution by
Lu et al. won Best Paper.

File Systems
Summarized by Morgan Stuart (stuartms@vcu.edu)

ffsck: The Fast File System Checker
Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris
Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau,
University of Wisconsin—Madison

Ao Ma considered the creation of a file system that supports
a faster checking utility. Ao first reviewed the necessity of
file system integrity checkers and repairers. He explained
that significant work has been done to prevent corruption
or misuse of file systems, but no solution can guarantee a
system free of such corruption. Therefore, the file-system
checker is often thought of as a last resort, but it hasn’t seen
much improvement in some time. Given capacity increases,
complexity growth, and general enterprise dependence, that
storage administrators must still depend on offline, slow, and
unpredictable file-system checkers is unfortunate.

In order to significantly improve file-system checking, the
standard e2fsck utility was analyzed. The e2fsck checker
completes its repairs in five phases, but the authors found

that the utility spends more than 95% of its time in phase
1. During this phase, the checker scans all inodes and their
corresponding indirect blocks and even requires an addi-
tional scan if multiply-claimed blocks are detected. Clearly
any improvements to file-system checking should target the
actions performed in this phase. Ao introduced a novel pair-
ing of a file system, rext3, and a file system checker, ffsck,
both of which complement each other to accelerate file-

system checking.

The rext3 file system modifies the layout of a traditional ext3
file system to decouple the allocation of indirect blocks and
data blocks. The indirect region in rext3 stores the indi-
rect blocks contiguously to allow quick sequential access.
In applying this reformation, rext3 achieves an improved
metadata density that a modified checker could leverage. The
strict organization also reduces file system aging from frag-
mentation. The separation proves to not result in extraneous
seeks because a drive track buffer will often cache multiple
indirect blocks with a single track load.

The fast file system checker (ffsck) leverages the contigu-
ous indirect blocks of rext3 to increase scan speed. Because
the indirect blocks and corresponding data blocks are physi-
cally rather than logically sequenced, however, ffsck requires
that all metadata be read before it can be checked. In order
to avoid memory saturation from storing the entire meta-
data of large systems, ffsck separates the checking process
into its inherent two phases: a self-check phase and a cross-
check phase. The self-check phase must use all the meta-
data to verify the file inodes individually, but the cross-check
phase only needs a subset of the metadata in order to perform
redundancy-based checks across data. Therefore, the self-
check is completed first, followed by the removal of data not
needed by the cross-check, and finally the cross-check is per-
formed. This method helps reduce the average memory foot-
print over time for the checker.

The end result of the file system file-checker cooperation is
the ability to scan and correct the file system at nearly ten
times the speed of e2fsck and without hindrance from disk
fragmentation. In most cases, rext3 performance is simi-
lar to ext3, but does incur about a 10% penalty when dealing
with smaller files. Impressively, rext3 actually outperforms
ext3 by up to 43% for random reads and up to 20% for large
sequential writes. These improvements are attained by
improving journal checking with the metadata density and
by more efficiently using the track buffer.

Andreas Dilger (Intel) asked whether the authors had con-
sidered submitting an upstream patch to ext3. Ao said that

Conference Reports

PAGE 2	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

the source code still needs to be polished, but they do intend
to open source their work. Someone from Symantec Labs
asked what level of performance increase was seen without
the file system modifications. Ao explained that they can still
achieve between 50% to 200% improvement with only the
in-order scan. Brent Welch (Panasas) requested more detail
about the indirect region—specifically, whether they enforced
a hard limit and what they did if the region was filled. Ao said
that the size was fixed and that further experimentation is
required as an appropriate size is hard to determine.

Building Workload-Independent Storage with VT-Trees
Pradeep Shetty, Richard Spillane, Ravikant Malpani, Binesh Andrews,
Justin Seyster, and Erez Zadok, Stony Brook University

Pradeep Shetty began with a simple question: “What should
file systems do?” He explained that file systems must allow
for crash recovery, perform efficiently for both sequential
and random accesses, and provide low overhead application-
level transactions. Most real-world solutions don’t meet all
of Pradeep’s requirements, giving him and his co-authors
their motivation. Pradeep further alluded to the major dis-
course for today’s administrators: they can either choose fast
lookup transaction-based relational databases or instead opt
for file systems that support high volumes of sequential and
random accesses. Often neither is completely sufficient, as
modern workloads are large and complex with randomized
access patterns.

The proposed solution describes a new data structure, the
VT-Tree, based on LSM-Trees. The LSM-Tree provides fast
random insertions but significantly slower queries, mak-
ing the LSM-Tree popular in large data sets where queries
can be parallelized. The LSM-Tree uses a memtable to hold
r-tuples of recently inserted items in a buffer. Once the buffer
fills, the memtable, along with a Bloom filter and secondary
index, is flushed to disk. The combination of these compo-
nents is referred to as an SSTable. Consequently, the work-
load produces more SSTables as more tuples are created.
Because queries often have to search through the majority
of the SSTables, the queries slow down over time. To com-
bat this, a limit on the number of SSTables is typically used
to bound the lookup and scan latency of the system. A pri-
mary weak point of the LSM-Tree is its repeated copying of
tuples as SSTables are serialized and compacted to the disk.
These copies in the minor compaction allow for the quick
lookup, but are considered unnecessary if the incoming data
is already sorted.

Following his explanation of the LSM-Tree, Pradeep began
to outline the goals of their VT-Tree. In order to optimize the
minor compaction, which produces the extra copies, stitch-
ing was introduced. Pradeep described stitching as way in
which their system investigates the need for a merge during

compaction. The stitching mechanism allows the VT-Tree to
merge only the blocks that overlap and stitch non-overlapping
blocks into appropriate locations. The repositioning of the
tuples to perform a stitch introduces fragmentation and holes
in the tree. This is prevented by storing the VT-Tree on a log-
structured block device to allow a LFS-style defragmenter to
reclaim lost space. The stitching threshold is the minimum size
that a stitched region must accomplish in order for stitching
to occur. This threshold therefore helps to limit the level of
system fragmentation. The method for avoiding I/O in LSM-
Trees is to use a Bloom filter, but the VT-Tree uses quotient
filters instead to allow rehashing in RAM without the need
for an original key.

Pradeep next outlined their file system, KVFS, and how it
utilizes VT-Trees to provide novel functionality to a sys-
tem. In actuality, KVFS translates requests into key-value
operations that are then sent to KVDB, which then performs
the necessary I/O operations. Three dictionary formats—
nmap, imap, and dmap—can be used to create dictionaries,
each backed by a VT-Tree. The nmap format is used for
namespace entries, the imap format simply stores inode
attributes, and the dmap format is used for the data blocks of
files. The system’s ACID transactions are snapshot-based,
where each transaction gets its own private snapshot. This
allows the system to avoid double writes and implement the
standard begin, commit, and abort operations of transac-
tional systems.

The resulting system, Pradeep described, performs compa-
rable to other systems but still achieves the enhanced per-
formance of standard LSM-Trees when performing random
writes. This means that the VT-Tree is able to support both
file system and database workloads efficiently. The transac-
tional architecture supported by the VT-Trees provides 4%
speedup with 10% overhead.

Peter Desnoyers (Northeastern) expressed concern about the
system’s background cleanup and asked whether the authors
had pursued a way to adjust the stitching threshold to pre-
vent cleaning from overloading the system. Pradeep said that
they experimented with many thresholds and found 32 Kb
or 64 Kb to work best. He added that while increasing the
threshold may reduce fragmentation, it would negate the pur-
pose of including it at all if it was increased too much. Margo
Seltzer (Harvard) asked how their implementation differs
from LFS segment cleaning. Pradeep agreed that it is indeed
very similar and that they only look at the sequential data and
examine the rate on it. The questioner further encouraged
Pradeep to look at the age of the data as well.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 3

E L E C T R O N I C S U P P L E M E N T

A Study of Linux File System Evolution
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu, University of Wisconsin—Madison

Awarded Best Paper!

As winner of Best Paper, this analytic research presented a
fascinating look into a significant portion of the Linux 2.6
file system development. The authors painstakingly reviewed
5096 patches across six file systems and categorized each
patch as bug, performance, reliability, feature, or mainte-
nance related.

Lanyue Lu began by noting the continued importance of local
file systems to a crowd ripe with cloud storage enthusiasts.
He explained that local storage is still common on mobile
devices, desktops, and as the base file system for many cloud
applications. Lanyue said that much can be learned from
a large-scale development review, such as understanding
where complexity comes from, how to avoid future mistakes,
and to help improve current designs and implementations.

This comprehensive study required that Lanyue and his
associates comb through eight years of Linux 2.6 file system
patches. Utilizing each patch’s commit message, code diffs,
and community discussions, the authors accumulated granu-
lar data describing the process of developing major open
source file systems. The file systems examined included
ext3, ext4, XFS, Btrfs, ReiserFS, and JFS.

The researchers found that code maintenance and bug fixes
account for the majority of the patches sampled, at 45% and
just under 40%, respectively. Lanyue noted that the mainte-
nance patches were deemed uninteresting early on and were
not investigated in detail. The bug patches were further cat-
egorized into either semantic, concurrency, memory, or error
code related bugs. Semantic bugs were the biggest offenders
making up over 50% of all bug-related patches. Concurrency
bugs were the next most common at about 20%. Interest-
ingly, nearly 40% of these bug patches occurred on failure
paths or error handling. Other than the bugs, performance
and reliability patches also made up a significant portion of
the patches studied, accounting for 8% and 7% of patches,
respectively.

The results suggest that bugs do not necessarily diminish
over time, as one might presume. Even the stable, well-tested,
file systems seem to have a relatively constant rate of bug
patches during the period. Of all the possibilities, data cor-
ruption bugs were the most dominant across all the file sys-
tems studied and caused the most severe problems, such as
system crashes and deadlocks. Lanyue went on to discuss
actual patch examples from each patch category, pointing
out the types within each category responsible for the most
patches.

Lanyue said that, although time-consuming, a large-scale
study such as this is manageable and useful. He stressed the
importance of research matching reality and said that his-
tory does indeed repeat itself.

Akshat Aranya (NEC Labs) asked whether any correla-
tion between feature patches and bug patches was studied.
Lanyue recognized this as possible area of study but said that
he and his co-authors did not analyze it. Margo Seltzer asked
just how in depth the group’s initial study of maintenance
fixes was before deeming them “uninteresting.” Lanyue
responded that these maintenance bugs were almost always
attempts to simplify the core structure through refactoring
and that it was difficult to relate it to a bug patch. Rick Spill-
ane (Apple) asked about bug fixes introducing another bug.
Lanyue confirmed that they found these and even labeled
them as “fix-on-fix” patches.

The data set is available at http://research.cs.wisc.edu/wind/
Traces/fs-patch/.

Caching
Summarized by Leonardo Marmol (marmoleox@gmial.com)

Write Policies for Host-Side Flash Caches
Ricardo Koller, Florida International University and VMware; Leonardo
Marmol and Raju Rangaswami, Florida International University;
Swaminathan Sundararaman and Nisha Talagala, FusionIO; Ming Zhao,
Florida International University

Ricardo Koller began his presentation by pointing out the big
performance gap between write-through (WT) and write-
back (WB) policies for caches. Traditional caching solutions
for network storage, he said, implement WT policies because
these guarantee data consistency at the price of experiencing
high latencies for every update. Inspired by the “Designing
for Disasters” work, he described two new caching policies
for locally attached SSDs, designed to perform similarly to
WB while preserving point-in-time consistency. The first
policy, ordered write-back (OWB), uses a graph to store the
ordering dependencies for I/Os using only issue and comple-
tion times, in order to evict the block in the right order. The
second policy, journaled write back (JWB), builds a journal
on the cache and evicts transactions atomically over the net-
work using an interface similar to that of Logical Disk. This
policy also required modification to the network storage in
order to write blocks atomically.

The experimental results showed the benefits that come
with caching, not only read but also write requests for those
applications that can tolerate some level of staleness. The
caching solution was evaluated using several benchmarks,
and the results showed that, in general, WT performed worse
than any other policy. JWB outperformed OWB but not tra-
ditional WB. Other experiments were presented showing the
throughput and the number of I/O updates sent to storage as
a function of the cache size for each policy.

PAGE 4	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

Wenguang Wang (Apple) asked whether it was possible to
relax the ordering constraints of the OWB policy, pointing
out that, typically, hard disks acknowledge the completion of
writes once the data is in their internal buffer, and then these
are not necessarily performed in the same order they were
issued. Koller disagreed with the questioner’s premise, say-
ing that the order of writes in non-volatile caches sent to disk
is maintained and therefore matters.

Warming Up Storage-Level Caches with Bonfire
Yiying Zhang, University of Wisconsin—Madison; Gokul Soundararajan,
Mark W. Storer, Lakshmi N. Bairavasundaram, and Sethuraman Subbiah,
NetApp; Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau,
University of Wisconsin—Madison

Caching solutions determine the contents of the cache on-
demand. As I/O requests come and go, the content of the
cache changes to better reflect the current needs of the appli-
cation. New technologies like SSDs have made it possible to
increase the size of caches to be much bigger than DRAM
memory, which slows the process of warming caches. To
put things into perspective, Zhang mentioned that a cache
of 1 TB takes about 2.5 hours to fill with sequential work-
loads and 6 days or more with random workloads. For these
reasons, Zhang claimed that the on-demand approach to
warming up caches is no longer appropriate. She proposed a
solution, Bonfire, that monitors and logs I/O requests with
the goal of speeding up the warming of caches by loading data
in bulk.

To answer questions like what and how the data should be
monitored and logged, and how to load warmed data into
caches efficiently, Zhang et al. performed statistical analysis
on the MSR-Cambridge traces [Narayanan’08]. The tempo-
ral and spatial access patterns found on the traces were used
to shape the design goals of their system. Bonfire monitors
I/O requests with a module that sits below the buffer cache
and keeps a buffer for its own metadata. When the buffer is
nearly full, this is written to a persistent storage in a circular
log. When a cache restarts, Bonfire uses its metadata to load
warm data from storage into the cache. In addition to meta-
data, Bonfire could also log data which can be used to further
reduce the warm-up time.

The system was evaluated by replaying the MSR-Cambridge
traces in a synchronous fashion using both metadata-only
and metadata+data logging schemas and comparing them
to the on-demand and always-warmed policies. The results
showed that Bonfire could warm up caches from 59% to 100%
faster than on-demand while reducing the storage I/O load
by 38% to 200%. As a consequence, the I/O latency experi-
enced by applications was reduced on average by 1/5 to 2/3
when compared to on-demand. Before concluding, Zhang
mentioned the need for making more traces available to the
research community and invited everyone to contribute.

Umesh Maheshwari (Nimble Storage) asked Zhang why they
assumed that caches are volatile when they could use SSDs
as caches and they are persistent. Zhang explained that even
persistent caches need rewarming after a repartition of the
cache or a server migration. Ajay Gulati (VMware) asked
about the case in which workload does not follow the patterns
seen in the study’s traces. Zhang replied that Bonfire would
default to on-demand. Someone asked how they kept stored
data and Bonfire’s buffer consistent. Zhang answered that
the buffer is updated only after the data is written to storage.
The questioner pointed out that this requires some form of
synchronization among nodes sharing storage. Joe Buck (UC
Santa Cruz) mentioned that Zhang’s research group’s logo is
very similar to that of the Nintendo GameCube logo.

Unioning of the Buffer Cache and Journaling Layers
with Non-Volatile Memory
Eunji Lee and Hyokyung Bahn, Ewha University; Sam H. Noh, Hongik
University

Awarded Best Short Paper!

Eunji Lee pointed out that journaling is one of the most com-
mon techniques used by file system architects to provide
data consistency. However, it comes at the cost of extra I/O
operations. Lee suggested an interesting alternative that
eliminates the extra I/Os associated with journaling while
maintaining the same level of reliability by effectively using
non-volatile memory. In particular, she argued for an archi-
tecture called UBJ that unifies the buffer cache and the jour-
nal into non-volatile memory. Unlike conventional journaling
techniques, committing blocks in UBJ is a simple matter of
marking them as frozen, eliminating both the copy operation
and data duplication. In addition, frozen blocks are used as
cache, reducing the latency of read requests. As in any jour-
naling system, transactions are eventually checkpointed to
storage, but UBJ makes use of copy-on-write techniques to
allow the update of frozen blocks. This simple technique sig-
nificantly reduces the latency of write-intensive workloads.

The UBJ prototype was implemented in Linux, and the NVM
was simulated using DRAM. The implementation was com-
pared to the ext4 file system configured to journal both data
and metadata, and several I/O benchmarks were used to gen-
erate the workloads. The results showed that UBJ outper-
formed ext4 with 59% higher throughput, which translated
into a 30% reduction in execution time on average. Due to the
simplicity of the UBJ system’s in-place commit mechanism,
the latency of I/O is no longer dependent on the frequency of
commit operations.

Richard Spillane (Apple) commented on how the buffer cache
and in-memory journal were sized on one of the experiments.
He suggested that she could have gotten a better performance
by reducing the size of the journal and increasing the size of

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 5

E L E C T R O N I C S U P P L E M E N T

the cache, as opposed to making them equal in size. Youyou
Lu (Tsinghua University) asked about the performance pen-
alty associated with protecting frozen blocks and performing
the COW. Lee replied that the overhead is expected to be very
small, but no data was available at the time.

Conference Luncheon
During the conference luncheon, the Test of Time award was
presented for GPFS: A Shared-Disk File System for Large
Computing Clusters, by Frank Schmuck and Roger Haskin of
IBM Almaden Research Center. You can read this paper via
http://static.usenix.org/publications/library/proceedings/
fast02/schmuck.html.

Protecting Your Data
Summarized by Morgan Stuart (stuartms@vcu.edu)

Memory Efficient Sanitization of a Deduplicated
Storage System
Fabiano C. Botelho, Philip Shilane, Nitin Garg, and Windsor Hsu, EMC
Backup Recovery Systems Division

Storage sanitization can be described as any method that
removes sensitive data from a device, such that it appears
the guarded information never actually existed on the sys-
tem. Effective sanitization methods have their place in many
fields, including the government and highly regulated private
sectors. With the rise of massive storage systems and dedu-
plication, there is a need to revisit sanitization mechanisms.

After explaining the modern motivation for advanced saniti-
zation methods, Fabiano Botelho explained that crypto-san-
itization isn’t a contender in this particular area for several
reasons. Key management would be difficult in these large
systems where blocks are shared in the namespace. Further-
more, crypto-sanitization sacrifices performance of normal
file system operations to achieve its goal. Finally, the NIST
and DOD do not accept encryption as a sanitization method.
Fabiano solidified their requirements, stating that their solu-
tion must completely erase deleted data, maintain the avail-
ability of live data, use resources responsibly, and leave the
storage system in a usable state while sanitization is being
performed.

The widespread technique of deduplication and the need for
bulk sanitization are the primary motivators of Fabiano’s
work. When files are written in a deduplicated storage sys-
tem, the data is separated into chunks and each chunk’s hash
value is calculated. The hash value can be used to determine
whether or not the chunk is unique, whether or not it needs
to be stored. Files in these systems are represented as a list
of fingerprints that can be used to reconstruct the original
file. This methodology allows only one instance of duplicate
chunks to be stored on the system, saving large amounts
of storage. However, these chunk references present the

primary challenge when attempting to sanitize a dedupli-
cated storage system.

Fabiano and his co-authors investigated several methods
of tracking unused data and objects known as dead chunks.
After comparing the possible usage of reference counts,
Bloom filters, bit vectors, and perfect hashing, they found
that perfect hashing can best fulfill their requirements. Per-
fect hashing allows a mapping without collisions of a static
key set, using a minimal number of bits to represent the map-
ping. The perfect hash function will map to perfect hash
buckets that are variable size, but 16K fingerprints per bucket
on average worked very well.

The five-step algorithm for read-only file system saniti-
zation has Merge, Analysis, Enumeration, Copy, and Zero
phases. The Analysis phase was described in more detail
as the point in which the algorithm builds the perfect hash
function, walks multiple perfect hash vectors in parallel, and
records the range that the data structure is actually cover-
ing. An algorithm for read-write systems was also imple-
mented, which must handle incoming fingerprints after both
the Merge and Analysis phases. These chunk resurrections
are handled by notifying the process of incoming deduplica-
tion and utilizing a second consistency point, or snapshot, to
enumerate differences.

Three sets of experiments were used to formulate a control
for storage systems. First, a system using only local com-
pression with no deduplication wrote its entire file system at
about 70 MB/s. Next, deduplication was added with a factor
of about 7x, resulting in 5.06 GB/s data rates. This increase in
performance correlating to the deduplication factor confirms
that a system can scale performance according to the dedu-
plication factor. The next benchmark added the sanitiza-
tion mechanism as well as data ingest, running at 59% peak
throughput and 70% peak throughput, respectively. Fabiano
explained that this benchmark showed that the system’s data
ingest is CPU-intensive while the sanitization is I/O-inten-
sive. A final benchmark removed the deduplication, leaving
the sanitization and data ingest variables. Sanitization ran
above 45% of its peak throughput in this test, with high CPU
usage for the data ingest as well as high I/O usage for both
sanitization and ingest.

Cheng Huang (MSR) asked if the deduplication system must
hold all the fingerprints in memory in the first place. Fabiano
recommended that Cheng attend the HP session the next day,
where they describe techniques to avoid holding everything
in memory. Cheng then asked whether the authors had looked
into options other than the perfect hash data structure. Fabi-
ano explained that they had not seen any better techniques.

PAGE 6	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

SD Codes: Erasure Codes Designed for How Storage
Systems Really Fail
James S. Plank, University of Tennessee; Mario Blaum and James L.
Hafner, IBM Almaden Research Center

The past ten years have seen rapid growth in utilization
of erasure codes to handle disk failures. However, recent
research has exposed what James Plank terms the “RAID6
Disconnect”: that storage administrators are effectively
using entire disks to tolerate common latent sector errors
rather than full disk failures. Latent sector errors are par-
ticularly bothersome because they are typically only detected
once a read access is attempted on the data. This clearly
wasteful use of resources has motivated James and his co-
authors to develop an erasure code that can tolerate both full
disk failures and latent sector errors. The goal is to allow
administrators to devote the right amount of coding to match
the failure mode.

James explained the theoretical view of a stripe to define
their Sector-Disk (SD) code. More specifically, each disk
holds r w-bit symbols in a system of n disks, where w is rela-
tively small. The system also uses m disks and s sectors
per stripe to tolerate simultaneous failures of any m disks
plus any s sectors per stripe. The SD code uses Galois Field
arithmetic, where more w-bit symbols decrease speed but
make the code more robust. James noted that this Reed-
Solomon-like code has large amounts of documentation and
open source code, and said he would spare the audience the
mathematics.

The SD code is slower than Reed-Solomon, but it outper-
forms the solutions that the SD code could replace. For
example, replacing RAID6 with a one-disk-one-sector code
achieves higher performance with less dedicated storage. A
complete open source implementation, in C, was made avail-
able the week of the conference. The source code is intended
to act as template for engineers wishing to use the code or
experiment with it.

Someone pointed out that the assumption seems to be that
the latent errors are somewhat random and therefore small
in number, but disk drives, instead of flash drives, could have
many kilobytes in error. James explained that the imple-
mentation of the code must have the sector size defined as
sufficiently large to encompass these larger failures. Geoff
Kuenning asked “What am I getting?” since the SD codes
don’t really solve the two disk failures previously resolved
by RAID6. If RAID6 is used, you are already protected from
both types of failures. James explained that if you want to
allow for more disk failures, you need to increase the m for
disks. He suggested that models be used to examine the need
to tolerate these failures. IBM researchers performed data
loss modeling to investigate the data loss of SD coding versus
RAID6 and they showed that SD can get higher reliability.

HARDFS: Hardening HDFS with Selective and
Lightweight Versioning
Thanh Do, Tyler Harter, and Yingchao Liu, University of Wisconsin—
Madison; Haryadi S. Gunawi, University of Chicago; Andrea C. Arpaci-
Dusseau and Remzi H. Arpaci-Dusseau, University of Wisconsin—
Madison

Thanh Do began by describing the implementation of the
cloud’s reliability, describing it as complex systems made up
of thousands of commodity machines, where once-rare fail-
ures become frequent. In these systems, machine crashes
and disk failures have been generally mitigated. However,
Thanh described “fail-silent” failures as a continuing prob-
lem for these large-scale systems. The fail-silents are failures
where the machine or program exhibits incorrect behavior
but doesn’t entirely halt the system. These failures can be
caused by many problems, but are often the result of corrupt
memory or software bugs. The defining factors of fail-silent
failures are that standard crash recovery mechanisms do
not combat them, as the issue can quickly propagate across
collaborating machines. Current solutions for these failures,
found in N-Version programming’s redundant implementa-
tion methodology, require extensive resources and engineer-
ing effort which results in its rare deployment.

Thanh introduced selective and lightweight versioning
(SLEEVE) to combat the fail-silent failures that he describes.
Rather than “telling a lie” by continuing to run after a silent
failure, SLEEVE exploits the crash recovery support for sys-
tems if it detects a failure with its trusted sources. Detection
of the erroneous operations is achieved by utilizing a second
lightweight implementation of the functionality that requires
SLEEVE’s protection.

SLEEVE is described as selective due its small engineer-
ing effort and its ability to target important functionality for
protection. For instance, the error checking can target bug
sensitive portions of a program or system, such as subsys-
tems that are frequently changed or even currently unpro-
tected with internal mechanisms. The lightweight aspect
of SLEEVE describes the absence of full state replication.
Instead, SLEEVE encodes states to reduce required space.
The hardened version of HDFS (HARDFS), protected with
SLEEVE, was able to detect and recover from 90% of random
memory corruption faults and 100% of the targeted memory
corruption faults. Furthermore, HARDFS was able to detect
and recover from five software bugs injected into the system.

SLEEVE is composed of four subsystems: an interposition
module, state manager, action verifier, and a recovery mod-
ule. The state manager only maintains important states of
the main version and only adds new states incrementally. The
state manager must also understand the semantics of the
protocol messages and events in order to correctly update the
state. The state manager encodes states with counting Bloom

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 7

E L E C T R O N I C S U P P L E M E N T

filters, which supports insert, delete, and exist operations.
Thanh noted that Bloom filter false positives are rare and
that they simply lead to a tolerable yet unnecessary recovery.
The action verifier performs micro-checks to detect incor-
rect actions in the main version. The recovery module sup-
ports both full recoveries, described as a crash and reboot,
and micro-recoveries in which corrupted states are repaired
from trusted sources.

The HARDFS implementation hardens HDFS’s namespace
management, replica management, and its read/write proto-
col. Thanh and his co-authors found that HARDFS reduced
the number of silent failures from 117 to 9, which ultimately
increased the number of crashes from 133 to 268. Addition-
ally, by using the counting Bloom filter, their implementation
incurred a relatively small space overhead of 2.6%. Thanh
concluded by saying that a crash is better than a lie and that
HARDFS turns these lies into crashes and leverages existing
recovery techniques to bring systems back online.

John Badger (Quantum) asked about the Bloom filter and
how facts are represented. Thanh said that only yes/no
verification is supported and that it ultimately depends
on the property you want to check; no “magic rule” can be
applied. Brent Welch expressed concern about false positives,
crashes, and the potential for a crash loop. Thanh agreed that
this was possible and informed the audience that crashes
can be counted and a hard limit for stopping crash loops can
be enacted. Next, Rick Spillane cautioned against Thanh’s
statement of the Bloom filter’s 2.6% overhead, telling him
that it grows linearly. Finally, Jacob Lorch pointed out that
since SLEEVE is the ultimate arbiter of the system, a bug in
SLEEVE can potentially cause catastrophic consequences.

Big Systems, Big Challenges
Summarized by Min Li (limin@cs.vt.edu)

Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines
Devesh Tiwari, North Carolina State University; Simona Boboila,
Northeastern University; Sudharshan Vazhkudai and Youngjae Kim, Oak
Ridge National Laboratory; Xiaosong Ma, North Carolina State University;
Peter Desnoyers, Northeastern University; Yan Solihin, North Carolina
State University

Devesh presented Active Flash, an in-situ data analysis
method, to help improve the performance and energy effi-
ciency for scientific data analysis tasks. He started with the
introduction of a two-step process of scientific data analy-
sis which consists of scientific simulation and data analysis
and visualization. Conventionally, data analysis is per-
formed offline on a small-scale cluster involving expensive
data migration between compute and storage infrastructure
resulting in extra energy cost. Devesh observed enabling
trends: SSDs are increasingly adopted in HPC for higher
I/O throughput and energy efficiency; SSD controllers are

becoming powerful; idle cycles exist at SSD controllers due
to the natural I/O burst of scientific workload etc. Devesh
proposed conducting scientific data analysis on SSD con-
trollers in parallel with simulation without affecting I/O
performance.

He organized the discussion of system design around two
questions: (1) if SSD are deployed optimizing only I/O perfor-
mance, is active computation feasible? (2) how much energy
and cost saving can Active Flash achieve? The main con-
straints of SSD deployment without active computation sup-
port are capacity, performance, and write durability. On the
other hand, modeling active computation feasibility depends
on simulation data production rate, staging ratio, and I/O
bandwidth. Their results showed that most data analysis
kernels can be placed on SSD controllers without degrading
scientific simulation performance. Moreover, he observed,
additional SSDs are not required to sustain the I/O require-
ment of scientific simulations even with active computation
enabled. Compared with an alternative approach of running
active computation on partial simulation nodes, he suggested
that Active Flash is able to achieve the same performance but
with lower staging ratio and infrastructure cost.

He went on to analyze the energy and cost saving of Active
Flash. Modeling a Samsung PM830 SSD, they considered
multiple components such as energy consumption of I/O,
compute idle periods, data movement, etc. He also men-
tioned briefly how they modeled the energy consumption of
two other state-of-the-art approaches. The results showed
that Active Flash is more cost and energy efficient compared
with other approaches in many cases. Finally, he introduced
the prototype which they developed, based on the OpenSSD
platform, demonstrating that scientific data analytics with
Active Flash is viable with OpenSSD.

Dave Anderson (Seagate) wondered whether SSDs have
enough resources to perform the complex task designed in
the paper. Devesh replied that he had researched several
products and believed that the SSD controller will be more
powerful and have more cores to do complex tasks, such as
data analytics, in the near future. Song Jiang (Wayne State
University) asked if some intelligence is implemented on
the SSD controller. Devesh replied yes. The implementation
allows the SSD controller to communicate with hosts and
perform data analytics. Song followed up by asking how the
active cache handles data that is striped across SSDs. Devesh
said that in that case, they would need frameworks such as
MapReduce to help coordinate between different SSDs and
perform analysis.

PAGE 8	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

MixApart: Decoupled Analytics for Shared Storage
Systems
Madalin Mihailescu, University of Toronto and NetApp; Gokul
Soundararajan, NetApp; Cristiana Amza, University of Toronto

Madalin started by pointing out that enabling data analytics
platforms, such as MapReduce and Pig, to directly use data
on enterprise storage can help eliminate the two-storage-
silos problem. The traditional two storage silos require dedi-
cated compute infrastructure and additional time to migrate
the data, and increase the hardware cost in terms of expense
and number of errors. Madalin then presented MixApart, a
scalable on-disk cache which allows distributed computation
frameworks to use single enterprise storage and supports
transparent on-demand data ingestion.

Effective design of MixApart comes from the analysis and
understanding of MapReduce workloads. Madalin intro-
duced three key insights they observed: (1) jobs exhibit
high data reuse rate; (2) the input phase of a MapReduce
job is usually CPU intensive; (3) the I/O demands of jobs
are predictable. He also showed that with a high data reuse
rate, MixApart can effectively support around 2000 paral-
lel tasks using an envelope calculation demonstrating the
compute scale of MixApart. With the goal of preserving the
scalability and performance gained from data locality and
efficient bandwidth utilization of storage, cache, compute
node, Madalin mentioned that MixApart designed per-job
task I/O rates and job scheduling policy to maximally overlap
computation with data fetch. More specifically, he intro-
duced two components, a compute scheduler, which allows
assigning map tasks to nodes with cached data, and a data
transfer scheduler, which facilitates just-in-time parallel
data prefetch within and across jobs based on job I/O rate
prediction. He also illustrated MixApart in action by using
an example. They reengineered Hadoop by implementing a
cache-aware compute scheduler as a variant of the Hadoop
task scheduler, and a data transfer scheduler as a module
within the namenode. They also reused the namenode as the
XDFS metadata manager and added support within HDFS
to enable caching stateless data. In their evaluation, they ran
MixApart on Amazon EC2 with three types of EC2 instances
and compared with Hadoop. They found that MixApart can
reduce job durations by up to 28% compared to the tradi-
tional ingest-then-compute approach and can closely match
the performance of Hadoop when the ingest phase is ignored
for HDFS.

Akshat (NEC Labs) asked whether they had considered the
workloads that were I/O intensive in the Map phase. Madalin
admitted that there is not much they can do if the workloads
are I/O intensive in the Map phase. However, the Face-
book trace they analyzed had shown that the average task’s
effective I/O rate is low, which allows moving data from the

shared storage to distributed cache. He argued that there are
efforts to scale out the shared storage system to provide more
bandwidth, which enables MixApart to sustain large clus-
ters. He also mentioned that they had the notion of limiting
the network bandwidth consumption of MixApart to make
sure it does not compete with regular network traffic. Kadir
Ozdemir (EMC) asked whether they had thought of a case in
which the system would affect the performance of the enter-
prise system. Madalin responded that they had done some
experiments in terms of performance isolation, arguing that
the quanta-based scheduling effectively minimized the inter-
ference effects. Joe Buck (UC Santa Cruz) asked whether he
had noticed a trace from CMU which demonstrated that 99%
of data are actually processed within an hour, which means
a better strategy would be to stream the data directly into
the cache system instead of just-in-time prefetching. Mada-
lin replied that it was a great use case. Since their approach
is more generic, their system could always plug in better
prefetching schemes to accommodate special scenarios like
the one just mentioned.

Horus: Fine-Grained Encryption-Based Security for
Large-Scale Storage
Yan Li, Nakul Sanjay Dhotre, and Yasuhiro Ohara, University of California,
Santa Cruz; Thomas M. Kroeger, Sandia National Laboratories; Ethan L.
Miller and Darrell D. E. Long, University of California, Santa Cruz

Li began by pointing out that current HPC systems store
their sensitive data using an unencrypted or simply
encrypted approach, which increases the chance of data
leakage due to an increased chance of compromised nodes
within these large-scale HPC centers. These HPC systems
depend on a vulnerable security model which has a hard
exterior and a soft interior. There are also concerns of leak-
ing critical information from both malicious insiders and
untrusted service providers. However, he mentioned that
traditional data encryption techniques could not be directly
applied to peta-scale data sets since they are either coarse-
grained or incur high key-management overhead. Moreover,
they could not provide security even when few nodes are
compromised or when the service provider is untrusted. To
solve the problem, Li introduced their system, Horus, which
enables fine-grained encryption-based security for peta-
scale data sets with low key management overhead. The key
idea was to use keyed hash trees (KHT) to generate different
keys for each region of a file and allow keys to be produced for
variously sized regions based on users’ need. He stressed that
by carefully designing KHT, Horus greatly simplified key dis-
tribution and key storage.

Li explained how Horus is made up of three major compo-
nents: key distribution cluster (KDC), Horus client library,
and key exchange protocol. KDC is stateless and indepen-
dent from the storage and compute nodes within the HPC

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 9

E L E C T R O N I C S U P P L E M E N T

system, which can help provide security, scalability, and easy
deployment. Because only the KDC knows the root key while
compute nodes receive the needed keys , any data leakage is
confined when nodes are compromised. He then explained
the key distribution process through an animation followed
by a description of key distribution protocol. The experiments
testing the raw performance of KDS showed that a single
KDS can sustain about 140,000 queries per second, and it
scales linearly with the number of KDSes. Next, he presented
an experiment to adjust the system parameters, KHT branch
and depth, in order to explore the tradeoff of shifting work-
loads between servers and clients. He showed that Horus is
flexible enough to balance the compute resource between the
KDS client and the network. He concluded that Horus sup-
ports fine-grained security, is easily deployed, and has high
performance.

Mark Lillibridge (HP Labs) asked how to revoke permissions.
Li answered that they chose to have two root keys for a file;
when a client tries to access a region, it will test which key
works for the file. The paper has a detailed discussion. Xubin
He (Virginia Commonwealth University) asked how to han-
dle a case in which keys are randomly scattered. Li replied
that the read/write workloads are usually in a range. If the
depth of KHT is as big as 28, Xubin followed up, what would
be the overhead? Li replied that the KHT needs width not
depth, and suggested referring to the paper for more details.
Bill Bolosky (Microsoft Research) suggested trying differ-
ent hash functions. Li responded that the focus here was to
study the property of KHT; choosing a hash function could be
future work. Bill said that using an inappropriate hash func-
tion would affect the performance. Li admitted that was true.

Poster Session and Reception I
Summarized by Muthukumar Murugan (muru0007@umn.edu)

SLM: Synchronized Live Migration of Virtual Clusters
Across Data Centers
Tao Lu, Morgan Stuart, Xubin He, Virginia Commonwealth University

The authors address the problem of live migration of virtual
clusters across geographically distributed datacenters. They
claim that synchronizing the migration of all VMs in a vir-
tual cluster can reduce the cost of communication and data
sharing among VMs through the low bandwidth WAN and
hence can avoid any significant performance degradation in
the applications.

The proposed architecture has three components: (1) a status
monitor to monitor the available resources and the resources
currently used by VMs; (2) a migration simulator that pre-
dicts the migration impact on the performance of the VMs
based on modeling and profiling of the system; and (3) a
migration manager that initiates and schedules the migra-
tion of each VM. Contact: Tao Lu, cstao.lv@gmail.com

Energy-Aware Storage
Yan Li, Christina Strong, Ignacio Corderi, Avani Wildani, Aleatha Parker-
Wood, Andy Hospodor, University of California, Santa Cruz; Thomas M.
Kroeger, Sandia National Laboratories; Darrell D.E. Long, University of
California, Santa Cruz

This work tries to address the problem of energy consump-
tion in future large-scale HPC storage systems. The two
issues that are addressed are providing high bandwidth and/
or capacity under power constraints and reducing data move-
ment to save power. The work proposes a new metric called
“energy score,” which accounts for the energy consumed
by all components in the process of the data object genera-
tion and is comparable between systems. The work explores
multiple options such as near-node storage, use of SSDs, and
extensive use of compression, and it studies the impact of
proposed approaches on energy consumption of the storage
systems.

In order to evaluate the proposed approaches on large com-
plex computer systems, the authors built a comprehensive
energy simulator. They also proposed exploring energy-effi-
cient data allocation to increase idle times in storage devices
so that they can be transitioned to low-power modes. Con-
tact: Yan Li, yanli@ucsc.edu

On-Demand Indexing for Large Scientific Data
Brian A. Madden, Aleatha Parker-Wood, Darrell D.E. Long, University of
California, Santa Cruz

This work proposes an efficient on-demand indexing scheme
for large-scale scientific data. The proposed system consists
of three components: the filter, the indexer, and the stor-
age substrate. The filtering process creates a map of files to
features and attributes. The indexer manages the indices on
the filtered data and avoids expensive parsing of all files by
narrowing the search based on the filter data. Transducers
specific to different file formats help in the filtering process
as data is ingested. The filter and index are stored as col-
umn stores which serve as the storage substrate. Currently
transducers have been built for CSV and XML formats, and
Apache HBase is used as the column store. Contact: Brian A.
Madden, madden@soe.ucsc.edu

Efficient Use of Low Cost SSDs for Cost Effective Solid
State Caches
Yongseok Oh, Eunjae Lee, University of Seoul; Jongmoo Choi, Dankook
University; Donghee Lee, University of Seoul; and Sam H. Noh, Hongik
University

In this work the authors propose the use of Hybrid Solid
State Cache (HySSC), a combination of SLC (Single Level
Cell) and TLC (Triple Level Cell), to reduce the cost of Solid
State Caches by integrating high performance SLC with
low cost TLC. HySSC manages the SSC device, takes care of
page replacement in the cache, and maintains the mapping
between logical and physical blocks. HySSC manages SLC

PAGE 10	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

SSC as read/write and TLC SSC as read-only. The proposed
architecture is evaluated with the extended version of the
DiskSim simulator and real-world workload traces. Contact:
Yongseok Oh, yongsukoh@gmail.com

Energy-Efficient Cloud Storage Using Solid-State
Drive Caching
Jorge Cabrera, Salma Rodriguez, Jesus Ramos, Alexis Jefferson, Tiffany
Da Silva, Ming Zhao, Florida International University

This work explores the use of SSDs as a near-node storage
layer to reduce the power consumption of storage systems.
SSDs consume a lot less power than hard disks and are much
faster than hard disks for certain workloads. The work uses
a modified version of an existing SSD block-caching solu-
tion called DM-Cache to enable a write-back cache for the
primary storage. A user-space daemon is implemented to
talk to the shared storage layer in order to spin down or spin
up the disks.

The experiments are carried out on a shared storage device
with and without the SSD cache layer. The authors report
significant savings in power consumption when the I/O
requests are served from SSDs. Contact: Jorge Cabrera,
jcabr020@fiu.edu

Cloud Storage System which Prohibits Information
Leakage on Both Client and Server
Kuniyasu Suzaki, Toshiki Yagi, Kazukuni Kobara, National Institute of
Advanced Industrial Science and Technology (AIST); Nobuko Inoue,
Tomoyuki Kawade, Koichiro Shoji, SciencePark Corporation

This work proposes a mechanism to prevent information
leakage on client and servers in a cloud storage system.
The proposed system, Virtual Jail Storage System (VJSS),
encrypts a file using All-Or-Nothing Transform (AONT),
and cuts out a part of the encrypted file as a split tally. The
split tally is stored in a local storage in the client, and the
remaining portion of the file is stored in the cloud storage
system after encoding with Reed-Solomon error correct-
ing code. The original file is only reconstructed in the VJSS
which has the corresponding split tally. The encryption and
split tally prevent information leakage from servers.

The reconstructed file in the VJSS can be opened by a suit-
able application but cannot be copied, printed, or screen-
captured and pasted. These actions are prevented by the
access control library called NonCopy. NonCopy hooks APIs
of the Windows kernel, functions of DLL, and event han-
dler I/O APIs, and prevents the action related to informa-
tion leakage. The current VJSS implementation is based on
Loopback Content Addressable Storage (LBCAS) for Win-
dows, which uses “Dokan” for user-mode file system and
BerkeleyDB for managing data. Contact: Kuniyasu Suzaki,
k.suzaki@aist.go.jp

Offline Deduplication-Aware Block Separation for
Solid State Disk
Jeongcheol An and Dongkun Shin, Sungkyunkwan University
Summarized by Vasily Tarasov (tarasov@vasily.name)
Jeongcheol An presented a deduplication-based technique
that increases the lifespan of Solid State Disks (SSDs). The
method consists of inline and offline steps. During the inline
step, the SSD computes a CRC32 checksum of every incom-
ing chunk (the size of a chunk is equal to SSD’s page size).
CRC32 is not a collision-resistant hash, so it is used to clas-
sify chunks into those containing unique data and those
of undetermined status. CRC32 is 12.5 times faster than
collision-free hash functions such as SHA-1, so write latency
is not severely penalized by the inline step. The data that is
classified as unique is separated on the SSD from undeter-
mined data. Later, during the offline step, the actual dedupli-
cation with strong SHA-1 hashes is performed. The number
of pages invalidated by the deduplication in the undeter-
mined area is significantly higher than when no block sepa-
ration is used and, consequently, the number of page copies
during garbage collection decreases considerably (by up to 5
times in some experiments). Associated write amplification
diminishes and the lifespan of the SSD increases. Contact:
Jeongcheol An (luckyjc7@skku.edu)

Extension of S3 REST API for Providing QoS Support
in Cloud Storage
Yusuke Tanimura, National Institute of Advanced Industrial Science
and Technology (AIST); Seiya Yanagita, National Institute of Advanced
Industrial Science and Technology (AIST) and SURIGIKEN Co., Ltd.

Though popular today, the S3 REST API does not allow a
user to specify performance reservations for read and write
throughput. Yusuke Tanimura presented an extension to
the S3 REST API that provides a QoS capability to the base
protocol. The extension adds new optional arguments to the
already existing ‘PUT Bucket’ and ‘Put/Get Object’ opera-
tions. In the ‘Put Bucket’ operation, a user can specify the
bucket size, its lifetime, and read/write throughput reserva-
tions. In the ‘Put/Get Objects’ operation, one can specify a
reservation ID. Reservations in this case are made using an
external tool, but in the future such commands can be added
to the main protocol. The authors implemented the exten-
sion for Papio backend, which already supports QoS inter-
nally. Preliminary results demonstrate a good control over
the throughput reservations. Contact: Yusuke Tanimura
(yusuke.tanimura@aist.go.jp)

Improved Analysis and Trace Validation Using
Metadata Snapshot
Ian F. Adams and Ethan L. Miller, University of California, Santa Cruz;
Mark W. Storer, NetApp; Avani Wildani and Yangwook Kang, University
of California, Santa Cruz

The fact that an I/O trace does not miss important activities
is a crucial requirement for making true trace-based conclu-

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 11

E L E C T R O N I C S U P P L E M E N T

sions about the workload. Ian Adams presented an interest-
ing approach for determining the coverage of a trace. Before
the tracing starts, an initial file system metadata snapshot is
taken. Immediately after the tracing is over, another snap-
shot, called a reality snapshot, is taken. By applying the trace
records to the initial snapshot, one can obtain a so-called
expected snapshot. The analysis of the differences between
the expected and the reality snapshots allows identifying the
coverage of the trace. The authors provide several examples
of such an analysis that determines the periods of the logger
failure, missing creates, renames, and permission changes.
Contact: Ian F. Adams (iadams@soe.ucsc.edu)

An Efficient Data Deduplication Based on Tar-Format
Awareness in Backup Applications
Baegjae Sung, Sejin Park, Youngsup Oh, Jeonghyeon Ma, Unsung Lee, and
Chanik Park, Pohang University of Science and Technology (POSTECH)

Sejin Park presented an approach to improve the chunking
algorithm for tar-files. It is known that typical tar-files con-
sist of numerous concatenated sub-files. Traditional chunk-
ing algorithms, such as fixed chunking and content defined
chunking (CDC), ignore sub-file boundaries, which degrades
the deduplication ratio. The authors added to the Opendedup
SDFS file system the ability to form chunks using the sub-
file boundaries in tar files. Their experiments demonstrate
that deduplication ratio for 20 Linux kernel sources in a
single tar file increased from 2.5 for CDC to almost 8.5 for
CDC with tar-aware chunking. Contact: Sejin Park (cipark@
postech.ac.kr)

GreenDM: A Versatile Hybrid Drive for Energy and
Performance
Zhichao Li, Ming Chen, and Erez Zadok, Stony Brook University

Zhichao Li and Ming Chen presented a design for a novel
device mapper target—GreenDM. GreenDM rests on top of
several block devices with varying performance and power
consumption characteristics, e.g., SSDs and HDDs. Using a
number of approaches to determine the hotness of the data,
GreenDM transparently migrates the data between SSDs and
HDDs to improve performance and reduce power consump-
tion. Preliminary results demonstrate up to 330% perfor-
mance improvements and up to 80% power savings. Contact:
Zhichao Li (zhicli@cs.stonybrook.edu) and Ming Chen
(mchen@cs.stonybrook.edu)

Using Hybrid Cloud and Mobile Platforms to Enhance
Online Education
Rachel Chavez Sanchez and Ming Zhao, Florida International University

Moodle is a known open source educational system similar to
BlackBoard. Currently it lacks the integration with virtual-
ization technologies, where each student could, for example,
have his or her own VM for the experiments. Rachel Chavez
Sanchez presented vMoodle, an educational system that

incorporates Virtual Machines (VMs) in Moodle. vMoodle
supports Web-based and mobile application interfaces. For
mobile application, the authors worked on developing intel-
ligent caching algorithms to improve user experience when
high-latency networks are employed. Another problem the
researchers tried to tackle is the support of live VM migra-
tion from a private to public cloud. This can be useful in
cases when the university, for example, does not have enough
resources to run all VMs on its own hardware. Contact:
Rachel Chavez Sanchez (rchav010@cs.fiu.edu)

Policy-Based Storage System for Heterogeneous
Environments
Dai Qin, Ashvin Goel, and Angela Demke Brown, University of Toronto

Applications are often decoupled from storage even though
these applications and file systems produce a variety of
workloads. Most modern storage systems are not aware of
application workloads and requirements and interact with
the upper layers using a simple block interface. According
to Dai Quin and his colleagues, solutions like ZFS and Btrfs
that integrate storage management in a file system are not
flexible enough for heterogeneous environments. Instead, the
authors propose a modular framework that determines appli-
cation semantics using previously developed introspection
and hinting mechanisms, and adjust storage policies accord-
ingly. Policies also allow handling hardware with different
performance characteristics. Currently the work is focused
on implementing a fast and consistent mapping layer for the
virtual block device. In the future, the authors plan to develop
a library of policies for different applications and devices.
Contact: Dai Quin (mike@eecg.toronto.edu)

Keynote Address
Disruptive Innovation: Data Domain Experience
Kai Li, Princeton University
Summarized by Rik Farrow
Kai Li told the story of Data Domain, a tiny company he
founded that set out to replace the tape libraries used in
data centers. They wanted to reduce the data footprint
and network bandwidth by an order of magnitude, and did.
What once required 17 tape libraries, a huge row of systems,
became three 3U rack-mounted systems, in an example
Li cited.

Li first asserted that innovation in large companies is very
difficult, but he had a much more disturbing message for aca-
demics later in his keynote. He also said that you must have
customer-driven technical development, work with the best
venture capital firms, raise more money than you need, and
hire the best people you can, even if you miss hiring goals.
As for hiring people, Li stated the goal was to have people
who work well together, minimizing egos, and using the best
ideas. Li also said that some people demonized VCs, but good

PAGE 12	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

VCs helped them avoid many detours, and also helped with
software design reviews and business plans.

Li presented a very interesting graph that compared income
growth to lines of code. In the early years of Data Domain
(2001-2007), they were producing 100,000 lines of produc-
tion quality code every year, while growing the engineering
team from ten to one hundred over this period. Li encouraged
startups to stay focused, to carefully pick what features you
code for—that is your roadmap.

In the early days, they had to find companies willing to install
their product instead of tape libraries. Tape libraries are
expensive, and that helped them have high margins, as the
Data Domain hardware costs were low. And even though
storage customers are very conservative and slow to change,
they succeeded by having a product that worked. Li dispar-
aged both trade shows and analyst groups, like Gardner, as a
way to create new markets. Data Domain was successful long
before analysts ever noticed the company.

Li pointed out that large companies like EMC, NetApp, and HP
hopped on the data deduplication bandwagon early, but discon-
tinued their efforts soon after. Except for NetApp, these larger
companies eventually acquired small companies with success-
ful deduplication, just as EMC acquired Data Domain.

As for reasons why big companies often fail, Li suggested
that engineers can lack motivation because they feel ignored
by the company, including lack of incentives (stock options).
Another reason is that the process used in big companies can
be very wrong: checking with lead customers and research
firms, and having many meetings structured around Power-
Point graphics. Li said, “Microsoft has reduced the produc-
tivity of millions,” a statement greeted with enthusiastic
applause. Another reason is that established companies are
afraid of killing their own children, their cash cows, with
new products that will compete with them.

Finally, Li put the focus on academic research. Deduplication
was not developed in a university. He and others left their
positions to focus on their research, saying you can’t both
research and innovate. If you want to do a startup, you cross
over, rather than stand in “two canoes, research and startup
innovation.”

Someone from EMC asked how often can you go from
academia to a startup with no prior experience. Li replied
that he is not saying your prior research has nothing to do
with success. It’s just that the skill set for making a product
successful is not taught in universities. You must put your-
self into the market environment, and work to make your
product successful. Margo Seltzer pointed out that Michael
Stonebraker was another model of how this can work. Li

agreed while pointing out that Stonebraker’s current project
(VoltDB) is already VC funded. Margo replied that Stone-
braker said it is easier to get VC funding than research fund-
ing. How do we get a supportive systems research program
going? Li had no answer. Someone asked if following techni-
cal trends was a good idea, and Li laughed and said that it was a
good question. He pointed out that we are moving away from
spindles to flash memory, using forms of cloud to minimize
the cost of running private DCs. But moving to the cloud for
large companies will not work because of the cost of network
bandwidth.

Keith Smith (NetApp) wondered why large companies
struggle with innovation, and Li replied that there is just
not enough innovation juice in large companies, and that
very little innovation has happened at Data Domain since
it was acquired. Someone from EMC said that he was a
researcher now, and Li countered by saying that Apple killed
their research lab when Steve Jobs came back, and Amazon,
Cisco and EMC don’t have research labs. Li cannot find
the destructive type of product developed mainly due to
researchers, as they are not exposed to learning the market.
Li did have a small research lab at Princeton which did make
important contributions, including deduping data before net-
work transmission. Randal Burns (John Hopkins) suggested
SBIR (Small Business Innovation Research, sbir.gov) as an
example of an attempt to extract innovation where it occurs
in research. Li replied that SBIR is good and getting better,
and that if there was a way for SBIR efforts to interact with
many customers and team up with professionals, that would
be great. Tech people are trained not to listen to other people,
to believe “my idea is better and we know more than you,”
and after years of doing that, they lose the ability to hear
what people want.

During his keynote, Li kept hinting that he had more to say,
but wouldn’t because his talk was being recorded (the video is
available free online). As it was, Li’s speech was both disrup-
tive and very enlightening.

Deduplication
Summarized by Min Li (limin@cs.vt.edu)

Concurrent Deletion in a Distributed Content-
Addressable Storage System with Global Deduplication
Przemyslaw Strzelczak, Elzbieta Adamczyk, Urszula Herman-Izycka,
Jakub Sakowicz, Lukasz Slusarczyk, Jaroslaw Wrona, and Cezary
Dubnicki, 9LivesData, LLC

Strzelczak presented a deletion algorithm for a distributed
content-addressable storage (CAS) system with global dedu-
plication. Data deletion with deduplication enabled all the
time is motivated by the fact that otherwise the storage con-
sumption would be increased significantly since successive
backups are usually very similar. Strzelczak explained that
data deletion with deduplication enabled was challenging.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 13

E L E C T R O N I C S U P P L E M E N T

Reasons were that deduplication resulted in several owners
of chunks, dynamic system changes such as adding/deleting
nodes, and failures. The requirements of deletion are con-
tinuous system availability, no read-only period, negligible
impact on user operations, scalability, and fault tolerance. He
then discussed a simplified data model in a CAS storage sys-
tem followed by the challenges for deletion in CAS.

The data model for a CAS storage system has been trees built
bottom up sharing deduplicated blocks. Challenges lie in
the root set determination and block resurrection through
deduplication. Their deletion algorithm is comprised of two
phases: garbage collection and space reclamation. Each dele-
tion run proceeds in three subphases. More specifically, to
solve the problem that a retention root is written to block A
after deletion starts yet A is deleted mistakenly, they pro-
posed to allow the counter to be increased between the first
and the second advance. To deal with the problem of block
A becoming a duplicate after deletion start or being deleted
wrongly, they use an undelete marker to preserve dedupli-
cated blocks. Strzelczak went on to discuss how they extend
the algorithm to support distributed CAS systems. The main
difficulty is to decide consistently whether to preserve or
remove all fragments of a block. The solution they proposed
is to leverage redundancy of computation from good peers,
which have good enough data state and counter validation.
When mismatches are found, the deletion would be aborted.

In terms of implementation, Strzelczak explained that they
implemented the algorithm with a commercial system,
HYDRAstor, which is designed for backup and archival data.
Their evaluation showed that the deletion reduces perfor-
mance less than 30% while using 30% system resources
under the default configuration. When given minimum sys-
tem resources, the deletion impacts performance within 5%.

Neville Carvalho (EMC) asked what size of block and of
identifier were used. Strzelczak answered the chunk size in
HYDRAstor is 64 KB and the block address has 20 bytes.
Mark Lillibridge (HP Lab) asked what happens if you put an
undelete marker on a block that is later going to be deleted.
Strzelczak replied that if a counter was positive, the system
did not do anything, but otherwise it knew the block should
be deleted.

File Recipe Compression in Data Deduplication
Systems
Dirk Meister, André Brinkmann, and Tim Süß, Johannes Gutenberg
University, Mainz

Meister introduced the concept of file recipes, which consists
of lists of fingerprints of variable-sized chunks belonging
to a file. He pointed out that file recipes occupy increas-
ingly significant disk capacity since chunk data grow with

post-deduplication space while file recipes grow with pre-
deduplication space. To reduce the storage usage, he pro-
posed compressing the file recipes by leveraging shortened
code words rather than the fingerprint in the file recipe with
low overhead in terms of memory, I/O, storage, and limited
impact on write and restore speeds. He mentioned several
assumptions: fingerprinting-based data deduplication sys-
tems, full chunk index availability, backup workloads, and
reverse lookup necessity.

Next, Meister discussed three techniques used in their file
recipe compression system. First, based on the observation
that few chunks exhibit a high number of references such as
zero-chunks, Meister proposed optimizing the case by using
a one-byte code word, eliminating the need to store and look
up the fingerprint. Secondly, they adopted a chunk index
page-based approach to assign a code word to each finger-
print. In particular, the code word is assigned by the page
ID and a unique identifier in the page. Thirdly, they utilized
statistical mechanisms which generalize zero-chunk sup-
pression and assign shorter code words to fingerprints based
on statistics of the chunk usages. Meister went on to discuss
the evaluation result. They used a trace-based simulation
of weekly full backup. The figures he presented illustrated
that their technique shrinks file recipes by more than 90%.
He also concluded that file recipe allows additional storage
saving, and it calls for exploration in storage deduplication
research.

Michael Condict (NetApp ATG) asked whether they con-
ducted experiments to reduce the average size of dedupli-
cation chucks since the compression of file recipes opens
up opportunities to enable smaller size of chunks. Meister
replied no, because this was not the only metadata overhead;
as the size of chunks is reduced, the size of the chunk index
increases and, for performance purposes, it was not quite
special. Akshat Aranya (NEC Labs) asked whether they have
the lookup table stored on SSD, mapping the compressed code
words to the actual hash. Meister answered no, they did not
need extra indexes; the code word itself consists of a page ID
and unique identifier in a page, and can be used as the lookup
keys. This is a quite nice property of this approach. Akshat
then said he would follow up the question offline.

Improving Restore Speed for Backup Systems that Use
Inline Chunk-Based Deduplication
Mark Lillibridge and Kave Eshghi, HP Labs; Deepavali Bhagwat, HP
Storage

Mark Lillibridge started by pointing out that the restore
speed in chunk-based deduplication systems gets slower over
time due to worsening chunk fragmentation. Due to the fact
that chunks of backups get scattered around the whole sys-
tem, restoration suffers when it has to jump back and forth

PAGE 14	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

between different chunk groups of different ages. “Why not
just defragment data periodically like we did for the disks?”
Mark asked. He mentioned two reasons. One was that there
usually did not exist a chunk layout that reduces the frag-
mentation for all the backups. The other was that rearrang-
ing chunks required expensive data movement.

To deal with the problem, they investigated three techniques:
increasing the cache size, using a forward assembly area,
and container capping. Next, he explained that they mea-
sure fragmentation by using the mean number of contain-
ers read per MB of backup restored since that is proportional
to the extent of chunk fragmentation. They also measured
the restore speed to be the inverse of mean containers read
per MB of data restored, which allowed them to focus on
the dominant cost, container reading, ignoring noise and
other factors. He next described how a baseline restoration
algorithm works and highlighted the effect of cache size
on restoration speed. A graph illustrated how restore speed
is inversely proportional to the measure of fragmentation
and how larger cache size yielded faster restoration speed.
Another finding was that the increasing fragmentation levels
result in unacceptable restoration speeds in emergencies.

Mark explained the forward assembly area approach they
designed which leverages the accurate knowledge from the
backup recipe to perform better caching and prefetching
and reduce the memory required during restoration. The
method contained two variants, M-byte slices and rolling.
M-byte slices control the amount of data to be assembled at
one time in the forward assembly area that can be sent out in
a single piece; rolling utilizes a ring buffer to effectively use
memory to ensure that each container is loaded at most once
every M bytes. He also showed an animation explaining how
this technique works. Mark presented a chart showing how
rolling effectively improves the speed factor compared with
fixed case and LRU. An interesting point he mentioned was
that given a backup workload, there would be sweet spots
for LRU. Next, he switched to capping techniques which are
used to exploit the tradeoff between deduplication and faster
restore speed. The basic idea is to bound the containers read
per MB ingested. Using an animation, he explained how it
worked. They first divide the backup streams into segments,
such as 20 MB fixed size, read a segment into I/O buffer,
then check which of the chucks are stored and in which con-
tainers. Next they choose up to T old containers to use, and
finally they compute the recipe section for the segment and
append any new chunks to the open container. The evaluation
results he mentioned illustrate that the capping technique
provided a good tradeoff between deduplication efficiency
and restoration speed.

One attendee asked about the impact of capping on inges-
tion time and backup speed. Mark answered that it was not
much, and actually might be faster. He then suggested the
attendee go to the poster session and have a more detailed
discussion with him. Geoff Kuenning asked about the order
of containers in the assembly area, and Mark replied that you
could use a variant of an elevator algorithm. Fred Douglis
(EMC) wondered whether by focusing on read performance
you would have a really large look-ahead buffer for the recipe.
Mark answered that there are various data structures that
you can use in walking the recipe in linear time to create
backpointers.

Work-in-Progress Reports (WiPs)
Summarized by Thanh Do (thanhdo@cs.wisc.edu)

A Deduplication Study for Host-Side Caches with
Dynamic Workloads in Virtualized Data Center
Environments
Jingxin Feng and Jiri Schindler, NetApp Inc.

Jiri Schindler said that it is unclear whether host-side caches
are effective for dynamic workloads, e.g., virtual machine
(VM) migration, in virtual desktop infrastructure (VDI). For
such workloads, re-warming the caches after VM migra-
tion may be costly; the caches may contain many copies of
the same content because each VM disk image is a sepa-
rate entity. This work analyzes real dynamic VDI workload
traces to assess the deduplication opportunity for large host-
side caches. The study finds that deduplication can reduce
the data footprint inside the caches by as much as 67%. As
a result, deduplication enables caching larger data sets and
improving cache hit rates, therefore alleviating load from
networked storage systems during I/O intensive workloads.

IBIS: Interposed Big-Data I/O Scheduler
Yiqi Xu, Adrian Suarez, and Ming Zhao, Florida International University

Yiqi Xu started his presentation with the problem of I/O
scheduling in current big-data systems like Hadoop MapRe-
duce. Such systems do not expose management of shared
storage I/O resources, leading to potential performance deg-
radation under high I/O contention among applications. To
solve that problem, he proposed a new I/O scheduler frame-
work, called IBIS, which provides performance differentia-
tion for competing applications. Implemented in the Hadoop
framework, IBIS schedules I/Os based on application band-
width demands at individual data nodes as well as across dis-
tributed data nodes. Preliminary results showed the benefit
of IBIS. Someone from HP Labs asked whether the frame-
work considered network contention. Yiqi answered that
network contention was not a concern because IBIS exploited
data locality, i.e., task was very likely scheduled in the same
node where data was stored.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 15

E L E C T R O N I C S U P P L E M E N T

Adaptive Resource Allocation in Tiered Storage Systems
Hui Wang and Peter Varman, Rice University

Peter Varman explained the tradeoff between utilization
and fairness in tiered storage systems, which are composed
of SSD and disk arrays, with a simple example. The example
showed that fairly allocating weights among clients with dif-
ferent hit ratios leads to non-optimized system utilization.
Peter argued that a better allocation scheme would lead to
better system utilization. To maximize system utilization, he
proposed that weights for clients should be dynamically com-
puted, based on their hit ratios. He showed some simulation
results to prove that the proposed method helps to improve
system utilization.

Trace Analysis for Block-Level Caching in Cloud
Computing Systems
Dulcardo Arteaga and Ming Zhao, Florida International University; Pim
Van Riezen and Lennard Zwart, Cloud VPS

The goal of this work is to assess the efficiency of using SSD
caches in cloud systems. To that end, various traces from
real-world private and public cloud systems are analyzed in
order to answer key questions about the proper size of SDD
caches and the caching policies that work best. The analy-
sis shows some preliminary but interesting answers. For
instance, I/O patterns vary across workloads; write-back
cache is best for write-intensive workloads. Someone asked
when the trace would be available. The answer was taken
offline.

Radio+Tuner: A Tunable Distributed Object Store
Dorian J. Perkins, Curtis Yu, and Harsha V. Madhyastha, University of
California, Riverside

Dorian Perkins started his presentation with a dilemma:
there are no one-size-fits-all storage systems. As a result, it is
hard for system administrators to choose the “right” systems
for their workloads. Furthermore, as new workloads emerge,
new systems need to be built. To address this challenge,
Dorian proposed Radio+Tuner. While Radio offers flexible
storage configuration, Tuner picks the most cost-effective
configuration for Radio, given input specification about
cluster hardware, application workload, and performance
SLO. Finally, he showed initial results to prove the benefit of
Radio+Tuner. Someone asked whether Dorian assumed the
underlying storage system was a black box. Dorian clarified
that he built the system from scratch, meaning no black-box
assumptions here. Another person asked how many nodes
Radio+Tuner could scale to. Dorian answered that in his cur-
rent prototype, there were 12 nodes in the system; to scale to
many more nodes would require a more accurate algorithm.

JackRabbit: Improved Agility in Elastic Distributed
Storage
James Cipar, Lianghong Xu, Elie Krevat, Alexey Tumanov, and Nitin
Gupta, Carnegie Mellon University; Michael A. Kozuch, Intel Labs;
Gregory R. Ganger, Carnegie Mellon University

Building an elastic storage system that has high perfor-
mance, good fault tolerance, flexibility to shrink to a small
fraction of servers, and the ability to quickly resize the sys-
tem footprint (termed “agility”) with minimal data migra-
tion overhead is hard. Rabbit, an elastic distributed system,
provides good agility but has poor write performance. Jack-
Rabbit improves Rabbit with new policies for data placement,
workload distribution, and data migration. For instance,
JackRabbit takes read requests away from low numbered
servers, which are bottlenecks for writes, to improve write
throughput. These new policies allow JackRabbit to shrink to
a small number of nodes while still maintaining performance
goals. Preliminary results show these policies as beneficial.

High Performance & Low Latency in Solid-State Drives
Through Redundancy
Dimitris Skourtis, Scott Brandt, and Carlos Maltzahn, University of
California, Santa Cruz

SSDs provide many benefits such as fast random access, but
they also have problems. For instance, garbage collection in
the background can degrade performance, especially in the
case of mixed workloads. This work proposes a new design
based on redundancy that provides consistent performance
and minimal latency for reads by physically isolating reads
from writes. The idea is to have a cache layer sitting on top
of two SSDs, each of which serves reads or writes. One major
challenge is to keep data “in sync” across two drives. Initial
results are promising.

SATA Port Multipliers Considered Harmful
Peng Li, University of Minnesota; James Hughes and John Plocher,
FutureWei Technologies; David J. Lilja, University of Minnesota

This work studies the reliability of SATA port multipliers
(PMs) by proposing a reproducible process for creating actual
failures in the HDDs. The authors conducted two experi-
ments, one with the SATA PMs and one without them. In all
experiments, a fatal HDD error was emulated by removing
the HDD’s cover. Experimental results showed that without
SATA PMs, HDD failure was independent. However, at least
one combination of the SATA controllers, the SATA PMs,
and the HDDs did not provide resiliency when a single HDD
failed. Investigating why this occurred was left for future
work. Someone made a comment asking for another way to
emulate fatal errors without destroying the disk, perhaps by
putting a bullet through it.

PAGE 16	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

Beyond MTTDL: A Closed-Form RAID 6 Reliability
Equation
Jon Elerath and Jiri Schindler, NetApp Inc.

Jiri Schindler argued that although simple, the original
RAID reliability equation that expressed mean-time-to-data
loss (MTTDL) is no longer accurate, because today RAID
systems are much more complex, with many processes for
proactive scanning and repair of media defects. Moreover,
researchers now have a better understanding of HDD failure
modes and non-constant time-to-failure distributions. As
a result, Jiri proposed a new equation that is more accu-
rate, easy to use, easy to understand, and could help sys-
tem designers to quickly explore a variety of design points.
The new equation takes into account many factors, such as
HDD operational failures, their restorations, latent (sector)
defects, and disk media scrubbing. The great news was that
this new equation is available online for anyone who wants
to try it out at http://raideqn.netapp.com/. Finally, Jiri pre-
sented some results showing that the new equation is more
accurate than the original. Someone asked whether the
new equation models “wetware,” i.e., the human factor. Jiri
answered that the model actually covers the human factor.

Reverse Deduplication: Optimizing for Fast Restore
Zhike Zhang, Preeti Gupta, Avani Wildani, Ignacio Corderi, and Darrell
D.E. Long, University of California, Santa Cruz

Deduplicated storage systems suffer from data fragmentation,
as more and more data are added and more data chunks are
shared. Due to the nature of existing deduplication algorithms,
the most recent backup is the most fragmented, resulting in
performance issues. This work proposes to invert the dedu-
plication process in order to make restoring the most recent
copy more efficient. Specifically, new data segments will be
written contiguously, and older data segments that share
chunks in the new segments will reference those chunks.
However, because older backups will develop more and more
holes, restoring them would be costly. Preliminary results
show that retrieving the most recent backup in reverse dedu-
plication is more efficient than in traditional deduplication.

Quality-of-Data Consistency Levels in HBase for
GeoReplication
Álvaro García Recuero, Instituto Superior Técnico; Luís Veiga, INESC-ID
Lisboa, Distributed Systems Group

HBase only supports eventual consistency for replication
between the local site and remote sites: updates are rep-
licated asynchronously between datacenters. Thus, it is
challenging to ensure a given level of quality of service for
delivering data to remote master replicas. This work extends
some of the main components of HBase to replace the even-
tual consistency model with an adaptive consistency one. It
outlines the architecture of a quality-of-service layer pro-
posed for HBase.

Something for Everyone
Summarized by Dorian Perkins (dperkins@cs.ucr.edu)

Shroud: Ensuring Private Access to Large-Scale Data
in the Data Center
Jacob R. Lorch, Bryan Parno, and James Mickens, Microsoft Research;
Mariana Raykova, IBM Research; Joshua Schiffman, AMD

Jacob Lorch addressed this question: how can we prevent the
cloud from learning our private data? Even when encryp-
tion is used, cloud services can still learn up to 80% of the
content in email. This approach is based on previous work
on oblivious RAM (ORAM), a technique used to obfuscate
a client’s access patterns to data. However, the authors note
that ORAM is far too slow in practice: for example, a map
application serving a single map tile to one user can take up
to one week! Shroud leverages parallelism to speed up this
technique while preserving privacy, reducing I/O time, and
providing fault tolerance.

Overall, Shroud aims to fetch data from the cloud without the
service knowing which block a user actually wants to access.
Shroud uses trusted, secure coprocessors (smart cards which
cost approximately $4 each) throughout the datacenter as
proxies to each storage node. Users convey requests over
secure channels with these proxies, which then access the
data in-parallel. The coprocessors then employ a binary tree
ORAM selection technique to randomize the access patterns
to data. Each time a block needs to be accessed, an adversary
can only know how far down the tree the block may be, but
has no idea where it actually is; subsequent access must use
a different path to access the block. When a block is found,
all coprocessors must send their blocks to the same node,
which then uses a technique called oblivious aggregation to
efficiently and securely compute a collective XOR. Jacob said
that Shroud was deployed on 139 machines at MSR using
emulated smart cards (due to availability), and was tested
using various workloads, including Facebook images and
map tiles.

Someone asked how Shroud scaled. Jacob said that perfor-
mance increases linearly until around 10K coprocessors,
where performance gains begin to taper off. Jacob noted that
Shroud is still more about theory than practice, as perfor-
mance is still very slow, taking about 45 seconds to serve a
map tile, and around nine seconds for serving a tweet. The
clear performance bottleneck is the low-bandwidth smart-
cards they use as coprocessors, which only have around 12
KB/s bandwidth. The authors leave as future work employ-
ing high-bandwidth tamper-resistant FPGAs as coproces-
sors to improve performance, and admitting the hard drive to
the trusted computing base to allow the use of more efficient
ORAM protocols.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 17

E L E C T R O N I C S U P P L E M E N T

Getting Real: Lessons in Transitioning Research
Simulations into Hardware Systems
Mohit Saxena, Yiying Zhang, Michael M. Swift, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Mohit Saxena noted there has been much work on SSD
design, and common evaluation methods focus on three
techniques: modifying the SSD by replacing the FTL (gener-
ally limited to vendors); FPGA prototyping which is flex-
ible and fast, yet hard and time-consuming; and simulators/
emulators, which replay block traces and implement device
models, and are generally used by the research community.
Commonly, simulators are used when designing or evaluat-
ing new solid state drive (SSD) designs; however, the problem
is that simulators cannot model real hardware accurately as
they do not capture the complete interaction with the operat-
ing system in their model (e.g., timing dependencies, request
alignment, etc.). Mohit pointed out that in the last three
years, most papers have used simulators to validate their
SSD designs. Instead, Mohit suggests a better approach using
the OpenSSD hardware platform with a Jasmine board to
develop new SSD designs. Yet the OpenSSD platform was not
without issues, so Mohit explained how his team spent time
optimizing this board to improve its performance.

Mohit discussed their prototyping experience with two pre-
vious works, Solid-State Cache (SSC) and Nameless-Writes
(NW-SSD), noting the challenges, solutions, and lessons
learned from optimizing their hardware design and evalu-
ation suite for flash storage devices. SSC aims to improve
performance compared to using an SSD as block cache, while
NW-SSD introduces new commands to build cheap and fast
SSDs, by exposing the flash block layout and interacting
directly with the OS when serving reads and writes. Mohit
separated his prototyping experience into three sections:
new forward commands, new device responses, and real
hardware constraints for SSC and NW-SSD. Mohit summa-
rized each of his points with lessons learned. When design-
ing new forward commands, Mohit urges that you should
always consider all layers of the OS, especially I/O schedulers
merging and re-ordering operations, and also consider the
complete SSD ecosystem, including encoding sub-types and
accelerating new command queues. Designers of new device
responses should again consider all OS layers, such as race
conditions for callbacks in the device and file system, and
handling of frequent benign errors in the storage device driv-
ers. A prototyping lesson also learned here is simplicity and
correctness; make the Kernel-FTL a simpler block layer OS
interface and enforce correct erase-before-overwrite opera-
tions in the Device-FTL.

In their performance evaluation, they compared their two
systems (SSC and NW-SSD) with a bare SSD using file-
bench. They validated the previous performance claims of

SSC (168% better than common hybrid FTL) design by show-
ing that it performs 52% better than a faster page-map FTL
and that NW-SSD can substantially reduce the amount of
device memory required with performance close to a page-
map FTL. In conclusion, Mohit found that OpenSSD is a
valuable tool for evaluating new SSD designs. Mohit shared
his first high-performance open-source FTL at http://
cs.wisc.edu/~msaxena/new/ftl.html.

To Zip or Not to Zip: Effective Resource Usage for Real-
Time Compression
Danny Harnik, Ronen Kat, Oded Margalit, Dmitry Sotnikov, and Avishay
Traeger, IBM Research—Haifa

Danny Harnik lightheartedly began his talk by asking, “To
zip, or not to zip, that is question.” Danny introduced his work
with the motivating goal of reducing time, cost, rackspace,
and cooling requirements. The challenge of this work is to
add “seamless” compression to a storage system with little
effect on performance. Danny noted that it’s okay to pay the
compression overhead if you are going to gain something, but
it is not always worth the effort. The authors’ goal is to avoid
compressing “incompressible” data, while also maximiz-
ing the compression ratio of their stored data. To tackle this
problem, Danny noted that there is no established, accurate
method for estimating compression ratio, outside of actu-
ally compressing the data. Other solutions included deducing
from empirical application data or file extensions, but these
are neither accurate nor always available.

Danny explained how the authors tackled this problem from
a micro and macro scale. For macro, they considered a large
multi-GB/TB volume in which the time to compress was on
the order of hours, where estimates only took a short time
(minutes) and they could actually obtain accuracy guaran-
tees. At this scale, they choose M random locations to test
local compression ratios and compute an average compres-
sion ratio for these locations. However, he noted that in prac-
tice, this straightforward sampling method can have issues
of compression locality. So they tweaked their method to
evaluate the “compression contribution” of single bytes from
regions throughout the file, and define the contribution of
a byte as the compression ratio of its locality region (where
locality depends on the specific compression method at
hand). They then proved through statistical analysis for esti-
mating averages that their method estimated the overall ratio
with guaranteed accuracy (the actual parameters depend on
the sample size but do not depend on the volume size). This
macro-scale compression estimate is also very useful as an
evaluation and sizing tool. A version of this tool can by found
by searching “IBM Comprestimator” or at this link: http://
www-01.ibm.com/support/docview.wss?uid=ssg1S4001012.

PAGE 18	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

Danny noted that at the micro-scale, they consider single
write, KB-sized files which take milliseconds to compress;
since estimation has to be ultra-quick they rely on heuris-
tics. Danny pointed out that it’s impossible to get guarantees
as the locality in this case amounts to the entire chunk. They
considered two approaches: a prefix-based estimation and
a heuristic indicator method. In the latter they collect some
basic indicators about the data and output a recommendation
accordingly. For this method they employ a number of tech-
niques to improve the time performance of the estimation.
Danny discussed the performance evaluation of the two esti-
mation methods on over 300 GB (17790 files) of mixed data
types, showing that the heuristics approach wins out over the
1 KB prefix sampling, and both improve on the option of run-
ning a full compression on an 8 KB chunk. In a time versus
compression tradeoff analysis, prefix compression has 74%
CPU utilization with 2.2% capacity overhead, while the heu-
ristics method has 65% CPU utilization at a nominally higher
2.3% capacity overhead.

In summary, Danny concluded that when most data is com-
pressible use prefix estimation, when a significant percent-
age is incompressible use the heuristics method, and when
most is incompressible, turn off compression and run macro-
scale offline to detect a change. Michael Condit (NetApp)
noted that other compression techniques are faster than the
one studied in the paper, and this work depends on the com-
pression algorithm’s latency. Danny replied that the work
generalizes to other methods as well, but may be less relevant
to some. For example, Snappy is a compression algorithm
that already uses prefix estimation.

Poster Session and Reception II
Summarized by Matias Bjorling (mabj@itu.dk)

Examining Scientific Data for Scalable Index Designs
Aleatha Parker-Wood, Brian A. Madden, Michael McThrow, and Darrell
D.E. Long, University of California, Santa Cruz

Aleatha Parker-Wood argued that modern file systems
with billions of files are no longer tractable for conducting
searches of scientific data. The vast amount of data and
ever larger metadata, describing scientific observations,
has become unmanageable. They argue that databases opti-
mized for sparse data, column-based compression, and high
cardinality are a better choice as a file-system index data-
base. They evaluated five architectures: row stores, column
stores, key-value stores, document stores, and spatial trees
and compared each in regard to sparseness, dimensions, car-
dinality, specialized access, and ad hoc queries. They found
column and document stores to be efficient structures for
the scientific metadata. Further investigations include novel
indexing strategies, such as on-demand indexing on a per-
column basis.

Reliability Analysis of Distributed RAID with Priority
Rebuilding
Hiroaki Akutsu and Tomohiro Kawaguchi, Yokohama Research
Laboratory, Hitachi, Ltd.

The storage capacity of hard drives has been increasing expo-
nentially, leading to longer RAID rebuild times and increased
risk of data loss. Distributed RAID is a technique to decrease
the rebuild time. Because of the expanded rebuild range,
more drives are prone to fault during rebuilding. Priority
rebuilding is used to restore data with the lowest redundancy
first. To estimate the redundancy reliability, Hiroaki Akutsu
presented a reliability analysis of distributed RAIDs that
they can use as a model. They found that distributed RAID
reliability is roughly equal to that of a level-1 redundancy
method (e.g., mirroring, RAID5); reliability becomes roughly
constant, independent of the number of drives in a level-2
redundancy method (e.g., triplication, RAID6); and reliabil-
ity increased due to the increase in the number of drives in
the over level-3 redundancy method (e.g., triple parity RAID,
high-redundancy erasure-coding).

Radio+Tuner: A Tunable Distributed Object Store
Dorian J. Perkins, Curtis Yu, and Harsha V. Madhyastha, University of
California, Riverside

There are many storage systems today, each designed with its
own specific workload and performance goals. However, no
single distributed storage system design is cost-optimal for
meeting performance goals of all workloads. Dorian Perkins
presented Radio+Tuner, a tunable distributed object store
(Radio) and its configuration engine (Tuner). Radio offers a
simple GET/PUT interface, with three system components:
NodeMetadataStore, DiskMetadataStore, and DataStore.
Each component offers multiple implementations allowing
for “mix-and-match” configurations, with the benefits that
as new workloads emerge, new implementations may be
added to the system (instead of designing a new system).
Tuner takes as input the workload’s parameters and perfor-
mance SLOs, as well as hardware and component implemen-
tation specifications, and simulates the operation of Radio
to obtain a GET/PUT latency distribution. It then outputs
the lowest cost configuration which meets the workloads
goals. Initial results show that Radio+Tuner is able to adapt
to disparate workloads, and does so at up to 5x cost savings
when using the Tuner-recommended configurations. Future
work includes unifying Radio with prior solutions which con-
sider consistency and availability requirements, and expand-
ing Radio to handle multiple conflicting workloads on the
same hardware.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 19

E L E C T R O N I C S U P P L E M E N T

JackRabbit: Improved Agility in Elastic Distributed
Storage
James Cipar, Lianghong Xu, Elie Krevat, Alexey Tumanov, and Nitin
Gupta, Carnegie Mellon University; Michael A. Kozuch, Intel Labs;
Gregory R. Ganger, Carnegie Mellon University

Distributed storage is often expensive to scale and requires
aggressive write periods when new nodes are added or removed.
Recent research in elastic storage systems, such as Rabbit
and Sierra, enable better elasticity by new data layouts and
mechanisms, but both suffer from write degradation or poor
agility. Lianghong Xu presented JackRabbit. It focuses on
new policies, designed to maximize the agility of elastic stor-
age, while accommodating both performance and fault toler-
ance. Evaluation shows that JackRabbit comes closer to the
ideal machine hour elasticity (within 4%) and improves over
state-of-the-art elastic storage systems by 6–120%.

High Performance & Low Latency in Solid-State Drives
Through Redundancy
Dimitris Skourtis, Scott Brandt, and Carlos Maltzahn, University of
California, Santa Cruz

Dimitris Skourtis presented an approach to having both high
performance and low latency in solid-state drives using
redundancy. By separating read and write patterns, only
one drive is being written at a time. Thus, the other drive is
solely available for reads. After a variable amount of time,
the disk responsibility is switched. The to-be-written data
is cached and then flushed. The evaluation shows reads have
consistently less variation and double throughput for 256
KB blocks. Future work includes quality of service for mixed
workloads and evaluation under live workloads such as data-
bases and VMs.

A Deduplication Study for Host-Side Caches with
Dynamic Workloads in Virtualized Data Center
Environments
Jingxin Feng and Jiri Schindler, NetApp Inc.

Jiri Schindler presented their deduplication study of host-
side caches in virtualized datacenter environments. Host-
side caches can be rather large, and re-warming the cache
for migrated virtual machines may take up to several hours.
In virtual desktop infrastructure (VDI) deployments, a vir-
tual machine is a separate entity, but the host-side cache
might contain many copies of the same content even though
the network-attached shared storage system would only
store a single instance. The goal of their study is to explore
the effectiveness of deduplication for large host-side caches
running dynamic VDI workloads. Their preliminary results
show a disk space saving of 54% to 67% using deduplica-
tion and a larger saving if reads and writes are observed
separately. They argue that the “deduplication degree” met-
ric captures a useful concept for evaluating cache effective-
ness for dynamic workloads. Future work includes analyzing

similarity of VDI traffic, deduplication sensitivity to cache
block size, and other aspects that can improve the host-side
cache in VDI environments.

Summarized by Jorge E. Cabrera (jcabr020@cs.fiu.edu)

Adaptive Resource Allocation in Tiered Storage
Systems
Hui Wang, Peter Varman, Rice University

Peter Varman addressed the challenge of providing both fair-
ness and high utilization guarantees in multi-tiered storage
systems. Their work is centered around dynamically com-
puting a reservation and limit value for all clients based on
their hit ratio. These values are used to guarantee fairness by
providing a minimum allocation, and to provide remaining
I/Os to other clients to obtain maximum system utilization.
Evaluation results using a process-driven simulator show
that their allocation model can potentially pull up utilization
to maximum throughput or close to it depending on the reser-
vation values of all the clients. Future work entails extending
the allocation model to include relative shares.

Quality-of-Data Consistency Levels in HBase for
GeoReplication
Álvaro García Recuero, Instituto Superior Técnico; Luís Veiga, INESC-ID
Lisboa, Distributed Systems Group

A major challenge in cloud storage systems is providing
quality-of-data consistency levels for data-replication mech-
anisms. Alvaro García Recuero presented a mechanism to
extend the replication mechanisms of HBase, an open-source
version of BigTable. Currently, HBase uses a best-effort
delivery mechanism of data by using an eventual consistency
mode. The proposed approach is to leverage the vector field
consistency model into a framework that provides the HBase
core with a QoD layer that allows it to prioritize specific cli-
ent replicas to deliver replica updates with the agreed quality
of data. Current evaluation is pending, and expected results
promise a reduction in bandwidth usage and more control of
the interval when replication occurs.

IBIS: Interposed Big-Data I/O Scheduler
Yiqi Xu, Adrian Suarez, and Ming Zhao, Florida International University

Yiqi Xu presented IBIS (Interposed Big-data I/O Scheduler),
which tries to solve the scheduling problem that exists in
big-data systems (e.g., Hadoop/MapReduce) because they do
not expose management of shared storage I/O resources. As
such, an application’s performance may degrade in unpre-
dictable ways under I/O contention, even with fair sharing
of computing resources. IBIS provides performance differ-
entiation for the I/Os of competing applications in a shared
MapReduce-type big-data system. IBIS is implemented in
Hadoop by interposing HDFS I/Os and use an SFQ-based
proportional-sharing algorithm. Experiments show that IBIS
provides strong performance isolation for one application

PAGE 20	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

against another highly I/O-intensive application. IBIS also
enforces good proportional sharing of the global bandwidth
among competing parallel applications, by coordinating dis-
tributed IBIS schedulers to deal with the uneven distribution
of local services in big-data systems.

Trace Analysis for Block-Level Caching in Cloud
Computing Systems
Dulcardo Arteaga and Ming Zhao, Florida International University; Pim
Van Riezen and Lennard Zwart, Cloud VPS

Client-side caching by using SSDs can potentially improve
the performance of shared block-level storage systems that
can suffer from scalability issues when the number of clients
grows. Dulcardo Arteaga presented a trace analysis for this
type of caching with the goal of analyzing the effective use
of SSD devices as caches. Specifically, there are three fac-
tors that are studied: size of SSD device through working set
size analysis, a comparison of three caching policy configu-
rations, and dynamic and static allocation of shared caches
among concurrent VM clients. The types of traces analyzed
include both public and private cloud environments com-
prising Web servers, file servers, and VM clients. The types
of caching policies used are write-back, write-through, and
write-allocate. Some of the interesting results show that both
public and private clouds have an average cache hit ratio of
74% and 78%, respectively, using write-back policy. In addi-
tion, working set sizes can be accurately predicted 90 percent
of the time.

Beyond MTTDL: A Closed-Form RAID 6 Reliability
Equation
Jon Elerath and Jiri Schindler, NetApp Inc.

The complexity of RAID systems and new HDD technolo-
gies has risen to a level where old MTTDL models cannot
be applied to obtain accurate results. New systems have
improved designs that employ repair mechanisms that did
not exist in older HDDs. Jiri Schindler presented a project
based on developing a more accurate and reliable MTTDL
equation model, specifically for RAID6 setups. The result of
this research is a new closed-form RAID6 reliability equa-
tion that can better model data-loss events compared to the
old MTTDL equation. This equation can yield estimations
for HDD operational failures, latent defects, and disk media
scrubbing. The equation was formulated by using a two-
parameter Weibull distribution using parameters obtained
from real-world data. The equation was verified against a
Monte Carlo model simulation, and the results shows similar
accuracy. In addition, the new MTTDL equation can yield
results in milliseconds, whereas a single MC simulation ran
between 14 seconds and 18 hours. A Javascript implementa-
tion of the model is available for the public at http://raideqn.
netapp.com. Evaluation results show that in comparison to

the old model, the new equation shows more realistic results
when it comes to predicting the occurrence of failures.

Reverse Deduplication: Optimizing for Fast Restore
Zhike Zhang, Preeti Gupta, Avani Wildani, Ignacio Corderi, and Darrell
D.E. Long, University of California, Santa Cruz

Preeti Gupta explained that as the number of shared data
chunks increases, the amount of data fragmentation increases
and can lead to decreased performance in deduplicated
storage systems. In particular, the most recent backup is
the most fragmented of this data. The goal of this project is
improve the performance access of the most recent backup in
deduplicated backup systems. The proposed approach entails
the inversion of the deduplication process. Instead of map-
ping new chunks to already existing chunks, each new data
segment is written contiguously, and older data is mapped
to the new chunks. Evaluation results show that they can
significantly reduce fragmentation for the most recent data
segments. Specifically, retrieval time can be 4 to 19 times
faster. While this solution is great for the most recent backup,
it does pose a tradeoff for accessing older backups, which
develop portions of data that are no longer referenced.

Flash and SSDs
Summarized by Leonardo Marmol (marmol@cs.fiu.edu)

LDPC-in-SSD: Making Advanced Error Correction
Codes Work Effectively in Solid State Drives
Kai Zhao, Rensselaer Polytechnic Institute; Wenzhe Zhao and Hongbin
Sun, Xi’an Jiaotong University; Tong Zhang, Rensselaer Polytechnic
Institute; Xiaodong Zhang, The Ohio State University; Nanning Zheng,
Xi’an Jiaotong University

Current SSDs use Bose-Chaudhuri-Hocquengham (BCH)
error correction mechanisms. However, as NAND flash tech-
nology becomes denser it also becomes less reliable, ren-
dering BCH incapable of dealing with the several types of
interference present in NAND. As an alternative, Kai Zhao
proposed the use of low-density parity-check (LDPC) tech-
niques and explores its potential and limitations. LDPC is
known to provide stronger error correction capabilities, but
the performance penalty associated with LDPC has made
it impractical so far. Zhao addressed these limitations with
a technique that combines the simplicity and high speed of
hard-decision coding with the strong error correction capa-
bility of soft-decision coding.

At a high level, the idea is to use hard-decision at first and
only apply a soft-decision in the presence of failures. By
combining look-ahead memory sensing to reduce the total
latency, fine-grained progressive sensing and decoding as
needed, and smart data placement interleaving, Zhao et al.
managed to provide a solution that significantly reduced the
average response time delay while still providing high reli-
ability for dense flash technologies.

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 21

E L E C T R O N I C S U P P L E M E N T

The implementation was evaluated using the DiskSim simula-
tor and six sets of traces of different workloads. The experi-
mental work f low consisted of running a high number of
program/erase cycles followed by a baking session to emu-
late the wear-out recovery. The baking time was determined
using Arrhenius’s Law. Next, random data is programmed
into the chips, and these are baked once again to emulate one
month retention time. Finally, the data is read and compared
with the original data to get page error statistics. The results
showed a comparison between the proposed techniques and
the basic two-step sensing process. In general, the combined
use of look-ahead, progressive sensing, and interleaving lead
to a reduction of response time delay from over 100% to less
than 20%.

Joseph Tucek (HP Labs) asked how his solution would play
with RAID systems with their own built-in error correction
mechanisms. Zhao replied that having the upper layer doing
error correction is an orthogonal solution that in most cases
will not suffice. Peter Harllee (CMU) asked whether the error
information was used to redefine new voltage thresholds.
Zhao answered that it can only be done at the word granular-
ity. On a related note, someone asked about the possibility of
providing hints to the decoder to avoid interleaving pages of
different qualities.

Extending the Lifetime of Flash-Based Storage Through
Reducing Write Amplification from File Systems
Youyou Lu, Jiwu Shu, and Weimin Zheng, Tsinghua University

Youyou Lu explained how the increased density of f lash
memory has also made it less tolerant to leakage and noise
interference, taking a toll on the reliability and lifetime of
flash memory. He also pointed out that traditional file sys-
tems were developed assuming the use of hard disks and
not f lash, the reason for which common mechanisms like
journaling, metadata synchronization, and page-aligned
update can induce extra write operations that further reduce
the lifetime of f lash. As a solution, Lu proposed an object-
based flash translation layer design (OFTL) that makes file
systems no longer responsible for storage management and
exports a byte-unit access interface to them. This decoupling
allows the OFTL to lazily update metadata indexes and elim-
inates journals without losing any consistency properties
by making use of the page metadata area. In addition, OFTL
makes it possible for coarse-grained block state maintenance
to reduce free management overheads using units of erase
blocks rather than file system blocks. Finally, the byte-unit
interface allows OFTL to compact and better co-locate small
updates, reducing the total number of updates and amortiz-
ing the cost of page writes across unaligned pages.

The system was evaluated with several workloads and traces
and implemented as a Linux kernel module. For every work-

load, Lu et al. measured the write amplifications—defined
as the total size or number of writes to the f lash memory
divided by the total size or number of writes issued from
the application layer—across several file systems, including
ext2, ext3, Btrfs and their OFTL implementation. The results
showed that the OFTL-based system offers a write amplifi-
cation reduction of 47% to 90% with synchronous workloads
and 20 % to 64% with asynchronous workloads.

3for only one question. Richard Spillane (Apple) asked
why sequential workloads were causing so much write
amplification in one of the experiments. Lu explained that
data is duplicated, once for the journal and again for the
actual write.

Understanding the Robustness of SSDs under
Power Fault
Mai Zheng, The Ohio State University; Joseph Tucek, HP Labs; Feng Qin,
The Ohio State University; Mark Lillibridge, HP Labs

Mai Zheng started by mentioning the wide adoption of SSDs
due to their many good qualities. However, very little has
been said about the behavior of SSDs under adverse con-
ditions. In particular, Zheng studied the behavior of SSDs
under power failures. Among the potential types of failures
a SSD can experience, he listed bit corruption, metadata cor-
ruption, inconsistency in the internal state of the device,
shorn and flying writes, and unserializable writes.

To test the resilience of SSDs under power failures, Zheng
et al. created a testing framework made of four main com-
ponents: scheduler, workers, switcher, and checker. Each
test cycle consisted of three stages. Initially, the workers
stress the SSD with many write operations, ideally making
the device as vulnerable as possible by triggering wear level-
ing and garbage collection. Next, the device’s power is cut off
asynchronously by a circuit controlling the SSD’s dedicated
power source. Finally, the checker reads back the data and
checks for potential failures. The data written to the device
is carefully arranged and contains enough metadata to
uniquely identify all types of errors and other possible inter-
ferences such as dynamic data compression by the SSD.

For the evaluation, 15 SSDs were subjected to a long series
of controlled power failures, and 13 of them exhibited some
form of failure. While unserializable writes were by far the
most common type of failure, all other types of failures were
found as well. One device exhibited metadata corruption
after only eight injected faults which caused 72 GB of data to
be permanently lost. Other devices were rendered undetect-
able by the host after 136 injected faults.

Zheng was asked what types of error he found when the
devices were not stressed, but that was not considered in the
evaluation. John Badger (Quantum) asked about the devices

PAGE 22	  | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org

E L E C T R O N I C S U P P L E M E N T

that claimed to have some form of power failure protection
and whether those also failed. Zheng replied that three out
of four did. Fred Glover (Oracle) asked whether they tried
cutting the AC power supply instead of DC. Zheng said they
didn’t, as it’s not easy to automate and perform many power
cycles by cutting the AC. Bill Bilofsky (Microsoft) asked
whether they tried cutting off power for a short period of
time and whether the error happened during powering off or
powering up the device. Zheng said that a quick power restore
was not part of the evaluation and the experimental setup
did not provide enough insight to determine exactly when
failures took place.

Performance Improvements and Measurements
Summarized by Dorian Perkins (dperkins@cs.ucr.edu)

Gecko: Contention-Oblivious Disk Arrays for
Cloud Storage
Ji-Yong Shin, Cornell University; Mahesh Balakrishnan, Microsoft
Research; Tudor Marian, Google; Hakim Weatherspoon, Cornell
University

Cloud infrastructure largely takes advantage of virtual
machines (VMs), which export virtual interfaces to the
resources on a machine. Because each VM has its own vir-
tual resources, it is agnostic to the I/O scheduling of other
VMs. Thus, we see in practice that multiple VMs each
sequentially accessing a given disk is actually random access
at the storage layer. Ji-Yong Shin presented Gecko, a con-
tention-oblivious storage solution which leverages a chain-
logging design to eliminate most of the contention caused by
simultaneous access to a shared disk. Gecko builds upon the
log file system (LFS) design, which still suffers from shared
access I/O contention and poor performance during gar-
bage collection (GC). To address the shortcomings of LFS,
Gecko identifies the sources of this I/O contention, including
the three causes of disk seeks—write-write, read-read, and
write-read operations—and the two causes of GC contention,
write-GC and read-GC read operations.

Ji-Yong noted that the philosophy behind Gecko is that “a
single sequentially accessed disk is better than multiple ran-
domly seeking disks,” which is apparent in its chain-logging
design. In Gecko, data is written in log format to a single disk
at the tail of the log, which is logically separate from the body.
Writing to only the tail disk eliminates the write-write and
write-GC read contention, and reduces write-read conten-
tion. Ji-Yong explained they use various layers of caching to
reduce contention even further. To eliminate read contention
to the tail of the log, they cache hot data in-memory, and addi-
tionally cache warm data on SSD. Another small flash cache
is added to the body of the log to minimize read contention.
Ji-Yong showed that Gecko can be mirrored or striped for
fault-tolerance and for additional read performance. When
in mirrored format, the mirrored body disks can be turned

off for power savings. For record keeping, they maintain two
mappings: logical to physical primary in-memory mapping,
and physical to logical inverse mapping persists on flash
storage. Ji-Yong noted that for 8 TB of storage, each of these
maps takes less than 8 GB.

For their evaluation, Ji-Yong showed measurements for both
synthetic and real-world workloads obtained from Microsoft
and MSR. Gecko’s aggregate throughput is up to 3x higher
than Log + RAID0 with synthetic workloads, and also up to
3x higher than Log + RAID10 with real workloads. They also
show how Gecko can achieve higher cache hit rates, less read-
write contention, and increased SSD lifetime.

Lakshmi Bairavasundaram (NetApp) asked whether the
authors looked into RAID5 or RAID6, in addition to RAID0
and RAID10, since they would end up with too many small
writes if they were not appropriately using the log portion.
Ji-Yong responded they had not. Daniel Peek (Facebook)
asked about the lifetime and replacement cycle of SSD cache.
Ji-Yong responded that they are using only 32 GB of SSD for
caching and if they use 128 GB SSDs, the replacement cycle
from wear-out will be extended by 4x. An attendee from
IBM asked if GC caused segmentation in the journal after
numerous overwrites. Ji-Yong answered that they have not
thoroughly tested GC but they did test whether the journal
is fragmented and needed to be compacted or relocated, and
they achieved similar performance to their presented GC col-
lection results. Another attendee from EMC asked about the
performance under read-read contention during GC, which
may happen during first write. Ji-Yong mentioned that this
remains future work but noted that they do get better perfor-
mance than RAID0 by adding a body cache to reduce read-
GC read contention.

Screaming Fast Galois Field Arithmetic Using Intel
SIMD Instructions
James S. Plank, University of Tennessee; Kevin M. Greenan, EMC Backup
Recovery Systems Division; Ethan L. Miller, University of California,
Santa Cruz

James S. (Jim) Plank gave a high-energy talk about his work
with optimizing Galois Field arithmetic (GF) by harnessing
the power of the Intel SIMD instruction set. Jim began by
noting the prevalence of erasure coding in today’s systems.
Traditionally, Reed-Solomon codes are used in erasure codes,
but they are much slower than XOR operation. This is incon-
venient because Reed-Solomon codes are powerful, general,
and flexible. However, their inefficient performance has led
to the development of a huge number of XOR codes. Jim noted
that this talk details the “secret handshake” he has sought to
understand about how to speed up GF arithmetic. The secret
is harnessing the power of specific instructions in the Intel
SSE3 SIMD instruction set to perform GF arithmetic fast

 | June 2013 | VOL. 38, No. 3 | FAST ’13 | WWW.usenix.org	 PAGE 23

E L E C T R O N I C S U P P L E M E N T

enough such that it is only limited by the L2/L3 cache line
speed, a 2.7x to 12x improvement on XOR codes!

Storage systems use GF arithmetic for erasure codes, which
are structured as linear combinations of w-bit data words
in a GF. W is the number of bits in the erasure-coding word,
and as W increases you trade increased robustness for slower
speeds. Suppose you want to take a constant and perform
1024 multiplications (doing fewer is the secret). Most Intel
architectures provide special instructions that can now use
128-bit words, allowing for 128-bit XOR or AND operations,
or two 64-bit left shifts. The important instruction here is
the mm_shuffle_epi8() instruction. This allows us to do 16
simultaneous table lookups in one operation of a 16-byte table
with 16 4-bit indices. You can then use precomputed tables
and generate a mask to do a 16-bit table lookup, e.g., 16 simul-
taneous multiplications. Then, using the distributive law of
multiplication, the authors split words into smaller compo-
nents and multiply using another left-shifted table to further
optimize the problem. Jim evaluated performance by varying
the buffer size from 1 KB to 1 GB with values of W = 4, 8, 16,
32, and baselines which show the L2/L3 cache effects. Jim
noted that using the techniques they developed, the lines for
W = 4, 8, and 16 are now cache limited. Overall, their evalu-
ation shows a time improvement of up to 12x compared
to XOR methods. Their open-source GF arithmetic library,
GF-Complete (written in C), is available for use now via the
author’s website: http://web.eecs.utk.edu/~plank/plank/
www/software.html.

An attendee suggested running the evaluation benchmarks
on a server class processor, since the memory interface is
much more powerful than a desktop processor. Another
attendee asked whether ARM servers have a comparable
instruction set. Jim responded they had not yet checked to
see whether it was exactly the same. An attendee mentioned
that from a pure hardware point-of-view, performing GF is
as easy as any other multiplication.

Virtual Machine Workloads: The Case for New NAS
Benchmarks
Vasily Tarasov, Stony Brook University; Dean Hildebrand, IBM Research,
Almaden; Geoff Kuenning, Harvey Mudd College; Erez Zadok, Stony Brook
University

Customers consider a number of parameters, including per-
formance, when choosing network attached storage (NAS).
In reality, many customers end up disappointed because
benchmarks often promise better performance than NAS
delivers. Vasily Tarasov argued that this discrepancy stems
from the fact that, in practice, many clients use VMs while
performance benchmarks do not. The goal of this work is
to create benchmarks better suited for the real-world VM
environments. Vasily’s work focuses on a VDI (virtual disk

images) on NAS approach to solving this issue. He noted that
90% of the shipped storage capacity is for NAS, not direct
attached storage (DAS), and the growth rate for NAS storage
is 60% a year. Additionally, virtualization is very dominant in
the market, as 70% of systems run virtual environments. The
inherent problem with benchmarking NAS systems serving
VMs is that the I/O stack is deep, and requests change sig-
nificantly by the time they hit storage (e.g., request reorder-
ing, merging and trimming, I/O contention, etc.). Vasily aims
to provide a new benchmarking tool for VM-NAS environ-
ments, as using old benchmarks is cumbersome, inf lexible,
and sometimes prohibitively expensive.

The benchmark environment used in this work runs File-
bench and Jetstress on Linux/Windows using ext3/NTFS
atop the VMware ESXi 5 hypervisor with a black box NAS
appliance (running GPFS on Linux). Vasily then character-
ized the workload they found in their evaluation system.
Compared to physical non-VM systems, Vasily noted that
when making observations about the workloads seen at the
NAS appliance, VM systems have almost no metadata opera-
tions because they are handled in the VM layer, all writes
are synchronous, in-VDI file randomness is increased, I/O
size changes depending on how VM layers handle requests,
and lastly, the read-modify-write operation is more frequent.
They considered the following workload features: read/write
ratio, I/O size distribution, jump distance distribution (LBA
distance), and offset reuse. Vasily briefly described how they
created their benchmarks using their T2M converter tool,
also showing that any mix of VM combinations can be used,
and directed those who seek more details to review the paper.
Their evaluation monitors 11 parameters, and they measured
accuracy compared to physical benchmark as they increased
the number of VMs in their benchmark. They showed that
they maintain an 8% error rate, which grows slowly with the
number of VMs. They left for future work the exploration
of other storage stack configurations, targeting VM-specific
workloads and emulation of I/O request transformations.
Vasily noted that their benchmark tool can be found by
searching “t2mpublic” or via the URL in the paper.

An attendee from Symantec asked whether this benchmark
could be used for SAN. Vasily replied that the same tech-
nique can be applied for SAN, but the benchmarks cannot
be directly applied unless you have a file system interface.
Kiran-Kumar Muniswamy-Reddy (Amazon), noted they are
using the CFQ scheduler, and if the workload is random, they
may want to use a different scheduler; but would doing so
change their system? Vasily mentioned this as future work;
the I/O scheduler definitely affects the workload, and they
want to explore more configurations to see which parameters
affect workload and which are less influential.

