
30	 ; LO G I N : VO L . 3 4, N O. 1

D a v i d N . B l a n k - E d e l m a n

practical Perl tools:
be the browser
David N. Blank-Edelman is the Director of Technol-
ogy at the Northeastern University College of Com-
puter and Information Science and the author of
the O’Reilly book Perl for System Administration. He
has spent the past 24+ years as a system/network
administrator in large multi-platform environ-
ments, including Brandeis University, Cambridge
Technology Group, and the MIT Media Laboratory.
He was the program chair of the LISA ’05 conference
and one of the LISA ’06 Invited Talks co-chairs.

dnb@ccs.neu.edu

B e li e v e i t o r n o t, m y s y sad m i n -
themed column for this issue is about Web
crawling, automation, scraping, browsing,
circumnavigating—whatever you’d like to
call it. Why is this something a sysadmin
would want to automate, versus, say, a Web
developer? Besides your everyday sysadmin-
related surfing (searching for reference ma-
terial or answers to questions, participat-
ing in the community, etc.), you may have
noticed the increasing number of Web sites
to which you need to connect strictly to get
your job done. Maybe you need to work with
mailing lists, submit requests to a certifi-
cate authority, interact with a trouble-ticket
system, or deal with any number of Web
applications. Surely it would be pleasant to
reduce the amount of menial pointing and
clicking you do on a daily basis. This column
can help.

One quick caveat before we dive in, mostly for
the regular readers of the column. In most of my
columns I’ve tried to present a number of tools
to perform a task. I like the idea that my readers
can assemble their own tool chest from which to
choose the best utensil or approach. Well, in to-
day’s column I’m going to hand you a single span-
ner wrench and say, “Here, here’s the best tool.”

In this column we’re going to focus on using just
the module WWW::Mechanize and the modules in
its orbit. There are other modules out there for per-
forming tasks like the ones we’re going to explore,
but I’ve not found one to date that I’ve liked better
than WWW::Mechanize. I should note that I’m not
the only person enamored of this module. Mech, as
it is affectionately called, has been reimplemented
in several other of your favorite languages: py-
mechanize (in Python) and WWW::Mechanize (in
Ruby). The boundary between Perl and Ruby is ac-
tually porous in both directions. We’re not going to
look at it in this column, but WWW::Mechanize::
Plugin::Web::Scraper lets you use the module Web::
Scraper from WWW::Mechanize. Web::Scraper
takes its design from the excellent Ruby-based
scrAPI toolkit.

; LO G I N : Fe b rua ry 20 0 9	P r actic a l Pe rl Tool s : B e th e B rowse r	 31

First Steps with WWW::Mechanize

Almost all WWW::Mechanize scripts start out like this:

use WWW::Mechanize;

my $mech = WWW::Mechanize->new();
$mech->get($url); # get can also take a :content_file param to save to a file

We initialize a new Mech object and ask it to go fetch some Web page. If we
want the contents of the page we just fetched, we call:

my $pagecontents = $mech->content();

It’s not uncommon to hand the results of the content() method off to some
other module (for example, we could feed it to HTML::TableExtract, one of
my favorite modules) to do more sophisticated parsing. We won’t see an ex-
ample of that handoff in this column, but I wouldn’t be surprised if it didn’t
find its way into a future column.

OK, so far the code has been really simple. So simple LWP::Simple could
have basically handled it. Let’s take things to the next level:

use WWW::Mechanize;

my $mech = WWW::Mechanize->new();

$mech->get(‘http://www.amazon.com’);
$mech->follow_link(text => ‘Help’);
print $mech->uri . “\n”;

prints out something like:
http://www.amazon.com/gp/help/customer/display.html?ie=UTF8&nodeId
=508510

So what happened here? WWW::Mechanize retrieved the home page for
Amazon and then found the link on the page with the text ‘Help’. It followed
the link in the same way you would on a browser and retrieved the contents
of the URL specified in the link. If we called $mech- >content() at this
poinr, we’d get back the contents of the new page found by browsing to the
selected link.

If we wanted to, we could use an even cooler feature and write something
like:

$mech->follow_link (text_regex => qr/rates.*policies/);
or
$mech->follow_link (url_regex => qr/gourmet.*food/);

The first line of code will find and then follow the first link whose text
matches the given regular expression. This means we can follow links in a
page without knowing the precise text used (e.g., if each page was generated
dynamically and had unique links). The second line of code performs a sim-
ilar find and follow, this time based on the URL in the link.

follow_link() has a number of other options available. There’s a related url
=> ‘http: / /...’ option equivalent to the text => ‘text’ option that will take a
fully specified URL to follow. Though this is more fragile, follow_link can
also take an n => option to allow you to choose the nth link on the page.
All of the options mentioned so far can be compounded. If you want the
third ‘help’ related link on a page with a URL that included the path ‘forum’
in its name you could write:

$mech->follow_link(text => ‘help’, url_regex => ‘forum’, n => 3);

32	 ; LO G I N : VO L . 3 4, N O. 1

If for some reason you want to just find the links on a page without
navigating to their target, WWW::Mechanize provides find_link and
find_all_ links, which take the same selector arguments as follow_link.
WWW::Mechanize can also find images on a page via find_images and
find_all_ images, which use similar arguments.

WWW::Mechanize Tip #1: mech-dump

Now that we’ve seen some of the basic stuff, I’d like to show you a couple of
tips that will make the more complex WWW::Mechanize work we’re going
to explore considerably easier.

The first tip involves a utility that ships with WWW::Mechanize and op-
tionally gets installed during the module’s installation: mech-dump. mech-
dump calls WWW::Mechanize and gives you a little bit of insight into how
WWW::Mechanize is parsing a particular page. It offers four choices:

1.	 Display all forms found on a page.■■

2.	 Display all links found on a page.■■

3.	 Display all images found on a page.■■

4.	 Display all of the above.■■

Let’s see it in action:

$ mech-dump --links http://www.amazon.com
http://www.amazon.com/access
/
/gp/yourstore/ref=pd_irl_gw?ie=UTF8&signIn=1
/gp/yourstore/home/ref=topnav_ys_gw
	 ...

I cut that list off quickly, because:

$ mech-dump --links http://www.amazon.com|wc -l
	 247

Finding links can be helpful, but this command really shines when it comes
time to interact with forms, something we’re going to do in just a moment:

$ mech-dump --forms http://www.boingboing.net

GET http://www.google.com/search
	 ie=UTF-8	 (hidden readonly)
	 oe=UTF-8	 (hidden readonly)
	 domains=boingboing.net	 (hidden readonly)
	 sitesearch=boingboing.net	 (hidden readonly)
	 q=	 (text)
	 btnG=Search	 (submit)

POST http://www.feedburner.com/fb/a/emailverify
	 email=	 (text)
	 url=http://feeds.feedburner.com/~e?ffid=18399	 (hidden readonly)
	 title=Boing Boing	 (hidden readonly)
	 loc=en_US	 (hidden readonly)
	 <NONAME>=Subscribe	 (submit)

The output shows us that each form has a number of fields. Some are hidden
fields set in the form by the form’s author, but the useful information in the
output is the fields that someone sitting at a browser would need to fill and
select. For example, the blog BoingBoing has an option to allow people to
subscribe via email using a Feedburner service. The output of mech-dump

; LO G I N : Fe b rua ry 20 0 9	P r actic a l Pe rl Tool s : B e th e B rowse r	 33

lets us know that we’ll be filling in a field called “email” (versus something
else such as “address” or “user_email” or any number of possibilities).

Let’s put this utility into practice to help with our WWW::Mechanize pro-
gramming. I recently had a need to scrape some information from our in-
ternal wiki. We use a commercial product that has its own login screen to
control access (versus depending on external authentication performed by
the Web server). To get past the login screen to the content I needed, my
program had to fill in the Web form on the login screen. The first step to-
ward figuring out how to do so was to run a mech-dump - -forms on that
page. (A quick aside: Mech can talk to anything LWP::UserAgent can talk to.
This means that pages served over HTTPS are not a problem as long as you
have Crypt::SSLeay or IO::Socket::SSL installed.)

mech-dump - -forms returned something like the following:

GET https://wiki.example.edu/dosearchsite.action
where=conf_all (hidden readonly)
queryString= (text)
<NONAME>=Search (submit)
<NONAME>=Search (hidden readonly)

POST https://wiki.example.edu/login.action [loginform]
os_username= (text)
os_password= (password)
os_cookie=<UNDEF> (checkbox) [*<UNDEF>/off|true]
login=Log In (submit)
os_destination= (hidden readonly)

The first form on the page is a search box; the second is exactly the one I
needed. The output for the second form told me that I needed to provide two
fields to log in: os_username and os_password. In WWW::Mechanize
you can use the submit_form method to fill in a form, like so:

use WWW::Mechanize;

my $mech = WWW::Mechanize->new();
$mech->get($loginurl);
$mech->submit_form(
form_number => 2,
fields => { os_username => $user, os_password => $pass },
);

submit_form chooses the form to use, fills in the given fields, and performs
the “submit” action (the equivalent of selecting the ‘Log In’ element on the
page). Now the script is “logged in” to the wiki and can proceed to operate
on the protected pages.

WWW::Mechanize Tip #2: WWW::Mechanize::Shell

The second tip I want to pass on is about a companion module called
WWW::Mechanize::Shell. WWW::Mechanize::Shell calls itself “an interac-
tive shell for WWW::Mechanize.” If you type the following slightly unwieldy
command:

$ perl -MWWW::Mechanize::Shell -eshell

you get an interactive shell with the following commands:

34	 ; LO G I N : VO L . 3 4, N O. 1

(no url)>help
Type ‘help command’ for more detailed help on a command.
	 Commands:
	 auth:	 Sets basic authentication credentials.
	 autofill:	 Defines an automatic value.
	 back:	 Goes back one page in the browser page history.
	 browse:	 Opens the Web browser with the current page.
	 click:	 Clicks on the button named NAME.
	 comment:	Adds a comment to the script and the history.
	 content:	 Displays the content for the current page.
	 cookies:	 Sets the cookie file name.
	 ct:	 Prints the content type of the most current response.
	 dump:	 Dumps the values of the current form.
	 eval:	 Evaluates Perl code and print the result.
	 exit:	 Exits the program.
	 fillout:	 Fills out the current form.
	 form:	 Selects the form named NAME.
	 forms:	 Displays all forms on the current page.
	 get:	 Downloads a specific URL.
	 headers:	 Prints all C<< <H1> >> through C<< <H5> >> strings found in
		 the content.
	 help:	 Prints this screen, or help on ‘command’.
	 history:	 Displays your current session history as the relevant commands.
	 links:	 Displays all links on a page.
	 open:	 <open> accepts one argument, which can be a regular
		 expression or the number.
	 parse:	 Dumps the output of HTML::TokeParser of the current content.
	 quit:	 Exits the program.
	 referer:	 Alias for referrer.
	 referrer:	 Sets the value of the Referer: header.
	 reload:	 Repeats the last request, thus reloading the current page.
	 response:	 Displays the last server response.
	 restart:	 Restarts the shell.
	 save:	 Downloads a link into a file.
	 script:	 Displays your current session history as a Perl script using
		 WWW::Mechanize.
	 set:	 Sets a shell option.
	 source:	 Executes a batch of commands from a file.
	 submit:	 Submits the form without clicking on any button.
	 table:	 Displays a table described by the columns COLUMNS.
	 tables:	 Displays a list of tables.
	 tick:	 Sets checkbox marks.
	 timeout:	 Sets new timeout value for the agent. Affects all subsequent.
	 title:	 Displays the current page title as found.
	 ua:	 Gets/sets the current user agent.
	 untick:	 Removes checkbox marks.
	 value:	 Sets a form value.
	 versions:	 Prints the version numbers of important modules.

Seeing the whole list is a little intimidating, so I’ll pick out a few choice
commands for an example that will get us back into the main discussion of
WWW::Mechanize use again. Let’s look at a more complex forms example
from a real-life problem.

One common Web-based administrative interface is the one used to config-
ure and administer Mailman (http://www.list.org/) mailing lists. This inter-
face mostly makes working with the server easier, but there have been some

; LO G I N : Fe b rua ry 20 0 9	P r actic a l Pe rl Tool s : B e th e B rowse r	 35

issues. One issue that used to exist (it has been fixed in later versions) was
its handling of large batches of spam. If a spammer sent a large batch of mail
that was intercepted by Mailman and queued for an administrator to triage,
that admin had to click the buttons to delete each message individually in a
form that looks like that in Figure 1.

F i g u r e 1 : M a i l m a n F o r m

If you get 800 messages in the queue, this gets old quickly. Let’s see how we
can use WWW::Mechanize::Shell and WWW::Mechanize to make that pain
go away.

The easiest way to start is to poke at the Mailman server with WWW::
Mechanize::Shell:

$ perl -MWWW::Mechanize::Shell -eshell
	 > get https://lists.example.edu/bin/admindb/mylist
	 > form
	 Form [1] (<no name>)
	 POST https://lists.example.edu/bin/admindb/mylist
	 adminpw= (password)
	 admlogin=Let me in... (submit)

(where the output has been slightly edited for readability). OK, so this means
that we will need to fill in adminpw to get access to the administration page.
We set that value and submit the form. Let’s do so:

	 > value adminpw listpw
	 > click admlogin

If we were to use the form command now we’d see a reasonably complex
form dump that included lines such as:

senderaction-spammer%40spamemailer.com=0 (radio) [*0|1|2|3]
senderpreserve-spammer%40spamemailer.com=<UNDEF> (checkbox)
	 [*<UNDEF>/off|1/?Preserve messages for the site administrator]
senderforward-spammer%40spamemailer.com=<UNDEF> (checkbox)
	 [*<UNDEF>/off|1/?Forward messages (individually) to:]
senderforwardto-spammer%40spamemailer.com=mylist-owner@
lists.example.edu (text)

36	 ; LO G I N : VO L . 3 4, N O. 1

senderfilter-spammer%40spamemailer.com=3 (radio) [6|7|2|*3]
senderbanp-spammer%40spamemailer.com=<UNDEF> (checkbox)
[*<UNDEF>

These are all form elements we’d like to set without a major point-and-click
fest. The tricky thing is that those elements are all message-sender specific.
It says “senderaction-{some email address}” not just “senderaction.” Here’s
where WWW::Mechanize-related options that take regular expressions come
to our rescue. We can tell WWW::Mechanize::Shell to set elements that
match a regular expression. Let’s set all of those fields:

> autofill /senderfilter/ Keep
> autofill /senderfilterp/ Keep
> autofill /senderbanp/ Keep
> autofill /senderpreserve/ Keep
> autofill /senderforward/ Keep
> autofill /senderforwardto/ Keep
> autofill /senderaction/ Fixed 3

That last one might look a bit strange. It comes from the senderaction form
definition. If you look carefully at the HTML source for the Mailman page
(not reproduced here), you’ll see that “3” in that case is the “Discard” op-
tion. In case you are curious about why we’re setting all of the options in the
form and not just the senderaction one, it’s because the next command we’re
going to use will interactively prompt for any elements that don’t have values
set already:

> fillout
> click submit

Congrats! You’ve just avoided clicking on many hundreds of form elements,
because they were set programmatically and the form has been submitted.

Now, here’s an even cooler trick: If you type script at this point, it will spit
out a Perl script that essentially reproduces your interactive session. If we
were to run this command after typing in the session above (and edit it to
remove some of the initial probing of the forms), we’d get output that looks
like this:

#!perl -w
use strict;
use WWW::Mechanize;
use WWW::Mechanize::FormFiller;
use URI::URL;

my $agent = WWW::Mechanize->new(autocheck => 1);
my $formfiller = WWW::Mechanize::FormFiller->new();
$agent->env_proxy();

$agent->get(‘https://lists.example.edu/bin/admindb/mylist’);
$agent->form(1) if $agent->forms and scalar @{$agent->forms};
{ local $^W; $agent->current_form->value(‘adminpw’, ‘listpw’); };
$agent->click(‘admlogin’);
$formfiller->add_filler(qr((?-xism:senderfilter)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderfilterp)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderbanp)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderpreserve)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderforward)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderforwardto)) => “Keep” =>);
$formfiller->add_filler(qr((?-xism:senderaction)) => “Fixed” => ‘3’);
$formfiller->fill_form($agent->current_form);
$agent->click(‘submit’);

; LO G I N : Fe b rua ry 20 0 9	P r actic a l Pe rl Tool s : B e th e B rowse r	 37

This code has some components (e.g., the use of the WWW::Mechanize::
FormFiller module) that we haven’t explored in this column, but hopefully
you get the basic idea that an interactive session can be the basis for auto-
matically generated code that can be further customized.

In this column we’ve gotten a taste of some of the major features of WWW::
Mechanize. But that’s only the core of this subject. There’s a whole ecosys-
tem of additional add-on modules that has grown up around WWW::Mech-
anize that I’d encourage you to explore. These modules add features such as
timed requests and human-like requests with delays between them (should
you want to test your Web site), and experimental JavaScript support. Web
work with WWW::Mechanize can be both time-saving and fun, so enjoy!
Take care, and I’ll see you next time.

