
; LO G I N : Fe b rua ry 20 0 9	iVo y eu r : M essag e in a Bottl e	 45

D a v e J o s e p h s e n

iVoyeur: message
in a bottle
Replaci ng Em ail Warnings
with SMS

David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
Award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

W e f i n all y did i t. D e g r e e b y t i n y
degree, feature by “unsafe” feature, we
killed email. This perhaps comes as no
surprise to you, but I arrived at the realiza-
tion only recently. Somewhere between SPF,
DKIM, and the four-millionth RBL a critical
mass was reached. It might be that one too
many of the engineers who believed in the
robustness principle [1] is now retired or
dead, or perhaps it’s the result of one too
many overzealous vendors readjusting the
corporate perception of “normal”; it might
just be a question of scale. Whatever the
reason, there’s no question that today the
onus is on you to convince your recipients’
hostile, unwilling MX that your message
is worth delivering, and attempting to do
so makes you a spammer. These days any
means justifies the claim of a little less
spam.

Sending too many mails or not enough; having SPF
or not; using domain keys, DKIM, both, or none;
having reverse lookups; using text or HTML: all of
these are indicators of spam and all of them aren’t;
there is nothing you can do in 2008 to appear to
be a legitimate sender to every recipient. That after
decades of flawless operation email has finally be-
come an untrustworthy means of communication is
as shocking as the fact that the overtly lazy, idiotic,
wholesale destruction of SMTP was carried out in
the name of “security”—by us, no less—in a vain
attempt to outsmart Viagra peddlers one lazy quick
fix at a time. Today the only way you can reliably
get your messages delivered is to personally know
the sysadmin at your recipients’ organizations and
get on their white-lists. There are secret invitation-
only mailing lists for this purpose. You know who
you are.

So what do you do when the quick fix of the week
decides your monitoring server is questionable
and you can no longer deliver email alerts to your
pager or that of your peers? Move to a new mes-
saging protocol? Maybe one such as SMS, that is
younger and not yet broken? It’ll work for a while,
and hopefully something will be there to replace it
when we break it too. You could move backward
to an older, more trustworthy system such as the
PSTN, a retro yet dependable option. A third op-
tion might be to use both, a gsm/gprs modem for
SMS with the PSTN used as a backup, for example.

46	 ; LO G I N : VO L . 3 4 , N O. 1

In this article we’ll explore the third option, using a Nokia cell phone teth-
ered to our Nagios server with a serial cable to send SMS, and alternately
calling people on the phone with Asterisk if our Nokia is not up to the task.

I chose the Nokia 6170 for my own SMS implementation because it is read-
ily available for about $100, is compatible with several U.S. carriers (we use
T-Mobile), and has excellent compatibility with gnokii [2], the software we’ll
be using to interact with the phone. You’ll also need a Nokia USB DKU-2
cable to connect the phone to the Nagios server. Beware of after-market ca-
bles, for they sometimes don’t work as expected, and spend the extra $5 for
the Nokia cable. I got mine on ebay for $20.

gnokii is a user-space driver and tool suite for communicating with mobile
phones. It supports the usual free UNIX OSes and is scriptable via the com-
mand line and via a C library called libgnokii, for which the usual scripting
language wrappers exist. Originally the intent of the gnokii authors was to
operate with Nokia phones, but the tool suite can be made to work with any
AT-compatible phone using serial, USB, IRDA, or Bluetooth. I can’t speak
to how hard this is, since I took the easy road and just got a Nokia, but the
Wiki [3] lists a few non-Nokia phones that folks have gotten to work.

Gnokii supports a litany of features including getting/putting calendar
events, editing phone-book entries, and dialing voice calls (useful for pranks
and, I imagine, for war-dialing). This article will only use the - -send-sms
feature, although gnokii is capable of receiving SMS as well. Gnokii installs
with the typical automake commands (configure /make/make install) and
requires libusb for USB support and bluez for bluetooth. When gnokii starts
up it checks the current user’s home directory for .gnokiirc and then /etc/
gnokiirc. You can specify a custom config file with the - -config option.

My configuration file for the 6170 looks like this:

model = 6170
port = /dev/ttyS0
connection = dku2libusb

Once gnokii is installed and the phone is connected to the USB port of the
Nagios server, issuing a gnokii - - identify command should return some in-
formation on the phone. If it doesn’t, adding debug = on to the config file
might print some helpful error messages.

Integration with Nagios, as you might guess, involves defining a notification
command. Mine is this:

define command{
	 command_name	 notify-by-sms
	 command_line	 /usr/bin/printf “%b” “`echo $NOTIFICATIONTYPE$
| /usr/bin/cut -c ‘1-3’`: $HOSTNAME$/$SERVICEDESC$ $SERVICESTATE$”
| /usr/bin/gnokii --sendsms $CONTACTPAGER$ 2>&1 | /usr/bin/logger -t
Nagios -p local4.info
}

That command might be a tad difficult to parse because of the nested
system call to echo. This is intended to abbreviate the value of Nagios’s
$NOTIFICATIONTYPE$ macro (either PROBLEM or RECOVERY) to a
three-letter word (PRO or REC). The message also doesn’t contain many of
the details you might expect in a Nagios notification, such as the date or
plug-in output, because the notification is designed to always fit within the
140 bytes allowed in an SMS message. The logger command at the end is in-
tended to catch any error output from gnokii and send it to syslog.

; LO G I N : Fe b rua ry 20 0 9	iVo y eu r : M essag e in a Bottl e	 47

Like any well-behaved UNIX program, gnokii exits 0 if everything went OK.
This means that instead of piping to logger after gnokii, we could use a logi-
cal or operator (||) to launch a different command if gnokii is unsuccessful.
This is a good place to put our Asterisk script.

Asterisk, as you probably know, is an open source PBX system. It is packed
to the brim with features and is the subject of at least one article in just
about every issue of ;login: in recent memory. Asterisk is so featureful, in
fact, that it feels silly to be using it for something as small as Nagios notifica-
tions, but it works excellently in this regard and is especially worth thinking
about if you already have an Asterisk implementation of some kind.

The general strategy here is to use the festival-lite text-to-speech engine
to create an error report, and pass this to Asterisk, which will call people
and recite it to them over the phone. To do this you need an existing Aster-
isk system, or a telephony card of some type in the Nagios box. We use the
TDM410 from Digium [4]. Installing Asterisk is a snap; I recommend using
the packages from your distro, as several drivers need to be built and there
are kernel dependencies involved.

Asterisk is normally a beast to configure, but in this context there isn’t much
to do. Normally you’d spend a lot of time configuring dialplans in exten-
sions.conf, but since nobody will be calling this Asterisk server, all there
really is to do is set up your hardware. For the TDM410 this means editing
zapata.conf. The relevant section of mine looks like this:

context=incoming
signalling=fxs_ks
include => [default]
channel => 2

The easiest way to make Asterisk call people from the shell is to use the call
files interface. Simply create a text file with the relevant data and drop it in /
var/spool/asterisk/outgoing: Asterisk will immediately make the phone call.
Here’s what a typical call file looks like:

Channel: Zap/g2/15558675309
WaitTime: 15
Application: Playback()
Data: /var/spool/nagios/alerts/tmp.ihbgAO3751.gsm

I tend to use shorter wait times than the default (45 seconds) so that voice-
mail doesn’t have a chance to answer. Reliably leaving voicemail gets more
complicated, so I prefer to just not deal with it. If I have a missed call from
the Nagios box, I’ll log in and see what’s up. The data file is created by sim-
ply echoing the alert text to festival, like so:

echo “Nagios ${NOTIFICATIONTYPE}, Host ${HOSTNAME}, Service
${SERVICEDESC} is in state ${SERVICESTATE}” | flite -o somefile.wav

We can refer to these variables inside a shell script called by the notify-by-
sms Nagios command because any script called by Nagios is given global
variables that correspond to Nagios macros relating to the service outage. So
many times I see people using macros as arguments to shell scripts called
from within Nagios notification commands when it’s always unnecessary;
even many of the FAQ answers on nagios.org do this. Dear Internet: You
don’t have to mess with argument passing; your script already has all the
macros as global vars. I digress. Asterisk can’t read wav files, so we need to
convert it to GSM, like so:

sox somefile.wav -r 8000 somefile.gsm resample -q1

48	 ; LO G I N : VO L . 3 4 , N O. 1

When we create the call file, we need a way to map some Nagios macro to a
phone number. Since we’re using Asterisk to backup SMS in this example,
the $CONTACTPAGER$ macro will work, but if you were backing up email
you’d either need a lookup table of some type or a custom notification macro
that specifies our contact’s phone number. Nagios has for some time sup-
ported addressX macros that are perfect for this; just make sure address4,
for example, always has a phone number, and you’re all set.

That gives you pretty much all the pieces you need. A simple shell script can
then be written that is called with a logical or in the notification command,
like so:

command_line /usr/bin/printf “%b” “`echo $NOTIFICATIONTYPE$ | /usr/bin/
cut -c ‘1-3’`: $HOSTNAME$/$SERVICEDESC$ $SERVICESTATE$” | /usr/bin/
gnokii --sendsms $CONTACTPAGER$ || /usr/local/nagios/bin/contact_by
_phone.sh

Now if the SMS message fails, Nagios will call the contact_by_phone shell
script, which will use various Nagios macros to create a GSM audio message
and an Asterisk call file and place the call file into /var/spool/asterisk/
outgoing.

If you want to get fancy, you could specify a dialplan context instead of
an application name in the call file, conceivably allowing the person being
called to do things such as “press 1 to acknowledge this alert,” “press 2 to
run event-handler X,” etc. Asterisk has some pretty cool remote management
potential in this regard, which is perhaps fodder for a future article. If you’re
currently doing any Asterisk/Nagios integration stuff, I’d love to hear about it.
Feel free to drop me an email (you know, if anybody still uses email; my MX
promises to be nice) or to post a comment on my blog, www.skeptech.org.

Take it easy.

references

[1] Robustness principle: The ancient fallacy that one should be liberal in
what one accepts and conservative in what one sends.

[2] http://www.gnokii.org.

[3] http://wiki.gnokii.org/index.php/Config.

[4] http://www.digium.com/en/products/analog/tdm410.php.

