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W e  i n t r o d u c e  t h e  Hi  g h ly  P r e d i c - 
tive Blacklist (HPB) service, which is now 
integrated into the DShield.org portal [1]. 
The HPB service employs a radically differ-
ent approach to blacklist formulation than 
that of contemporary blacklist formulation 
strategies. At the core of the system is a 
ranking scheme that measures how closely 
related an attack source is to a blacklist con-
sumer, based on both the attacker’s history 
and the most recent firewall log produc-
tion patterns of the consumer. Our objec-
tive is to construct a customized blacklist 
per repository contributor that reflects the 
most probable set of addresses that may 
attack the contributor in the near future. 
We view this service as a first experimental 
step toward a new direction in high-quality 
blacklist generation.

For nearly as long as we have been detecting mali-
cious activity in networks, we have been compil-
ing and sharing blacklists to identify and filter the 
most prolific perpetrators. Source blacklists are a 
fundamental notion in collaborative network pro-
tection. Many blacklists focus on a variety of il-
licit activity. Network and email address blacklists 
have been around since the earliest days of the In-
ternet. However, as the population size and per-
sonal integrity of Internet users have continued to 
grow in inverse directions, so too have grown the 
popularity and diversity of blacklisting as a strat-
egy for self-protection. Recent examples include 
source blacklists to help networks detect and block 
the most prolific port scanners and attack sources, 
SPAM producers, and phishing sites, to name a few 
[2, 3, 8].

Today, sites such as DShield.org not only compile 
global worst offender lists (GWOLs) of the most 
prolific attack sources, but they regularly post fire-
wall-parsable filters of these lists to help the Inter-
net community fight back [8]. DShield represents 
a centralized approach to blacklist formulation, 
with more than 1700 contributors providing a daily 
perspective on the malicious background radia-
tion that plagues the Internet [6, 9]. DShield’s pub-
lished GWOL captures a snapshot of those class C 
subnets whose addresses have been logged by the 
greatest number of contributors.
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Another common approach to blacklisting is for a local network to create its own local worst of-
fender list (LWOL) of those sites that have attacked it the most. LWOLs have the property of 
capturing repeat offenders that are indeed more likely to return to the local site in the future. 
However, the LWOL-based blacklisting strategy is an inherently reactive technique, which asserts 
filters against network addresses that have been seen to flood, probe, or conduct intrusion at-
tempts against local network assets. LWOLs have the property of capturing repeat offenders that 
are indeed more likely to return to the site in the future, thus effectively reducing unwanted traf-
fic. However, by definition an LWOL cannot include an address until that address has demon-
strated significant hostility or has saturated the local network with unwanted traffic.

The GWOL-based blacklisting strategy addresses the inherent reactiveness of LWOL strategies by 
extending the observation pool of malicious source detectors. A GWOL attempts to capture and 
share a consensus picture from many collaborating sites of the worst sources of unwanted net-
work traffic. Unlike LWOLs, GWOLs have the potential to inform a local network of highly pro-
lific attackers, even when those attackers have not yet been seen by the network. Unfortunately, 
the GWOL strategy also has measurable limitations. For example, GWOLs often provide sub-
scribers with a list of addresses that may simply never be encountered at their local sites. Mal-
ware also provides a significant challenge to GWOLs. A widely propagating indiscriminate worm 
may produce a large set of prolific sources—but what impact do a few hundred entries make where 
there are tens of thousands of nodes that would qualify as prolific? Alternatively, a botnet may scan 
a large address range cooperatively, where no single bot instance stands out as the most prolific.

The HPB Blacklisting System

A high-quality blacklist that fortifies network firewalls should achieve high hit rates, should in-
corporate addresses in a timely fashion, and should proactively include addresses even when they 
have not previously been encountered by the blacklist consumer’s network. Toward this goal, we 
present a new blacklist-generation strategy, which we refer to as highly predictive blacklisting.

To formulate an HPB for a given DShield contributor, we assign a rank score to each attack 
source address within the repository. The rank score reflects the degree to which that attacker 
has been observed by other contributors who share a degree of overlap with the target HPB 
owner. The ranking score is derived not by considering how many contributors the source has 
attacked in the past (which is the case in formulating the worst offender list), but, rather, by con-
sidering which contributors it has attacked. The HPB framework also employs another technique 
to estimate a source’s attack probability even when it has been observed by only a few contribu-
tors. This technique models the contributors and their correlation relationship as a graph. The 
initial attack probability derived from the evidence (the few attacks reported) gets propagated 
within this graph, and the ranking score is then inferred using the propagated probability. Our 
methodology employs a random walk procedure similar to the Google PageRank link analysis 
algorithm [11].

F i g u r e  1 :  Bl  a c k l i s t i n g  s y s t e m  a r c h i t e c t u r e
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As illustrated in Figure 1 (preceding page), our system constructs blacklists in three stages. 
First, security logs supplied by DShield undergo preprocessing to filter false-positive or likely 
innocuous alerts (noise) within the DShield data repository. The filtered data is fed into two 
parallel analysis engines. The first engine ranks all attack sources, per contributor, according 
to their relevance to that contributor. The second engine scores the sources by using a severity 
assessment that measures their maliciousness. The resulting relevance rankings and severity 
scores are then combined to generate a final blacklist for each contributor.

We consider three noise-filtering techniques. First, we remove DShield logs produced from 
attack sources from invalid or unassigned IP address space. We employ the bogon list cre-
ated by the Cymru team to identify addresses that are reserved, not yet allocated, or delegated 
by the Internet Assigned Number Authority [7]. Second, we prefilter network addresses from 
Internet measurement services, Web crawlers, and common software updating services. We 
have developed a whitelist of such sources that often generate alarms in DShield contributor 
logs. Finally, we apply heuristics to avoid common false-positives that arise from timed-out 
network services. Specifically, we exclude logs produced from source ports TCP 53 (DNS), 25 
(SMTP), 80 (HTTP), and 443 (often used for secure Web, IMAP, and VPN) and from destina-
tion ports TCP 53 (DNS) and 25 (SMTP). In practice, the combination of these prefiltering 
steps provides approximately a 10% reduction in the DShield input stream prior to delivery 
into the blacklist-generation system.

The two analysis engines are the core of our blacklisting system. In relevance analysis, we 
produce an “importance” measurement for an attacker with respect to a particular blacklist 
consumer. With this measurement, we try to capture the likelihood that the attacker may 
come to the blacklist consumer in the near future.

In the system, the blacklist consumers are the contributors that supply security logs to a log-
sharing repository such as DShield. Consider a collection of security logs displayed in a tabu-
lar form (Table 1). We use the rows of the table to represent attack sources (attackers) and the 
columns to represent contributors (victims). An asterisk (*) in the table cell indicates that the 
corresponding source has reportedly attacked the corresponding contributor. 

v1 v2 v3 v4 v5

s1 * *

s2 * *

s3 * *

s4 * *

s5 *

s6 * *

s7 *

s8 * *

T a b l e  1 :  S a m p l e  A t t a c k  T a b l e

Suppose we would like to calculate the relevance of the attack sources for contributor v1 based 
on these attack patterns. From the attack table we see that contributors v1 and v2 share mul-
tiple common attackers; v1 also shares one common attack source (s3) with v3, but not with 
the other contributors. Given this observation, between sources s5 and s6, we would say that 
s5 has more relevance to v1 than s6, because s5 has reportedly attacked v2, which has recently 
experienced multiple attack source overlaps with v1, whereas the victims of s6’s attacks share 
no overlap with v1 or v2 . Note that this relevance measure is quite different from the mea-
sures based on how prolific the attack source has been. The latter would favor s6 over s5, as s6 
has attacked more victims than s5. In this sense, which contributors a source has attacked is of 
greater significance to our scheme than how many victims it has attacked. Similarly, between 
s5 and s7, s5 is more relevant, because the victim of s5 (v2) shares more common attacks with 
v1 than the victim of s7 (v3). Finally, because s4 has attacked both v2 and v3, we would like to 
say that it is the most relevant among s4, s5, s6, and s7.
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We can go a step forward from this simple relevance calculation to provide more desirable prop-
erties. For example, the set of contributors consists of only a very small set of networks in the 
Internet. Before an attacker saturates the Internet with malicious activity, it is often the case that 
only a few contributors have observed the attacker. For example, the attacker may be at an early 
stage in propagating attacks, or it may be a prolific scanner for networks that do not participate 
in the security log sharing system. Therefore, one may want to take into consideration possible 
future observations of the source and include these anticipated observations from the contribu-
tors into the relevance values.

This can be achieved through a relevance propagation process. We model the attack correlation 
relationship between contributors using a correlation graph G = (V, E). The nodes in the graph 
are the contributors V = {v1, v2, 1⁄4}. There is an edge between node vi and vj if vi is correlated 
with vj. The weight on the edge is determined by the strength of the correlation. If a contributor 
vi observed an attacker, we say that the attacker has an initial relevance value 1 for that contribu-
tor. Following the edges that go out of the contributor, a fraction of this relevance can be distrib-
uted to the neighbors of the contributor in the graph. Each of vi’s neighbors receives a share of 
relevance that is proportional to the weight on the edge that connects the neighbor to vi. Suppose 
vj is one of the neighbors. A fraction of the relevance received by vj is then further distributed, in 
similar fashion, to its neighbors. The propagation of relevance continues until the relevance val-
ues for each contributor reach a stable state.

Figure 2 gives an example of this propagation feature. The correlation graph of Figure 2 con-
sists of four contributors numbered 1, 2, 3, and 4. Contributor 1 reported an attack from source 
s. Our goal is to evaluate how relevant this attacker is to contributor 4. Although, at this time, 
contributors 2 and 3 have not observed s yet, there may be possible future attacks from s. In an-
ticipation of this, when evaluating s’s relevance with respect to contributor 4, contributors 2 and 
3 pass to contributor 4 their relevance values after multiplying them with the weights on their 
edges, respectively. The attacker’s relevance value for contributor 4 then is 0.5 * 0.2 + 0.3 * 0.2 = 
0.16. Note that had s actually attacked contributors 2 and 3, the contributors would have passed 
the relevance value 1 (after multiplying them with the weights on the edges) to contributor 4.

F i g u r e  2 :  R e l e v a n c e  Ev  a l u a t i o n  Co  n s i d e r s  Poss    i b l e  F u t u r e  A t t a c k s

Let W be the adjacency matrix of the correlation graph, where the entry W(i,j) in this matrix is 
the weight of the edge between nodes vj and vi. For a source s, we use a vector bs to indicate the 
set of contributors that have reported an attack from s. (bs = {b1

s, b2
s, 1⁄4, bn

s} such that bi
s = 1  

if vi Î T(s) and bi
s = 0 otherwise.) We also associate with each source s a relevance vector rs =  

{rs
1, rs

2, 1⁄4, rs
n} such that rs

v is the relevance value of attacker s with respect to contributor v. 
After the propagation process, the relevance vector would become  
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We observe that bs + rs is the solution for x in the following system of linear equations: 

The linear system described by Equation 2 is exactly the system used by Google’s PageRank 
[1]. PageRank analyzes the link structures of Web pages to determine the relevance of each 
Web page with respect to a keyword query. Similarly, our relevance values reflect the struc-
ture of the correlation graph that captures intrinsic relationships among the contributors.

The second analysis engine in our system is the severity assessment engine. It measures the 
degree to which each attack source exhibits known patterns of malicious behavior. We focus 
on behavior patterns of an attacker who conducts an IP sweep to small sets of ports that are 
known to be associated with malware propagation or backdoor access as documented by Ye-
geneswaran et al. [9], as well as our own most recent experiences (within the past year) of 
more than 20,000 live malware infections observed within our honeynet [10]. Other potential 
malware behavior patterns may be applied (e.g., the scan-oriented malicious address detection 
schemes outlined in the context of dynamic signature generation [5] and malicious port scan 
analysis [4]). Regardless of the malware behavior model used, the design and integration of 
other severity metrics into the final blacklist-generation process can be carried out in a similar 
fashion.

Besides ports that are commonly associated with malware activities, we also consider the set 
of unique target IP addresses to which attacker s is connected. A large unique IP count repre-
sents confirmed IP sweep behavior, which can be strongly associated with our malware be-
havior model. Third, we compute an optional tertiary behavior metric that captures the ratio 
of national to international addresses that are targeted by attacker s, IR(s). Within the DShield 
repository we find many cases of sources (such as from China, Russia, and the Czech Repub-
lic) that exclusively target international victims.

Once each attacker is processed by the two analysis engines, we have both their relevance 
rankings and their severity scores. We can combine them to generate a final blacklist for each 
contributor. We would like to include the attackers that have strong relevance and also show 
malicious behavior patterns. To generate a final list, we use the attacker’s relevance ranking 
to compile a candidate list of double the intended size and then use severity scores of the at-
tackers to adjust their ranking on the candidate list. The adjustment promotes the rank of an 
attacker if the severity assessment indicates that it is very malicious. The final blacklist is for-
mulated by picking the top-ranked attackers.

Experiment Results

To evaluate our HPB blacklist formulation system we performed a battery of experiments 
using the DShield.org security firewall and IDS log repository. We examined a collection of 
more than 720 million log entries produced by DShield contributors from October to Novem-
ber 2007.

To assess the performance of the HPB system, we compare its performance relative to the 
standard DShield-produced GWOL [8]. In addition, we compare our HPB performance to that 
of LWOLs, which we compute individually for all contributors in our comparison set. We gen-
erate GWOL, LWOL, and HPBs using data for a certain time period and then test the black-
lists on data from the time window following this period. Performance is determined by how 
many entries on a list are encountered in the testing window. For the purpose of our com-
parative assessment, we fixed the length of all three competing blacklists to exactly 1000 en-
tries. Additional experiments show that the results are consistent over time, across various list 
lengths and testing windows.

Table 2 (next page) shows the total number of hits summed over the contributors for HPB, 
GWOL, and LWOL, respectively. It also shows the ratio of HPB hits over that of GWOL and 
LWOL. Overall, HPBs predict 20%–30% more hits than LWOL and GWOL.
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The results in Table 2 show the HPB hit improvement over various time windows. We now inves-
tigate the distribution of the HPB’s hit improvement across contributors in one time window. In 
Figures 3 and 4 we plot relative hit count improvement (RI), which is the ratio in percentage of 
the HPB hit count increase over the other blacklist hit count.

F i g u r e  3 :  H i t  Co  u n t  Co  m p a r i so  n  of   HPB    a n d  GW  O L

F i g u r e  4 :  H i t  Co  u n t  Co  m p a r i so  n  of   HPB    a n d  L W O L

Window 
GWOL total 

hits 
LWOL total hits HPB total hits HPB/GWOL HPB/LWOL

1 81,937 85,141 112,009 1.36701 1.31557 

2 83,899 74,206 115,296 1.37422 1.55373 

3 87,098 96,411 122,256 1.40366 1.26807 

4 80,849 75,127 115,715 1.43125 1.54026 

5 87,271 88,661 118,078 1.353 1.33179 

6 93,488 73,879 122,041 1.30542 1.6519 

7 100,209 105,374 133,421 1.33143 1.26617 

8 96,541 91,289 126,436 1.30966 1.38501 

9 94,441 107,717 128,297 1.35849 1.19106 

10 96,702 94,813 128,753 1.33144 1.35797 

11 97,229 108,137 131,777 1.35533 1.21861 

Average 90,879 6851 90,978 13002 123,098 7193 1.36 0.04 1.37 0.15 

T a b l e  2 :  H i t  N u m b e r  Co  m p a r i so  n  a m o n g  HPB   ,  L W O L ,  a n d  GW  O L
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In comparison to GWOL, there are about 20% of contributors for which the HPBs achieve 
an RI more than 100 (i.e., the HPB at least doubled the GWOL hit count). For about half of 
the contributors, the HPBs have about 25% more hits (an RI of 25). The HPBs have more hits 
than GWOL for almost 90% of the contributors. Only for a few contributors (about 7%) do 
HPBs perform worse. With LWOL, the RI values exhibit similar distributions. Note that HPBs 
perform worse for a small group of contributors. Further experiments show that this occurs 
because the HPBs’ performance is not consistent for these contributors (i.e., in some time win-
dows HPBs perform well, but in others they perform worse). We suspect that for this group 
of contributors the attack correlation is not stable or the attacker population is very dynamic, 
so it is difficult to make consistent prediction. Our experiments indicate that there is only a 
small group of contributors that exhibit this phenomenon. For most of the contributors, the 
HPBs performance is consistent.

Conclusion

We introduced a new system to generate blacklists for contributors to a large-scale security-
log sharing infrastructure. The system employs a link analysis method similar to Google’s 
PageRank for blacklist formulation. It also integrates substantive log prefiltering and a sever-
ity metric that captures the degree to which an attacker’s alert patterns match those of com-
mon malware-propagation behavior. Experimenting on a large corpus of real DShield data, we 
demonstrate that our blacklists have higher attacker hit rates and long-term performance sta-
bility.

In April of 2007, we released a highly predictive blacklist service at DShield.org. The HPB 
is a free service available to DShield’s log contributors, and to date the service has a pool of 
roughly 70 downloaders. We believe that this service offers a new argument to help motivate 
the field of secure collaborative data-sharing. In particular, it demonstrates that people who 
collaborate in blacklist formulation can share a greater understanding of attack source histo-
ries and thereby derive more informed filtering policies. As future work, we will continue to 
evolve the HPB blacklisting system as our experience grows through managing the blacklist 
service.
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