
; LO G I N :  D ecem b e r 20 0 8	 I n v estigating     A rgos	 29

J e ffr   e y  B e r g ,  E v a n  T e r a n ,  a n d  
S a m  S t o v e r

investigating Argos
Jeffrey Berg manages the Public Vulnerability Re-
search Team at iSIGHT Partners. His primary inter-
ests are network security and penetration testing.

jbergcosc@gmail.com

Evan Teran is the Lead Security Researcher for 
iSIGHT Partners, a startup which produces human 
and electronic intelligence-fused products and 
services. His primary interests are in the fields of 
reverse engineering and operating systems.

evan.teran@gmail.com

Sam Stover is the Director of Tech Ops for iSIGHT 
Partners. His research interests include detection 
and mitigation methods for vulns and malware.

sam.stover@gmail.com

A r g o s  i s  a  h i g h - i n t e r a c t i o n  h o n -
eypot built for new vulnerability discov-
ery—or, to be more accurate, “zero-day 
vulnerability in use” discovery. We cover 
the background and architecture of the 
program, the underlying concepts and the 
overall functionality, as well as the output. 
The strengths and weaknesses of Argos are 
examined, and we provide a brief overview 
of what is necessary to set it up in a realistic 
scenario to capture exploitation informa-
tion and, possibly, new vulnerability infor-
mation. Finally, we introduce an indepen-
dently developed tool capable of parsing the 
output generated by Argos.

A honeypot is a network decoy. It can serve several 
purposes, including distracting malicious actors 
from valuable machines, providing near-real-time 
intelligence on attack and exploitation trends, and 
giving advance notice of potential new, “zero-day” 
vulnerabilities [1]. The security researcher config-
ures a vulnerable machine that has the look and 
feel of a real service, a set of services, or the entire 
system on which he or she would like to gather ex-
ploitation information. A set of concealed processes 
can exist underneath this configuration which 
monitor and log everything from network activity 
to memory usage to program execution flow. The 
key to a good honeypot configuration is logging 
only the data related to a “compromising event” or 
the events immediately surrounding the compro-
mise. The rest of the information comprises extra-
neous data that adds to the time required for the 
researcher to find and aggregate the information 
related to the actual compromise. A good source 
for a range of honeypot topics from background 
information to technical implementation guidance 
is Provos and Holz’s Virtual Honeypots: From Botnet 
Tracking to Intrusion Detection [2].

Argos

Argos [6] can detect zero-day vulnerabilities when 
used as a tool by a vulnerability researcher. A hy-
brid setup of an updated Intrusion Detection Sys-
tem in front of an Argos system would likely be the 
best configuration for confirming such a situation; 
however, that falls outside the scope of this article.

Argos is based on and extends the functionality of 
QEMU, an open source processor emulator. QEMU 



30	 ; LO G I N :  VO L .  33,  N O.  6

uses dynamic translation to provide users with the ability to run virtual machines of one archi-
tecture on a host system of a different architecture [3]. Argos was initially developed as a patch 
for QEMU to extend functionality (adding the ability to detect attempts to compromise the em-
ulated guest). However, it has since morphed to incorporate QEMU into the overall structure. 
Essentially, if Argos were installed alone, it could run a virtual image independently. However, 
QEMU is needed for creating images in addition to easy and fast administration of those images. 
Also, because some unpackers (such as the one used by Windows XP SP2) cause false positives, 
it is easier to administer the honeypot using QEMU.

The main technique used by Argos to detect the point in time in which a malicious actor com-
promises a guest system is called “dynamic taint analysis.” Dynamic taint analysis operates on 
the precept that all external input to a honeypot is malicious or tainted. Thus, Argos tracks all 
external input by marking it as well as any variables or registers the initial input is involved in 
modifying, either directly or indirectly. For example, consider the MOV operation:

 MOV AX, DX

If DX is tainted, AX will be tainted after the operation executes. It follows that variables and 
registers touched by AX further down the execution path will then be tainted. If any of these 
tainted elements becomes involved in changing the flow of program execution, Argos logs the in-
formation in the form of a special memory dump.

Again, Argos was designed for detecting new zero-day vulnerabilities in the wild and, for the most 
part, it is successful in doing so. We programmed several types of vulnerabilities into test images 
or installed vulnerable programs. Argos detected exploitation on almost all of them, including 
stack-based buffer overflow vulnerabilities, heap-based buffer overflow vulnerabilities, and format 
string issues. A specific exploitation method that is not recognizable by Argos will be discussed 
later in this article.

When Argos detects an attack, two events occur on the host machine: Argos will perform the mem-
ory dump into a .csi file and two or more lines are written to standard output that look like this:

[ARGOS] Attack detected, code <CI> PC <10111ac> TARGET <12ffb0>
[ARGOS] Log generated <argos.csi.1719845868>
[ARGOS] Injecting forensics shellcode at 0x00131000[0x08e28000]

The first tells the researcher that an attack has been detected, along with a two- or three-letter 
description such as JMP. The second line tells the researcher the file in which the memory dump 
may be found. The .csi file is placed in the directory from which Argos was launched. We cre-
ated a couple of scripts to configure the network as well as to launch Argos from date-stamped 
directories, so the .csi files were placed in these directories. We found this very useful for orga-
nizational purposes. Optionally, Argos can also inject forensic shellcode into the process to try to 
extract extra useful information, as indicated by the third line.

The .csi file is created when the flow of execution is altered as a result of a tainted variable. In 
the .csi file, Argos will save the memory associated with the targeted process as well as the vari-
ables tainted by external input. An especially vital portion of this dump, which was added in 
version 2 of the .csi files, is the last good instruction pointer address. A researcher could use this 
address later to reverse the vulnerable process and find the exact vulnerable function and root 
vulnerability.

Installing and Setting Up Argos

Installing Argos is relatively straightforward. Various instruction sets exist that differ on the 
level of detail provided, most likely because each set of instructions considers different versions 
of QEMU, SDL, and, most important, Argos. As of this writing, the current versions of QEMU 
and Argos were 0.9.1 and 0.4.1, respectively. The latest source may be downloaded via the Vrije 
Universiteit site [6]. In addition to QEMU and Argos, the Simple Direct Media Layer Library is 
needed, while KQEMU (the accelerator module, not the front end) is optional. Since Argos does 
not use this accelerator, the only benefit of KQEMU is the decreased time necessary to create and 



; LO G I N :  D ecem b e r 20 0 8	 I n v estigating     A rgos	 31

manage images with QEMU. With respect to hardware requirements, we recommend at least 
1 GB of RAM, a sizable hard drive dependent upon the number of images you would like to 
create and store, and two Network Interface Cards (NICs). We suggest two NICs so that one 
interface can be used as a management interface while the second interface can be used to ex-
pose the honeypot to malicious or potentially malicious traffic. In a later section we will touch 
on deployment options and their impact on the type of traffic received. Furthermore, for se-
curity purposes it may be wise to configure the management interface on a separate network 
segment, away from the exposed network traffic of the “honeypot” interface.

Because of the evolving nature of all products involved, these installation instructions will 
be fairly high-level. As mentioned earlier, QEMU is necessary for building and configuring 
the images to be used by Argos. Although some documentation suggests the necessity of in-
stalling KQEMU and QEMU concurrently, or including KQEMU within the QEMU directory 
when proceeding with the . /configure && make && make install installation procedure, 
we didn’t see that as necessary. These two packages were installed separately. The SDL library, 
which enables graphical functionality for QEMU and Argos, is necessary for obvious reasons.

The only caveat surrounding the install is to ensure that the SDL library is not already in-
stalled as part of the package distribution for your installed host system. If it is, there is no 
need to download the SDL library from source and install it. On a Fedora Core 9, if this pack-
age is installed previously and a user installs SDL from source, QEMU will work but Argos 
will throw an error, stating that SDL cannot be initialized. This can be a frustrating problem 
if one does not realize that two instances of SDL are installed. If encountering this problem, 
simply uninstall the “sourced install”; this should resolve the issue.

Finally, installing the Argos package simply requires the normal . /configure && make && 
make install routine. A good place to install Argos is under /opt/argos. In addition, QEMU, 
KQEMU, and Argos require a gcc compiler version prior to 4.x. For research surrounding this 
article, gcc 3.4.6 was used.

Running Argos

Some network preparation must be done prior to launching an image in Argos. First the 
bridged interface must be set up. We brought this up on the eth0 interface and did not assign 
it an IP address. For security reasons, we felt that exposing eth0 to malicious traffic might 
provide an opportunity to compromise the host system: assigning no IP address resolves 
this issue. Virtual Honeypots [2], mentioned earlier, provides a good guide for bringing up the 
bridged interface.

The next step is to configure the argos-ifup script found in the Argos source package. We modi-
fied the script as follows to look a little different from what’s provided from the Argos source:

#!bin/sh

sudo /usr/sbin/brctl addif br0 $1
sudo /sbin/ifconfig $1 0.0.0.0 promisc up

This script is used to bring up the network interface for the virtual machine when launching 
Argos. We also ended up writing a script to include all of the bridge setup commands. These 
are scripts that will need to be run over and over, so it’s prudent to start setting up scripts to 
make that part of the process easier.

After all of this is done, Argos may be launched. Depending on your configuration, it may be 
necessary to start Argos using sudo, or the tap device will not initialize.

Strengths and Weaknesses

Argos works as advertised and is extremely useful in new and zero-day vulnerability research. 
The memory dumps provided when a system is compromised offer valuable information that 
researchers can use to understand an attack scenario and the exploit code in use. This infor-



32	 ; LO G I N :  VO L .  33,  N O.  6

mation can also aid in reverse-engineering the vulnerable process to understand the root cause 
in a timely manner. This is all achieved in a virtualized environment, which limits the manage-
ment overhead.

Unfortunately, the memory dumps Argos provides are also a source of weakness for the honey-
pot. The memory dumps generated and subsequent .csi file outlining that memory for a particu-
lar attack could alone be several megabytes in size. The data is in a raw binary format; looking at 
it unaided, an analyst might not be able to make much sense of it. Furthermore, the Argos pack-
age does not include a .csi file parser to put this into an easily readable and usable format. Users 
are left to either comb through the file, which could take an unacceptable amount of time (think 
response and remediation for new vulnerabilities), or to write their own .csi file parser. A file-
parsing library called cargos has been created and is available publicly; however, its output is still 
a bit raw and should be considered more of a demonstration of what cargos-lib can do. We cre-
ated a separate .csi file-parsing utility that will be discussed later on in this article.

Another weakness of Argos, as with most attack fingerprinting and detection mechanisms, is 
false positives. As mentioned earlier, on at least one occasion, Windows update was observed to 
trigger Argos to log the event as an attack. This can be avoided by disabling the Windows Update 
mechanism (and, in general, disabling processes on images that might call for external input to 
the machine that could eventually result in a change of execution flow). Although this may be 
viewed by some as the product functioning as specified rather than a weakness, it is still an issue 
to consider when deploying honeypots with Argos.

Finally, we were able to produce a situation in which Argos failed to detect an attack. It is possi-
ble, in certain situations, to overflow data from one variable to another without affecting control 
flow information on the stack. Thus, an attacker can use this to rewrite the contents of another 
local variable. If a variable responsible for execution flow is affected, then the attacker can com-
promise the system. Argos cannot detect this, because it has no way of knowing the bounds 
of individual local variables—that would need compiler-dependent debugging information. It 
marks the initial variable as tainted and moves on. Figure 1 demonstrates a rather contrived sce-
nario rarely seen in the wild; however, it illustrates a shortcoming of Argos.

#include <stdio.h>
#include <string.h>

int do_auth(void) {
	 int good_password = 0;
	 char pass[32];
	 printf(“enter password\n”);
	 gets(pass);
	 if(strcmp(pass, “secret1”) == 0) {
		  good_password = 1;
	 } else if(strcmp(pass, “secret2”) == 0) {
		  good_password = 1;
	 }
	 return good_password;
}

int main(int argc, char *argv[]) {

	 if(do_auth()) {
		  printf(“password accepted\n”);
	 } else {
		  printf(“invalid password\n”);
	 }
	 return 0;
}

F i g u r e  1 :  E x a m p l e  p r o g r a m  s h o w i n g  a  t y p e  of   t a i n t e d  v a r i a b l e  e x p lo  i t  A r g os  
c a n n o t  d e t e c t



; LO G I N :  D ecem b e r 20 0 8	 I n v estigating     A rgos	 33

In this example, it is possible to pass 33 or more characters to the password prompt without 
overwriting the return address of the do_auth function. This will set good_password to a 
nonzero value and thus make the program output “password accepted.” Argos cannot possibly 
detect this because it has no way of knowing if do_auth has two local variables, one 32 bytes 
long and one 4 bytes long, or a single local variable that is 36 bytes long.

Additional Notes

As mentioned earlier, Argos also supports a feature in which it will inject shellcode into the 
exploited process to try to extract useful information; this feature is enabled by default. Cur-
rently, it only tries to extract the PID of the process. This information is sent to the local ma-
chine (the honeypot inside Argos) on port 8721. This means that you may want to have netcat 
or perhaps a quickly written tool constantly listening on this port in the VM to capture this 
information. Since the amount of information that could be gained is so large, we expect this 
to be expanded to provide even more information in the future. There are a few things we 
would like to see added in future versions, the most useful of which would be the process 
name and its full path. In addition to that, it would be very useful if the information were sent 
to the host machine and not to a port inside the VM, as this could be used by the attacker to 
detect that the targeted system is a honeypot.

Potential Deployments

Generally speaking, there are two deployment options for the Argos honeypot, and honey-
pots in general, that can be used. The honeypot can be set up either internally or externally. 
The deployment options are mostly self-explanatory but, to reinforce, an internal deploy-
ment would be exposed to local network traffic only, while an external deployment would be 
exposed to traffic in the wild. An internally deployed honeypot is the same as an externally 
deployed honeypot, since both will be able to examine current threats to a network, new vul-
nerabilities, and the behavior of malicious code that is traversing the network. However, the 
decision to deploy internally or externally depends on the intended use of the data collected 
by that honeypot.

An internal deployment will allow the honeypot user to see existing malicious traffic that 
might be traversing a local network. This gives a user insight into the threats already facing 
the network, as well as how malicious code might be traversing the network. Therefore, inter-
nal honeypot deployment is advantageous if the intention is to provide an added tool for un-
derstanding how to eradicate particular code from the network. An external deployment will 
allow the user to identify new threats, including new vulnerabilities and malicious code vari-
ants. So, while such a deployment can give a user the same information as an internal deploy-
ment, the goal is to identify new issues or variants of old issues to prepare network defenses 
and offset risk of compromise. Thus, an external honeypot is advantageous in keeping a pro-
active network security posture.

Argos is best deployed externally, as it is designed for new vulnerability discovery. Deploying 
internally and receiving information on a new vulnerability means one’s network has already 
been compromised. In an optimal situation, deploying externally will provide information 
on a new vulnerability before it affects the internal network and thus provide the information 
necessary to offset exploitation risk presented by this new issue.

.csi File Parsing

The .csi files generated are in a relatively simple binary format. During the reviewing of Argos, 
we developed a utility to parse and display these files in a more useful way. The format of the 
.csi file is based on two main structures: the log header and zero or more memory blocks. The 
structures of each are detailed in Portokalidis, Slowinska, and Bos’s paper, “Argos: An Emula-
tor for Fingerprinting Zero-Day Attacks” [4].



34	 ; LO G I N :  VO L .  33,  N O.  6

Our parser is fairly simple to run. For the most part one will want to just run it with . /argos_
parse argos.csi.1719845868 - -tainted_only | less.

 This will produce output like Figure 2, which was generated when exploiting a vulnerable pro-
gram created for this research (and has had parts snipped for brevity).

NET TRACKER DATA: 	 false
HOST ENDIAN:      	 little-endian
HEADER VERSION:   	 2
TIMESTAMP:        	 Mon Sep  8 12:24:23 2008
GUEST ARCH:      	  x86
ALERT TYPE:       	 ARGOS_ALERT_CI

eax [0x00000000] (C ) ecx [0x0012f634] (C ) edx [0x7c9037d8] (C ) ebx [0x00000000] (C )
esp [0x0012f558] (C ) ebp [0x0012f56c] (C ) esi [0x00000000] (C ) edi [0x00000000] (C )
eip     [0x0012ffb0] (C )
old_eip [0x010111ac]
efl     [0x00000202]
----------------------------------
MEMORY BLOCK HAS NET TRACKER DATA:	 false
MEMORY BLOCK VERSION:	 1
MEMORY BLOCK TAINTED:	 true
MEMORY BLOCK SIZE:	 4
MEMORY BLOCK PADDR:	 0x0e86f4fc
MEMORY BLOCK VADDR:	 0x0012f4fc
0012f4fc  aa 11 01 01	 |....|
----------------------------------
MEMORY BLOCK HAS NET TRACKER DATA:	 false
MEMORY BLOCK VERSION:	 1
MEMORY BLOCK TAINTED:	 true
MEMORY BLOCK SIZE:	 6e4
MEMORY BLOCK PADDR:	 0x0e86f91c
MEMORY BLOCK VADDR:	 0x0012f91c
POSSIBLE SHELLCODE BLOCK!
0012f91c	 41	 41	41	41	41	41	41	41	41	41	41	41	41	41	41	41	|AAAAAAAAAAAAAAAA|
...
0012fadc	 41	 41	41	41	41	41	41	41	41	41	41	41	eb	03	59	eb	|AAAAAAAAAAAA..Y.|
0012faec	 05	 e8	f8	 ff	 ff	 ff	 4f	 49	49	49	49	49	49	51	5a	56	|......OIIIIIIQZV|
0012fafc	 54	 58	36	33	30	56	58	34	41	30	42	36	48	48	30	42	|TX630VX4A0B6HH0B|
0012fb0c	 33	 30	42	43	56	58	32	42	44	42	48	34	41	32	41	44	|30BCVX2BDBH4A2AD|
0012fb1c	 30	 41	44	54	42	44	51	42	30	41	44	41	56	58	34	5a	|0ADTBDQB0ADAVX4Z|
0012fb2c	 38	 42	44	4a	4f	 4d	4e	4f	 4a	4e	46	34	42	30	42	50	|8BDJOMNOJNF4B0BP|

F i g u r e  2 :  E x a m p l e  o u t p u t  of   o u r  o w n  . c s i  p a r s e r  p r o g r a m

As you can see, the program is able to successfully identify the “Possible Shellcode Block.” The 
shellcode identified here, used when exploiting our vulnerable program, launches calc.exe and is 
borrowed from the Metasploit Payload Generator using the PexAlphaNum encoder [5]. Another 
value of interest, which is available as of .csi file version 2, is the old_eip field. In this example, 
the old_eip represents the address of the RET instructions that actually jumped to the tainted 
memory. Using other tools, such as IDA Pro, we can find the location of the vulnerable function 
(which is probably the one that ends with that RET); this information can be invaluable during 
analysis.

Though the cargos library does exist, we decided to implement our parser independently. The 
primary reason for this is that we wanted to spend the time to really understand how Argos 
works and the type of information it provides. Perhaps a future version of our parser will make 
use of cargos. As a minor footnote, we mention that although the tainted flag exists for each reg-



; LO G I N :  D ecem b e r 20 0 8	 I n v estigating     A rgos	 35

ister, on at least one occasion this flag was set to false when it should have been set to true. In 
other words, a tainted register was observed with a tag signaling that it was not tainted.

Conclusions and Future Work

Argos is an invaluable tool in the field of vulnerability research. Its ability to detect new vul-
nerabilities provides another tool for researchers tasked with vulnerability discovery and for 
network administrators responsible for network security. However, there is little application 
beyond new vulnerability discovery. Argos is not ideal for malicious code analysis and exploi-
tation trending, since the only information collected is a memory dump when the flow of ex-
ecution is altered by tainted registers or variables. Furthermore, Argos is still relatively new 
and is going through an evolution just like any other product in its infancy. Used alone, Argos 
produces output that requires a significant amount of time in order to discern any informa-
tion of value. Programs that will be able to address this problem, such as cargos and the file 
parser we created internally, are just beginning to emerge. Although the malicious code prob-
lem could be argued to be a design choice, it is a topic to consider for functionality addition to 
Argos. A second suggestion for future work is to build a tool capable of listening on port 8721 
for the PID of the compromised process, as per our “Additional Notes” section. Although more 
administrative in nature, aggregation functionality can also be considered to pool the data 
collected from several Argos deployments into a central location. This naturally leads to the 
idea of a central management interface to aid in the maintenance of running images deployed 
across different locations. For now, Argos is an excellent passive, high-interaction, virtual hon-
eypot that is most useful to security research organizations and individuals with spare time 
and an interest in honeypots.

references

[1] http://www.honeypots.net/.

[2] N. Provos and T. Holz, Virtual Honeypots: From Botnet Tracking to Intrusion Detection (Read-
ing, MA: Addison-Wesley, 2007).

[3] http://bellard.org/qemu/about.html.

[4] http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p15-portokalidis.pdf.

[5] http://metasploit.com:55555/PAYLOADS?MODE=SELECT&MODULE=win32_exe.

[6] http://www.few.vu.nl/argos.




