
; LO G I N : D ecem b e r 20 0 8	iVo y eu r : You sh o u ld write an N EB Mod u le , Re v isit e d	 57

D a v e J o s e p h s e n

iVoyeur: you should
write an NEB
module, revisited
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
Award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

I n t h e l a s t i s s u e I s p e n t s o m e t i m e
trying to get you interested in writing
Nagios Event Broker (NEB) modules. NEB
modules, as you no doubt recall from the
literary triumph that was my last article [1],
are small, user-written shared object files
that can extend or change the functional-
ity of Nagios. If you dislike something about
how Nagios functions or wish a hook had
been added for your favorite monitoring
tool, NEB modules are for you. In fact, if you
use Nagios at all and have written any code
related to your install that isn’t a plug-in,
then NEB modules are for you too. Heck, if
you haven’t already flipped the page look-
ing for something more interesting to read,
then you should be writing NEB modules.

So, in a rare (for me) fit of long-term attention
span, this month I want to follow up on a few
things I didn’t get to cover in the last article. I took
a few moments of time to get my Nagfs module
working with the 3.x series of Nagios, and I also
wanted to give you some hard examples of how
the new custom external commands feature in the
3.x series can be used by an NEB to do interesting
things.

In fact, when I said I took a few moments of time
to get my Nagfs module working in 3.x, I liter-
ally meant a few moments. No code needed to be
changed at all. The only hiccup I ran into was that
the 3.x series of Nagios includes the glib libraries if
your module has NSCORE defined, as mine does,
and glib on my system was in a non-obvious place.
So to port my module from 2.x to 3.x I went from
typing:

gcc -shared -o nagfs.o nagfs.c

to typing:

gcc -shared -I/usr/include/glib-1.2 -o nagfs.o nagfs.c

Since I brought it up, I should probably write a
word or two about the NSCORE compiler defini-
tion. In terms of an executive summary, I can tell
you that I don’t really know why it’s there, but your
module gets a bunch more information if you de-
fine it, so I do. If you’re curious, you can take a
look at the module/helloworld.c file in the base di-
rectory of the Nagios tarball and note that it is not
set, so it is not in fact required for your module to
operate. I would then direct your attention to the

58	 ; LO G I N : VO L . 33, N O. 6

service_struct definition in the include/objects.h in the base directory of the tarball. Note that
all the really great stuff you’d probably want to know is only available if NSCORE is defined.
This is true of pretty much all the interesting structs, so I define it. The includes/config.h file in
the base directory of the Nagios tarball includes glib if NSCORE is defined.

To make a long story short, despite the fact that a lot of NEB-related code was touched in the
move from 2.x to 3.x, simple modules like mine will probably not need to be changed to com-
pile, which is happy news and hints at solid engineering. Three cheers for those crafty Nagios
developers!

On to the custom external commands feature, beginning with a short definition. Nagios can be
controlled by passing commands into a FIFO called the external commands file. External com-
mands are the preferred way to change Nagios’s runtime settings from external scripts. For ex-
ample, if you needed to schedule downtime for a large number of individual hosts, you could
write a script that generated input to the external command file rather than using the cumber-
some Web interface. The most common use of external commands is probably implementing
passive host and service checks [2].

External commands have the syntax:

[time] command_id;command_arguments

The square brackets are literal and time is in epoc seconds format, for example:

[1222309414] foo;bar

The commands themselves are statically defined, and each command takes different numbers
and types of arguments. These are documented at the Nagios Web site [3]. New to Nagios 3.0,
and the point of this ramble, are custom commands. Simply preface the command name with an
underscore and Nagios will treat the command as “custom.” Custom commands are not defined
and may contain as many freeform arguments as you wish. (Well, there’s probably a buffer-size
cap somewhere, but I’ve never hit it.) So although this example will be ignored completely by
Nagios, the following command will be parsed as a custom command and passed by the event
broker to any modules that are interested in receiving it:

[1222309414] _foo;bar

/* handle data from Nagios daemon */
int nagfs_handle_data(int event_type, void *data){
	 nebstruct_service_status_data *ssdata=NULL;
	 nebstruct_host_status_data *hsdata=NULL;
	 nebstruct_external_command_data *exdata=NULL;
	 service *svc=NULL;
	 host *hst=NULL;
	 char temp_buffer[1024];

	 /* what type of event/data do we have? */
	 switch(event_type){

	 case NEBCALLBACK_SERVICE_STATUS_DATA:
	 //service status data occurs every time a check runs. We use this to update the service file
	 in each host’s directory.

			 ssdata=(nebstruct_service_status_data *)data;
			 //ss data gives us a pointer directly to the service object
			 svc=ssdata->object_ptr;
			 nagfs_write_service_status(svc->host_name, svc->description, svc->current_state, svc->state_type);

		 break;

	 case NEBCALLBACK_HOST_STATUS_DATA:
	 //service status data occurs every time a host check runs. We use this to update the HOST file.

; LO G I N : D ecem b e r 20 0 8	iVo y eu r : You sh o u ld write an N EB Mod u le , Re v isit e d	 59

			 hsdata=(nebstruct_host_status_data *)data;
			 //ss data gives us a pointer directly to the service object
			 hst=hsdata->object_ptr;
			 nagfs_write_host_status(hst->name, hst->current_state, hst->state_type);

		 break;

	 case NEBCALLBACK_EXTERNAL_COMMAND_DATA:
	 //external commands are user-submitted commands from the external command file

			 exdata=(nebstruct_external_command_data *)data;
			 //the external command struct doesn’t give us a pointer to a command struct
			 snprintf(temp_buffer,sizeof(temp_buffer)-1,”Nagfs: got command: %s”,exdata->command_string);
			 temp_buffer[sizeof(temp_buffer)-1]=’\0’;
			 write_to_all_logs(temp_buffer,NSLOG_INFO_MESSAGE);

			 if((strcmp(exdata->command_string,”_nagfs_die”)) == 0) {
				 nebmodule_deinit(0,0)
			 }

		 break;

	 default:
			 snprintf(temp_buffer,sizeof(temp_buffer)-1,”nagfs: just got some unknown data. Weird..”);
			 temp_buffer[sizeof(temp_buffer)-1]=’\0’;

			 write_to_all_logs(temp_buffer,NSLOG_INFO_MESSAGE);

		 break;

		 }

	 return OK;
		 }

L i s t i n g 1

Listing 1 is a modified version of my event handler function from last month’s article. Not
shown in the listing is the extra registration call we must add to the init function to begin re-
ceiving external command events:

neb_deregister_callback(NEBCALLBACK_EXTERNAL_COMMAND_DATA,nagfs_handle_data);

As you probably recall from the last article, the first argument is a constant that defines what
we want to register for, and the second argument is a function pointer back to our own event
handler function. I’ll save you a grep or two by pointing out that the event-type constants are
defined in includes/nebcallbacks.h in the base of the Nagios tarball. As with everything in
the Nagios source, the names are self-explanatory and easy to find. The struct that makes up
an external command is defined in include/nebstructs.h. I’ll paste it into Listing 2, so I can
briefly discuss it here.

typedef struct nebstruct_external_command_struct{
	 int	 type;
	 int	 flags;
	 int	 attr;
	 struct timeval	 timestamp;

	 int	 command_type;
	 time_t	 entry_time;
	 char	 *command_string;
	 char	 *command_args;
	 }nebstruct_external_command_data;

L i s t i n g 2 : A n e x a m p l e of t h e e x t e r n a l c o m m a n d s t r u c t

60	 ; LO G I N : VO L . 33, N O. 6

The external command struct in Listing 2 is a bit different from the service and host data structs
we dealt with in the last article. In the latter structs we were given a pointer to an object that rep-
resented the actual service or host in memory. The external command struct, however, refers to
no other Nagios object, because there is no other object to refer to. Everything you need to know
about the custom command—its execution time, name, and arguments—can be gotten directly
from the struct passed to us from the broker. The variable names that contain these pieces of in-
formation are, of course, self-explanatory.

Aside from a few variables at the top of the function in Listing 1, all I’ve added is a case to the
switch loop that logs the name of the command we’ve received from the broker. If the event
name matches _nagfs_die, then the module commits suicide by calling its own deinit function.

If you need to talk to your NEB module from an external source such as a script or another
server, custom external commands are the perfect means to do it. Here’s an example: Imagine
a VRRP-like protocol for Nagios fail-over servers. Both servers send each other “I’m alive” mes-
sages, and whoever has the highest priority is the master. All service checks and notifications on
the backup server are suppressed while the master is alive. This could be implemented in NEB as
a single piece of code; that is, all participating servers would run exactly the same NEB module.
Best of all, the message-passing interface (the hard part) is already written for you in the form of
existing plug-ins plus the custom external commands feature.

In versions of Nagios prior to 3 you would have had to implement your own mechanism for mes-
sage passing, and that would have meant scheduling events for your module to wake up and
check for messages, so this feature makes NEB modules much easier to write and should hope-
fully inspire you to write modules that do even cooler things. That last example I just made up
off the top of my head; the thought of what problems the LISA crowd could solve with NEB
makes me all giddy.

So, beloved ;login: readers, I sincerely hope these two articles have at least piqued your interest in
the Nagios event broker. If you use Nagios and need customizations, please, please, please write
an event broker module. They’re fun to write, and really I’d like to reap the benefit of your hard
work, because, let’s face it, you’re smarter than I am and I couldn’t afford your consulting fee
anyway.

Take it easy.

references

[1] My last article: http://www.usenix.org/publications/login/2008-10/pdfs/josephsen.pdf.

[2] Passive service checks in Nagios: http://nagios.sourceforge.net/docs/3_0/passivechecks.html.

[3] List of Nagios external commands: http://www.nagios.org/developerinfo/externalcommands/
commandlist.php.

