
24	 ; LO G I N : VO L . 33, N O. 5

A lv a L . C o u ch

system
administration
thermodynamics
Alva Couch is an Associate Professor of Computer
Science at Tufts University, where he and his stu-
dents study the theory and practice of network and
system administration. He served as Program Chair
of LISA ’02 and was a recipient of the 2003 SAGE
Outstanding Achievement Award for contributions
to the theory of system administration. He currently
serves as Secretary of the USENIX Board of Directors.

couch@cs.tufts.edu

V i r t u a l i z at i o n p r o v i d e s s e v e r a l
ways to transform the question “Why does
this fail?” into the related question “Is this
fast enough?”

Fellow system administrators, do you find yourself
troubleshooting systems more and enjoying it less?
Do you spend most of your time correcting the
“same old problems”? Are legacy systems millstones
around your neck? Then, from what I can tell, you
are like most system administrators. For those of
you in this situation, I have a controversial mes-
sage: The troubleshooting you are doing now is already
obsolete.

In the following, I will outline techniques for mini-
mizing common kinds of trouble by use of virtu-
alization. Most of these techniques are common
knowledge, and I apologize in advance for stating
the obvious. But, in my experience, many system
administrators of good faith and stronger charac-
ter than my own still endure these various tribu-
lations. This article is written for them because I
think they remain in the majority.

No strategy I am going to suggest actually elimi-
nates trouble. Instead, trouble is transformed into
a hopefully more manageable form. Virtualization
allows one to replace configuration troubleshoot-
ing with performance troubleshooting. One key to
understanding this transformation is to consider it
as part of the “thermodynamics of system admin-
istration.” System administrators, like mechanical
engineers and physicists, have to cope with con-
servation laws, and one thing that is conserved is
trouble. We cannot eliminate trouble, but we can
make choices that transform it into a perhaps more
manageable (and hopefully “user-friendly”) form.

The Three Laws of Thermodynamics

Trouble is a form of entropy, and thus it is subject
to the laws of thermodynamics. Ginsberg once de-
scribed the three laws of thermodynamics as “One
can’t win, one can’t break even, and one can’t get
out of the game.” In system administration terms,
we might restate these laws as follows:

There is no way to prevent trouble.■■

There is no zero-cost way of transforming ■■

trouble into other forms.
Trouble approaches zero only as system use ■■

approaches zero.

The theme of this article is the second law. In sys-
tem administration, as in thermodynamics, one

; LO G I N : O c to b e r 20 0 8	 system a dmini str ation th e r mo dy nami cs	 25

can, by applying some energy, transform trouble to a (hopefully) “more con-
venient” form.

As a physical analogy, suppose that you are careening down a hill at high
velocity toward an obstacle. To mitigate this, you can apply a brake, but the
action of applying a brake has its own problems, including heat buildup.
Your action can transform the problem of careening down the hill into the
problem of controlling the heat from a brake, but it helps to know how to
handle heat from the brake before applying it!

In the same way that brakes convert velocity to heat, I will outline several
techniques for transforming configuration issues into performance issues. I
believe that the most powerful tool the system administrator has for dealing
with trouble is architectural design. The proactive system administrator strives
to make trouble easier to handle by employing virtualization to limit the
forms in which trouble arises. When one changes the form of trouble, one may
need new skills to mitigate new kinds of trouble. But if one designs cleverly,
the total time one actually spends, the amount of downtime, and the knowl-
edge needed to cope can all be dramatically reduced.

Minimizing Coupling and Maximizing Cohesion

Our first two steps borrow principles from software engineering. A good
architectural design minimizes coupling and maximizes cohesion [1]. Two
components are coupled to the extent that they interact; couplings corre-
spond to “things to remember.” By contrast, a cohesive component groups
related functions together inside one entity.

Unnecessary coupling is a major cause of troubleshooting and maintenance
cost. Examples of coupling problems include version skew in libraries and/or
packages, disagreement between two parameter values that should agree, or
conflicting (and thus impossible) requirements for assuring the function of
two co-resident applications.

As a trivial example, it is impossible to install both php4 and php5 Apache
modules at the same time. Such dependencies arise from application require-
ments (e.g., one php4 application and one php5 application that are in-
tended to execute on the same physical server).

The main trick I will use to transform trouble is to trade performance prob-
lems for combinatorial problems. A “combinatorial problem” is an error in
how software is configured or how it interacts with other software, whereas
a “performance problem” is a situation in which an operation executes prop-
erly but perhaps more slowly than might be desired.

For example, one can solve the php4/php5 problem by creating two virtual
operating system instances, each running its own Apache server. One server
includes php4 and the other includes php5. The illusion that both are run-
ning on the same machine can be maintained by making the original ma-
chine into a proxy server.

Segregating services onto distinct components changes the kind of trouble
that can arise for the services. If they are running on separate servers (either
through physical or virtual separation), then the services are prevented from
interacting in ways that co-located services can, so there is absolutely no
problem in supporting php4 on one instance and php5 on the other. But we
may have to maintain, by other means, the illusion that the applications ex-
ecute on the same server (e.g., by some form of service switching). One form
of complexity replaces another.

26	 ; LO G I N : VO L . 33, N O. 5

It is possible, though, to minimize coupling too much. One should also
strive for cohesion. Two services are cohesive if they interact with a shared
information domain. For example, putting DNS and DHCP on the same
server is (usually) cohesive because both pertain to IP, but co-locating DHCP
and a Web server is (usually) not cohesive, because the information domains
of the two services (usually) overlap very little.

The concepts of coupling and cohesion are borrowed from software engi-
neering but the justifications are perhaps even stronger for system adminis-
tration. In software engineering, coupling between program modules leads
to a need for increased communication between module authors, which delays
software development. In system administration, coupling between compo-
nents leads to a need for increased knowledge on the part of the individual
administrator trying to make them work together, which means more time
spent in initial setup and in troubleshooting the interacting components.

Through use of virtualization, dependency troubleshooting of co-located services
is an obsolete skill, because two software packages that implement services
can be positioned within different (virtual) platforms that cannot “depend”
on one another. The whole process of installing an instance becomes cen-
tered on one application and its needs. But in the latter case, a new form of
trouble can arise, in the form of resource dependencies (e.g., shortage of CPU
cycles or I/O bandwidth among two or more instances). These dependencies
cannot break an application, but they can cause it to execute unexpectedly
slowly. We do not eliminate trouble; we merely transform its nature.

One side effect of using virtualization is that some of the complexities of
configuration management are also obsolete. One thing that makes configu-
ration management difficult is change. In a virtual environment, one can
often afford to build a new server instance while existing server instances
are live, so that one can start afresh whenever a change is needed. This miti-
gates several kinds of configuration management problems.

Exploiting Social Pressure

A second design guideline is so obvious that many of us might forget it.
Software cannot ever be completely tested. Therefore, it makes sense to de-
sign one’s systems around software environments that others have aggres-
sively utilized and tested, because each application is more likely to have
been thoroughly debugged for those environments than for others. In par-
ticular, bugs resulting from configuration problems (e.g., hidden dependen-
cies) are much less likely to arise in commonly deployed environments. The
simple reason for this is social pressure; the widespread use of a particular
environment means that most bugs for that environment will be discovered,
reported, and, hopefully, repaired. The most common environments for an
application thus naturally become the most tested and functional, because
there is a higher incentive for developers to address the bugs with the wid-
est social exposure. Thus, it is typically much more likely that an applica-
tion will run properly in a vanilla environment (e.g., the default installation
of a Linux distribution) than in a customized one. If problems do arise, it is
more likely that others have seen them before and have already found and
published work-arounds.

By using virtualization one can arrange, much more easily than ever before,
for an application’s environment to be the one with the greatest social foot-
print, because the environment for each application can be chosen indepen-
dently.

; LO G I N : O c to b e r 20 0 8	 system a dmini str ation th e r mo dy nami cs	 27

Horror stories about failing to exploit social pressure abound. One should
not adopt software on the bleeding edge unless one expects to bleed along
with it.

For example, our site was one of the first adopters of Sun’s NIS+ directory
service, because it had many neat features we wanted. Unfortunately, it also
had many painful bugs we did not want. What we did not understand or
account for at the outset of this project was the power of social pressure.
NIS+’s deployment footprint never became large enough for the bugs to be
addressed (we heard later that Sun had not used it internally), and we re-
placed NIS+ with LDAP before the problems we encountered were resolved.
By contrast, by possessing an enormous and multi-platform social footprint,
LDAP has been pounded upon by a large number of conscientious users and
has thus been forged by social pressure into a reliable tool.

This is an object lesson in the danger of creativity. Becoming a follower
rather than a leader often involves less pain and suffering. This principle
takes many forms, from avoiding first adoption of a tool to avoiding being
the first to apply a new security patch [2].

It may seem obvious that our jobs as system administrators do not involve
making developers fix their bugs but, instead, require us to provide mecha-
nisms for getting useful work done in the presence of those bugs. Although
we file bug reports as a public service, no system administrator can reason-
ably expect a user to wait for a bug fix. We are instead the masters of the
work-around, not the masters of the software, and if anyone has managed to
make it work, we are expected to know exactly how and why. Again, virtu-
alization allows us to synthesize almost any software environment needed
by an application, without breaking any other one.

Softening Hard Boundaries

A third trick in the contemporary system administrator’s arsenal is to use
virtualization to control which attributes of a network are “hard” and which
are “soft.” A hard attribute is an attribute of a system that can only be con-
trolled by a human being, such as the physical location of a machine or the
location of the access point to which it binds. A soft attribute is one that can
be manipulated by setting values of parameters via software and/or automa-
tion.

The easiest example of hard and soft boundaries involves the computing
power of servers. In a non-virtualized environment, the amount of comput-
ing power available to a service is a hard attribute, whereas in a virtualized
environment it can be considered a soft attribute (e.g., a configuration pa-
rameter of the hypervisor). As another example, virtual LANs make the net-
work to which a host is connected a soft attribute, whereas in non-virtual
LANs this is a hard attribute.

The overall purpose of softening a hard boundary is to turn a decision
whose implementation requires major work into one requiring setting pa-
rameters. For example, consider the example above for php4 and php5.
If the two applications are installed on two servers, then changing the re-
sponse time for one application requires rebuilding the service on another
server, but if the applications are virtual instances on one server, changing
response time can be expressed as a parameter change in the hypervisor.

In both of these cases, softening does not eliminate entropy; rather, it trans-
forms it into a new form. Even the very best virtualization strategies exact a
performance penalty, because sharing resources among more than one oper-
ating system takes time (thus invoking the second law).

28	 ; LO G I N : VO L . 33, N O. 5

Edge Cases

Alas, there are always cases in which one cannot straightforwardly eliminate
troubleshooting of combinatorial problems. Mostly this is because the user
explicitly requires several conflicting services to be co-located on the same
device, such as a workstation. Then we are faced with the same old combi-
natorial problems. What to do?

Fortunately, there are several evolving approaches to this problem, all in-
volving advanced forms of virtualization that the system administrator
controls. Operating systems do not represent the only grain at which virtu-
alization can function; one can also virtualize file access, registry access, or
library access for different applications running within one operating system
instance. Some visionaries in the virtualization community believe one will
be able to routinely virtualize the software environment for each application
without virtualizing the underlying operating system. The net result of this
strategy is the same as before but is much lighter in weight; virtualizing the
“open” call has a much lower overhead than virtualizing the whole operating
system.

For example, IBM’s prototype Progressive Deployment System (PDS) [3] vir-
tualizes library and registry access in Windows without virtualizing the
whole operating system. Each application thus executes in a custom envi-
ronment in which registry or library conflicts cannot occur. This is done
without virtualizing the whole operating system, which makes it much less
resource-intensive to use.

Understanding Resource Contention

In all of the examples cited so far, we have transformed entropy arising from
combinatorial conflicts into entropy arising from resource conflicts. In the
first case, we traded speed for combinatorial complexity, preferring a sim-
pler, slower solution to a faster, more complex one. In the second case, we
traded customizability for robustness, preferring a mainstream, well-un-
derstood solution to a perhaps more customized but less-tested option. In
the third case, we traded space and time for flexibility, preferring to control
state via software rather than by rebuilding servers. The good news is that a
few common forms of system failure, including downtime from configura-
tion conflicts, are “virtually” eliminated.

But in system administration, as in thermodynamics, entropy remains. We
have only changed the way it can be expressed. We have ensured that the
various and sundry state machines making up our applications have the
configurations and environmental conditions that they need to react cor-
rectly, but not that resources that they need will be available when they need
them.

Addressing resource conflicts is a very different form of troubleshooting
from those most system administrators are used to. Resource contention is
a “quiet” kind of failure; systems fail “not with a bang, but with a whimper.”
Failures are subtle and sometimes nearly unnoticeable.

But there is also a subtle value shift involved. Virtualization has explicit per-
formance penalties. In eliminating combinatorial issues, we have already de-
parted from the old rubric of making systems function “as fast as possible,”
and we are forced to ask ourselves some difficult questions about what per-
formance is “good enough.” Once we know what is “good enough,” we can
ask ourselves the second question, “What changes will provide performance
that meets that standard?”

; LO G I N : O c to b e r 20 0 8	 system a dmini str ation th e r mo dy nami cs	 29

What Is Acceptable Performance?

Old habits die hard. Most of us are used to squeezing the maximum possible
performance out of our systems, so that the question of what is appropriate
performance never arises. When we use virtualization tricks to invoke inde-
pendence, social pressure, and softness, we trade optimal performance for
robustness. Obviously, it is possible to trade away more performance than is
reasonable. But what is “too much to trade”?

First, we need some reasonable definition of what performance actually
means. There are several possible definitions, all involving some concept of
response time. For a Web site, response time is the time it takes from when
you send a request to when you receive content. For a shell, response time
refers to the time between a key press and the associated change in screen
state. In a batch environment (e.g., accounts payable), response time is the
elapsed time between job submission and job completion.

Second, we need some way of measuring performance. There are many
mechanisms, both direct and indirect. A direct performance measure quan-
tifies what the user sees, whereas an indirect measure is related to, but is not
exactly equivalent to, the user’s experience. Direct measures include bench-
marking and soliciting user feedback; indirect measures include server load,
memory utilization, etc. The latter are functionally related to what the user
sees, but the relationship is not (usually) easy to describe. For example, we
agree that servers with high load averages are “bad,” but “just how high is
bad” depends upon what the user experiences, and not necessarily what the
system administrator sees in the logs.

SLOs and SLAs

The next step is to define acceptable performance. Here we can borrow some
terms from autonomic computing and outsourcing. A “Service Level Objec-
tive” (SLO) is a definition of what directly measured performance is “good
enough.” This is usually specified in very high-level terms, as end-to-end re-
sponse time (e.g., “Users should obtain a response from the Web site within
one second”). SLOs are determined by economic analysis of the business
effects of service delays. For example, a few seconds of delay may be cata-
strophic for online stock trading, and it is generally accepted that response
delays in online shopping lead to lost sales.

An SLO may also set different goals for each kind of service or each kind of
client. It is common to refer to clients as “gold,” “silver,” or “bronze” to de-
note priorities for performance. For example, in a hospital, doctors need
“gold” service levels, but for staff not involved in patient care (e.g., billing
personnel), “bronze” response suffices. In the emergency room, an even
higher “platinum” service level may be needed.

SLOs can also embody business strategy. Some analysts believe that in a
sales situation, it is better not to respond at all than to respond slowly. Giving
up on customers who have already waited too long diverts computational
resources away from customers who represent lower sales potential, to cus-
tomers who have not yet been made to wait (and thus represent higher sales
potential). Such a strategy is sometimes called an admission control policy, be-
cause one only “admits” customers to one’s site that one has the resources to
serve in a timely manner and tells the customers whom one expects to expe-
rience long response delays to come back later (because, statistically, if one
does admit them, they are likely to leave before buying anyway) .

By contrast with an SLO, a Service-Level Agreement (SLA) defines not only
desirable objectives but also penalties and incentives in interacting with

30	 ; LO G I N : VO L . 33, N O. 5

some external client. SLAs are common in defining expectations between a
business and a hosting service. Whereas an SLO might say, “Response time
should be less than one second,” an SLA might add, “Response times over
one second will be billed to the provider at one cent per instance” or “The
provider will be paid one cent more for each request whose response time
is less than one-half second.” Incentives often vary for different kinds of cli-
ents.

The typical use of an SLA is to define interactions between autonomous ser-
vice providers, but system administrators can utilize the concept as a way of
describing service requirements between themselves and their organizations.
In this case:

A service objective is the minimum performance required by manage-■■

ment.
A service penalty (for not meeting the objective) or incentive (for ex-■■

ceeding the objective) can be interpreted in a human context (e.g., raises
and promotions).

The Hard Question

In moving into a new territory it helps to understand the objectives and in-
centives. What is your SLA as a system administrator? If your site is a devel-
opment site, there may not be a strong business reason for quick response
time, so your SLO expectations may be low and your SLA may be unde-
manding, whereas fluidity and deployment agility may be very important
instead. If your site engages in financial trading, there may be sound busi-
ness reasons for your SLO to include high minimum expectations and high
penalties for delays.

This can be a very difficult question to answer, because most managers may
not ever have thought about system administration in this way and may not
be aware of the thermodynamic principles (as outlined in this article) that
give system administrators a choice between manageability and performance.

A New World

Virtualization gives us new choices. The profound impact of those choices is
to trade one property of a system for another. This allows us to architect sys-
tems for robust behavior, effective automation, and autonomic control. But to
reap the benefits, we cannot tune a system to run “as fast as possible,” and
such an objective is now rather meaningless. The job of system administra-
tor has changed, from doing “whatever it takes to make it work,” to making
choices that are “good enough.” Before, we were thinking about cost; now it
is time to concentrate on value.

references

[1] Roger S. Pressman, “Design Engineering,” in Software Engineering: A Prac-
titioner’s Approach, 6th ed. (New York: McGraw-Hill, 2004), chapter 9.

[2] Steve Beattie, Seth Arnold, Crispin Cowan, Perry Wagle, Chris Wright,
and Adam Shostack, “Timing the Application of Security Patches for Opti-
mal Uptime,” Proc. LISA ’02, USENIX Association, 2002.

[3] Bowen Alpern, Joshua Auerbach, Vasanth Bala, Thomas Frauenhofer,
Todd Mummert, and Michael Pigott, “PDS: A Virtual Execution Environment
for Software Deployment,” Proceedings of the 1st International Conference on
Virtual Execution Environments (VEE ’05), ACM Press, 2005.

