
; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 41

b R a d k n o w l e s

building scalable
NTP server
infrastructures
Brad has been a contributor to the NTP Public
Services Project for over five years, in addition to
working as a UNIX and Internet system administra-
tor for almost two decades, specializing in Internet
email and DNS administration for more than fifteen
years.

knowles@ntp.org

i n t h i s a r t i c l e i d i s c u s s h o w t o
take the concept of a simple NTP service
configuration for a small number of cli-
ents and then expand that to be able to
serve many thousands, tens of thousands,
hundreds of thousands, or even millions of
clients. By choosing the right type of scal-
able service infrastructure, you should be
able to handle a virtually unlimited number
of clients with a relatively small number of
servers, but it will take some work to get
there.

I start out with some discussion about various typi-
cal traps that you might tend to fall into, if you’re
not deeply familiar with the NTP protocol and the
Reference Implementation. I follow that by dis-
cussing the three different major modes of opera-
tion you can choose for your servers, highlighting
weaknesses in each mode and other factors that
need to be considered. Next, I mention some spe-
cific hardware recommendations for good-qual-
ity NTP servers, as well as some warnings about
OS issues, and touch on the subject of “reference
clocks.” Finally, I come to some conclusions about
which modes are the most scalable and under what
circumstances. If you get lost, you may want to
consult the list of NTP-related definitions [1].

I assume that you are already familiar with NTP in
general and building simple NTP server configu-
rations and that you know where the official NTP
documentation is located [2], as well as the unof-
ficial Community Supported Documentation as
made available by the NTP Public Services Project
[3]. You know what the difference is between the
NTPv4 [4] Reference Implementation [5] and the
older NTPv3 [6] clients that may be available from
other sources (e.g., xntpd). You are also assumed
to understand the difference between NTP and
SNTP—the Simple Network Time Protocol [7].

Of course, before a machine can be an NTP server,
it must first be an NTP client. In NTP parlance, the
only difference between a server and a client is that
an NTP server is a machine that has NTP clients
that are depending on it for time, whereas an NTP
client depends on NTP servers but does not have
any other NTP clients depending on it. Any NTP
client is a potential NTP server, and all NTP serv-
ers are also NTP clients. Therefore, I assume that
you already know how to build a robust NTP client
configuration, including things like knowing how
many upstream NTP servers to configure and why

42 ; LO G I N : vO L . 33, N O. 5

defining two upstream servers for your client is the worst possible configu-
ration, proper use of the “iburst” keyword, proper use of the “tos minclock”
and “tos minsane” parameters, etc.

common Misconceptions

For people who don’t understand how NTP works, it is very easy to assume
that the way you build a scalable NTP service infrastructure is exactly the
same way you would build a scalable infrastructure for any other kind of
typical Internet application such as Apache or Sendmail.

In other words, throw the biggest, baddest, honkingest, multi-core, multi-
thread, multi-CPU boxes at the problem, and then front-end them with a
whole array of proxy servers, load-balancing switches, and clustering, play-
ing tricks with the network layer to make the same service IP address visible
from a variety of servers, and so on.

For NTP, this is the worst possible thing you could do. NTP is UDP, not
TCP. It does not have a fork()/exec() model of execution. It is single-
threaded and essentially does a huge select() loop on incoming UDP pack-
ets. Doing TCP or a fork()/exec() model of execution would add unnecessary
and unpredictable latency to the process of trying to handle the packets, and
it would defeat the entire purpose of accurate time-serving.

However, NTP is not stateless. In fact, it is about as stateful as you can get
with a UDP protocol, since it tracks both short- and long-term variations
in clock stability for all configured upstream servers, based on the smallest
possible statistical samples of information for each system. None of what you
would think of as the “standard scaling rules” can be applied to NTP.

The goal of NTP is to try to synchronize your system clock to the “One
True Time” known as UTC (Universal Coordinated Time [8]), or at least al-
ways move your system clock closer to UTC, within certain statistical error
boundaries. Since there is one and only one system clock per computer,
you do not want to run more than one NTP daemon on a machine, because
they will both be trying to modify the system clock at the same time and
they will certainly cause the system to be highly unstable, if not frequently
suffering from kernel panics. The Reference Implementation includes code
that works hard to prevent more than one copy of ntpd running at the same
time.

The algorithms inside NTP are extremely sensitive to the most minor
changes, and over the 20+ years they’ve been in development, they have
been tuned to seek out and eliminate the tiniest statistical errors they can
find, whether the variation is short- or long-term. They also need to do loop
detection and elimination, and for that they depend on a one-to-one corre-
spondence between the system clock and the IP address. For multi-homed
machines, this can pose a problem, since they don’t have just one IP address.

All of the NTP algorithms are also built on top of the basic assumption that
if you contact a client or server at a given IP address, it will always be ex-
actly the same machine with exactly the same system clock. So, for example,
playing “anycast” games at the routing layer and making the same IP address
available from multiple servers is a recipe for disaster. The same holds for
using load-balancing switches or clustering.

NTP already has extensive capabilities for doing explicit failover between
multiple upstream servers, and anything you do to try to hide the upstream
servers behind something else will only get you worse reliability and worse
quality of service.

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 43

configuration Modes Between servers and clients

There are three basic modes of NTP server configuration that we are con-
cerned with, and a variation on one of those, for a total of four modes of op-
eration.

The simplest mode, “unicast” [9], is the classic client/server configuration
for NTP. That is, each NTP client periodically sends UDP packets on port
123 to the servers they are configured to use, gets UDP responses back,
goes through the NTP algorithms to select which of the designated servers is
“best,” and then tries to synchronize its clock to it. Note that there is no cli-
ent authentication or authorization in the NTP protocol, but you do have the
option to enable cryptographic server authentication to the client.

Unicast mode does have the advantage that it gives the client(s) the best pos-
sible chance for getting good time service from the upstream servers, if the
upstream servers are not overloaded. This is because a unicast-mode client is
involved in a periodic but ongoing long-term bidirectional conversation with
each of the upstream servers, and it is able to gather the maximum amount
of information possible regarding which time server currently has the “best”
time, etc.

Unfortunately, even with good hardware and good configurations on both
sides, the simple version of this type of configuration (without cryptographic
server authentication) may tend to start having problems when handling
more than about 500–1,000 clients per NTP server. Of course, if you have
configured your clients to each use multiple upstream servers, then you
magnify the problem of how many clients hit how many upstream servers.
Overloaded servers start dropping too many queries, too many retransmis-
sions are required, and the servers are providing reduced quality of service
to all clients.

Unicast was the first mode invented oh-so-many years ago, and it should be
supported by all NTP clients. In the official documentation on this mode,
the terminology may differ somewhat from what I have used here but the
concepts are the same. Note that you can build purely hierarchical relation-
ships among the NTP servers themselves, or you can build them as symmet-
ric active/passive peers, but either of these server-to-server infrastructures
still operates in unicast mode [10].

Next, we have “broadcast” mode [11, 12]. The basic concept is that each
client is configured to passively listen for broadcasts from the designated
server(s), go through the NTP algorithms to try to select the best-quality
time server, and then synchronize the clock to that.

However, in this mode the clients will actually operate in unicast mode dur-
ing startup (something called the “startup dance”), and then settle down to
passive listening. The startup dance allows the NTP client to determine what
the “broadcast latency” is between the server and the client and to make
suitable adjustments so that it can make a better determination as to which
of the designated upstream servers is best, which results in the NTP client
getting better-quality time service.

If there is no response from the broadcast server to the unicast packets from
the client during the startup dance, the client will fill in a default value for
the broadcast latency. Alternatively, the server administrator can hard-code
its own choice for broadcast latency. Clients can also be configured to avoid
the startup dance altogether, through the “authdelay” command—in effect,
making them broadcast-only clients.

44 ; LO G I N : vO L . 33, N O. 5

Unfortunately, broadcasts don’t cross MAC-layer segments, which means you
end up needing at least one broadcast NTP server on every subnet. This nat-
urally leads to the concept of running a broadcast NTP server on your net-
work gear, which is generally a bad idea and discussed below.

Broadcast mode should be supported even by older NTPv3 clients.

Up next, we have the multicast variant of broadcast mode, the only dif-
ference being that the UDP packets sent by the servers are addressed to a
specific multicast address (defined by IANA to be 224.0.1.1) to which all
multicast clients listen. However, other than the address being different, the
operations are otherwise the same as broadcast mode.

Also note that this requires support at the network level. By default, most
network devices are not set up to support routing multicast traffic, so they
would need to have their configurations updated. Moreover, each multi-
cast server will see packets from all multicast clients during their respective
startup dances, and all clients will see packets from all servers, and again
this will tend to bring problems with congestion, drops, retransmits, etc. As
with broadcast mode, multicast mode should be supported even by older
NTPv3 clients.

With NTPv4, there is a new mode based on multicast networking called
“manycast” [13]. This is an automatic discovery mechanism used by cli-
ents to find their closest server(s). The client sends UDP packets to the con-
figured multicast address, but it starts with a packet TTL of zero, to see
whether there are any manycast servers on the local segment. If the client
doesn’t get a response in a given period of time, it retransmits with a TTL
of one, to see whether there are any manycast servers that are just one hop
away. This process continues until either the TTL is set to the maximum
and no servers ever respond or the client finally discovers and sets up one or
more relationships with servers somewhere on the network.

Manycast mode allows clients to automatically detect their nearest NTP
servers and then set up unicast associations with them. The load will auto-
matically be distributed throughout the infrastructure as you put multicast
servers in strategic places. You will minimize as much as possible the num-
ber of servers that see traffic from too many clients, the number of clients
that will see traffic from too many servers, and the number of router hops
traffic has to cross in order to get from the starting point to the destination.

Of course, manycast has the same problem as multicast, in that it needs sup-
port at the network layer. However, manycast is new with NTPv4, and sup-
port for it will most likely not be found in older NTPv3 clients.

I won’t discuss “pool” mode, since it is intended to allow sites to make better
use of the NTP Pool Project [14] as opposed to helping you set up your own
infrastructure (pool-style or not), and it’s a new enough addition to the sys-
tem that I’m not sure it will be covered by the upcoming NTPv4 RFCs that
the IETF NTP Working Group [4] is putting together.

But assuming your version of the ntpd code is new enough to include this
option, there is official documentation on how you could potentially config-
ure your NTP clients to use the NTP pool [15].

For example, this might be a useful configuration option to use on your NTP
servers to help ensure that they get an adequate number of upstream servers
and a better chance at good-quality time service, even if you don’t configure
any of your own internal NTP clients to make use of the pool.

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 45

running nTp servers on network Devices

The concept of running in broadcast mode naturally leads to the idea of peo-
ple running NTP servers right on the networking gear itself. Unfortunately,
although most networking gear has specialized hardware for performing the
important switching and routing functions, noncore functions (such as NTP)
end up getting shunted over to a “general-purpose” processor. Of course,
there’s lots of things that this general-purpose processor is supposed to be
doing in addition to NTP, so you get a competition: the other stuff suffers, or
NTP suffers, or— the most likely outcome—both suffer.

In addition, most network devices have the cheapest possible clock cir-
cuits—even on the really expensive routers where a single line card can cost
a hundred thousand dollars or more. The design of NTP is such that it can
only compensate for a certain amount of error in the underlying clock cir-
cuits before it just gives up. Most network devices tend to have clock circuits
that have so much error inherent in them that they usually run right on the
ragged edge of the amount of error that can be compensated for within the
NTP protocol. As such, you should always configure them to be NTP clients:
they tend to make pretty poor NTP servers even if all the clients are config-
ured to only passively listen to broadcasts.

Moreover, network devices used as broadcast-mode NTP servers prob-
ably won’t support the cryptographic server authentication methods, which
would make them triply poor choices for NTP servers. This issue is also dis-
cussed in the Community Supported Documentation [16].

Lost clock interrupts

With NTP, you don’t ever want to see clock interrupts get lost. This is one of
the fastest ways to kill your NTP accuracy, and it will very likely cause the
NTP daemon to quit completely. There can be many causes of lost clock in-
terrupts, the two most common being hardware problems [17] and OS prob-
lems [18].

When the server is running on complex hardware configurations, you are
likely to see excessive amounts of jitter and other statistical errors in terms
of servicing clock interrupts. For NTP, the more precise and accurate the
servicing of clock interrupts, the better. Typically, this means more simply
configured machines are better—you’ll never have a throughput issue, so
you don’t need to throw in really fast network cards with things such as TCP
Offload Engines, and since the application is single-threaded you’ll never
have a CPU load problem that can be resolved by throwing more CPU cores
at it.

In other words, you can probably throw out every single modern machine
you’ve got.

Indeed, currently one of the best NTP server hardware platforms you can
buy is the Soekris net4501 Single-Board Computer [19]. Poul-Henning Kamp
[20] has done wonders with these boxes, and the official NTP time servers
for Denmark are running on them. These machines are about as dead simple
as you can get, and they can handle hundreds or thousands of clients as eas-
ily as or better than pretty much anything else on the planet [21].

There is a comparable SBC configuration that has become more common in
the pool.ntp.org project. If you go to the Web site [14], you can find out more
about this project, and maybe you can get the current coordinator of the
project, Bjorn Hansen, to send you a link to their alternative configuration.

46 ; LO G I N : vO L . 33, N O. 5

Note that pool.ntp.org operates in unicast mode, and by playing games
with DNS-based load balancing and geographically aware names that can
be chosen by the admin of the NTP client (which might also be a local NTP
server), it ends up scaling to handle several million clients across the world.
If the pool were able to operate in manycast mode, I have to believe that this
could reduce server hardware requirements by at least one or two orders of
magnitude.

Then there are the OS configuration issues. In addition to making sure that
the hardware services clock interrupts in a precise and accurate manner, you
need to make sure that the OS is configured to do the same.

Unfortunately, owing to the internal architecture of Windows-based OSes,
the best they can do is ~50 ms accuracy, and for a good-quality NTP server
you really want to get down into the single-digit millisecond ranges, if not
lower.

Likewise, you will also see problems on modern versions of Linux or other
freely available OSes that try to handle 1000 clock interrupts per second
on lower-end hardware (e.g., with kernels configured with “Hz=1000”). On
higher-end hardware that can handle these settings, or where you can tune
the kernel settings to a more appropriate level, you should be able to get
good-quality time service from just about any UNIX or UNIX-like OS avail-
able currently or in the past 20 years. My laptop regularly stays in the sin-
gle-digit millisecond range of accuracy relative to UTC, and it’s not anything
particularly special in this regard.

reference clocks

If you’re running a network of NTP servers, you may want to have one or
more of your own internal “reference clocks” [22] configured so that you can
provide the best quality of time to your clients. This would also give you a
good measure of additional robustness in case your Internet connection goes
down.

NTP actually depends on these external clocks to provide a reference of
UTC against which everything else can be measured. One key measurement
in NTP is your logical distance from your closest refclock: a machine di-
rectly connected to a refclock is operating at Stratum 1 (the refclock itself is
Stratum 0), a machine is Stratum 2 if it is a client of a Stratum 1 server, etc.
The lower your stratum number, the better the quality of time service you
can potentially provide to your clients, if your refclock is good enough.

There are many different types of reference clocks, including GPS-based de-
vices, radio-based equipment (using WWVB, DCF, or one of the other radio
broadcasting stations around the world), rubidium or even cesium-based
atomic clocks, and CDMA or GSM mobile telephone–based equipment.
Heck, you can even use a dial-up modem to connect to a time service via
POTS telephone lines.

I won’t discuss any of them in detail, but as an NTP server administrator the
primary thing you need to know is that they are configured in a way that
is very similar to unicast mode (using the “server” keyword), but instead of
listing a hostname or regular IP address, you use the appropriate pseudo-IP
address in the 127.127.0.0 range. Which specific address you use will vary
depending on which particular refclock you have and which driver it re-
quires.

I will say that GPS-based refclocks are very popular, and if you’re willing
to build them yourself or if you can find someone willing to build one for

; LO G I N : O c tO b e r 20 0 8 bu I Ld I N G sc A L A b Le Ntp se rv e r I N Fr A struc tu res 47

you, they can be had for relatively small amounts of money—on the order
of $100 or so. If that’s too expensive, then radio refclocks can be had for as
little as $20, if you’re willing to put in some work or you can find someone
who will do that for you.

Unfortunately, most vendors ship with their standard NTP client/server
software without support compiled in for refclocks. Therefore, if you want
to directly connect one or more of your NTP servers to a refclock, you will
probably have to recompile and reinstall the NTP daemon, ntpd, from the
source code. An alternative would be to buy an appliance that provides both
refclock and NTP Stratum 1 service in a turnkey device, although that can
get expensive. You’ll need to decide which option is right for you.

conclusions

So, this is what we have for the modes of operation we’re concerned about:

Unicast■■

Broadcast■■

Multicast■■

Manycast■■

Generally speaking, multicast and manycast are the most scalable, with dif-
ferent issues that your infrastructure will have to support or deal with.

Multicast mode will allow a smaller number of servers to support a larger
number of clients, but there may tend to be network “storms” of traffic re-
sulting from excessive numbers of clients going through the startup dance
around the same time. (Some randomization is built into the startup process,
but it can only do so much to alleviate load on the server.) You will also get
into issues with too many servers trying to talk on the same multicast chan-
nel at the same time.

Multicast mode also tends to encourage centralizing resources for ease of
management, which will increase the number of router hops that traffic has
to pass through in order to get from the server(s) to the clients and thus will
reduce the quality of the time service provided to the clients. Even if mul-
ticast servers are located in close proximity to their multicast clients, the
clients will not be able to get the best-quality time service, because of the
asymmetric nature of the communications between them and the server, and
once the startup dance is done, they may be unable to adapt to changing
network conditions.

Manycast is still pretty new. The NTP community doesn’t have that much
experience with it yet, but it may require more server(s) to support the same
number of clients. However, since it distributes these servers closer to the
clients and minimizes the number of router hops, it helps to increase the
quality of time service provided and the probability that clients will con-
tinue to obtain tolerable time service in the event that their subnet is tempo-
rarily disconnected from the rest of the world.

Overall, manycast mode is considered to be the most scalable and robust
NTP server infrastructure. Quoting from the official documentation on
manycast:

It is possible and frequently useful to configure a host as both many-
cast client and manycast server. A number of hosts configured this
way and sharing a common multicast group address will automatically
organize themselves in an optimum configuration based on stratum
and synchronization distance.

48 ; LO G I N : vO L . 33, N O. 5

If you can’t run multicast or manycast, then your next most scalable option
would be broadcast.

In any event, these more scalable techniques tend to increase the exposure
your time servers and their IP addresses get to the network and therefore to
increase the number of clients dependent on them. That increases the prob-
ability that someone else will want to spoof packets from them, which they
will probably be able to do quite easily since all communications are via
UDP or similar methods.

Therefore, regardless of whether you use broadcast, multicast, or manycast,
you should configure your systems to provide cryptographic server authenti-
cation to their clients, and ideally you should do the same for unicast mode
as well.

rEsourcEs

[1] http://support.ntp.org/bin/view/Support/NTPRelatedDefinitions.

[2] http://www.eecis.udel.edu/~mills/ntp/html/index.html.

[3] http://support.ntp.org/.

[4] http://www.ietf.org/html.charters/ntp-charter.html.

[5] http://support.ntp.org/download.

[6] http://www.ietf.org/rfc/rfc1305.txt?number=1305.

[7] http://www.ietf.org/rfc/rfc2030.txt?number=2030.

[8] http://www.eecis.udel.edu/~mills/y2k.html#utc.

[9] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#client.

[10] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#symact.

[11] http://www.eecis.udel.edu/~mills/ntp/html/assoc.html#broad.

[12] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#bcst.

[13] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#mcst.

[14] http://www.pool.ntp.org/.

[15] http://www.eecis.udel.edu/~mills/ntp/html/manyopt.html#poolt.

[16] http://support.ntp.org/bin/view/Support/
DesigningYourNTPNetwork#Section_5.6.

[17] http://support.ntp.org/bin/view/Support/KnownHardwareIssues.

[18] http://support.ntp.org/bin/view/Support/KnownOsIssues.

[19] http://www.soekris.com/net4501.htm.

[20] http://people.freebsd.org/~phk/.

[21] http://phk.freebsd.dk/soekris/pps/.

[22] http://www.eecis.udel.edu/~mills/ntp/html/refclock.html.

