
; LO G I N : O c to b e r 20 0 8	 reclaim d i sk space by sh rin k ing fil es	 49

S a n d e e p S a h o r e

reclaim disk space
by shrinking files
Sandeep Sahore holds a Master’s degree in com-
puter science from the University of Toledo and
has nearly 15 years of experience in the comput-
ing industry. He specializes in low-level and C
programming, systems engineering, and system
performance.

ssahore@yahoo.com

The source for cfsize.c may be found at http://
www.usenix.org/publications/login/2008-10/
cfsize.c.

S y s a d m i n s f r o m t i m e t o t i m e a r e
faced with the problem of reclaiming disk
space, a problem that lurks in the shadows
waiting to buzz the pager into life. The typi-
cal response is either to remove files or to
compress them, or to invoke some combina-
tion of the two approaches. But there are
many situations where the choice is not so
cut-and-dried. Let’s say there is a file fill-
ing up a storage partition that cannot be
removed because its data should be kept for
a rolling window of one year or because its
contents are sensitive or because it is being
held open by a process. In such cases it is
better to shrink the file in size instead of
removing or compressing it.

Having faced such scenarios a countless number
of times I decided to write a program that would
shrink files in size from the beginning or “head.”
This program is called cfsize, which is short for
“change file size”; it is described in detail in the
sections that follow. cfsize is written in the C lan-
guage for the UNIX platform, but it works equally
well on Linux.

The Need for Cfsize

So what is the need for designing and developing
cfsize, when a standardized utility, csplit, already
exists? Though cfsize and csplit look similar they
are poles apart functionally.

Cfsize was ostensibly designed to change a file
in size by deleting part of its contents from the
“head.” By shrinking the input file in place, it re-
claims space from a file system that is at its thresh-
old limit. Behind the scenes, cfsize siphons off the
data that needs to be kept into a temporary file and
when finished it replaces the input file with the
temporary one. This retains the latest data in the
file while the oldest data is thrown away.

In contrast, csplit makes a copy of the input file
and splits the copy into smaller parts based on
user-specified criteria. The smaller files thus cre-
ated can be concatenated to reproduce the origi-
nal file, since csplit follows “the whole is the sum
of the parts” method. It does not alter or shrink
the original file nor does it reclaim space. In fact,
by creating a copy of the original file, it uses more
space.

50	 ; LO G I N : VO L . 33, N O. 5

From the preceding discussion it should be clear that cfsize and csplit are
two very different tools. Cfsize reclaims disk space by shrinking files in size,
whereas csplit is mostly an intermediate step of a multi-step process.

Among its lesser-known rivals is the trunc.pl utility written in Perl. A key-
word search for trunc.pl on the Internet pulls up its Web site. It is similar
in functionality to cfsize but uses external UNIX utilities such as tail and
system instead of Perl built-ins, thereby incurring overhead owing to the re-
peated invocation of the fork() and exec () system calls, not to mention from
their small internal buffers. It also takes as its argument a discrete number
of lines instead of the new file size, which makes the calculations for re-
claiming disk space cumbersome. The abstraction provided by trunc.pl is
offset by the performance penalty incurred for shrinking files, especially
large ones.

Compilation and Execution

After obtaining the source code, assemble the cfsize executable using an
ANSI C compiler (either cc or gcc) as:

cc cfsize.c -o cfsize

Store the executable in /usr/local/bin or a directory of your choice and in-
voke it without any arguments to obtain usage:

cfsize
usage: cfsize -s filesize[k|m|g] file ...

Cfsize takes the following options, along with a list of files that need to be
reduced in size:

-s filesize[k|m|g]

That is, the new size of the file is in bytes, kilobytes, megabytes, or giga-
bytes, with bytes being the default, as specified, respectively, with no suffix
or with the k, m, or g suffix as shown.

Program Flow and Design

Conceptually the whole cfsize program can be divided neatly into three dis-
tinct parts:

Parse and process the options given on the command line.■■

Open and read the file(s) supplied on the command line.■■

Shrink the listed file(s) to the specified size.■■

Before diving into an in-depth explanation of its parts, let’s go over the mode
of operation supported by cfsize. As already stated, cfsize chops off the
“head” of the file, implying that the latest entries in the file are kept while
the oldest ones are thrown away. Another way to look at this is to think of
the file being rolled from the top down. When the desired size is reached,
the rolled-up portion is virtually torn off.

parse the command-line options

The cfsize utility takes a single mandatory command-line option -s, which
takes the new size of the file as its argument. The input file is “chopped off”
from the “head” and the program checks whether the new size of the file
has been passed to -s followed by enabling a flag and invoking the getfsz()
routine to calculate the desired size of the file. The flag is checked to see

; LO G I N : O c to b e r 20 0 8	 reclaim d i sk space by sh rin k ing fil es	 51

whether the mandatory -s switch has been provided on the command line.
If any of these checks evaluates to false the program errors out:

long getfsz(int s, char *sarg)
{
	 int c;
	 long n = 0;

	 while (c = tolower(*sarg)) {
		 switch (c)
		 {
			 case ‘0’: case ‘1’: case ‘2’: case ‘3’: case ‘4’:
			 case ‘5’: case ‘6’: case ‘7’: case ‘8’: case ‘9’:
				 n = 10 * n + (c - ‘0’);
				 break;
			 case ‘k’: case ‘m’: case ‘g’:
				 if (*(sarg-1) >= ‘0’ && *(sarg-1) <= ‘9’ && !*(sarg+1)) {
					 if (c == ‘k’)
						 kb++;
					 else if (c == ‘m’)
						 mb++;
					 else if (c == ‘g’)
						 gb++;
				 }
				 else
					 fprintf(stderr, “%s: invalid argument to option --
						 %c\n”, prog, s), usage(prog);
				 break;
			 default:
				 fprintf(stderr, “%s: invalid argument to option -- %c\n”,
					 prog, s), usage(prog);

		 }
	 ++sarg;
	 }
	 return n;
}

F i g u r e 1

The getfsz() function listed in Figure 1 ensures that the argument to the
-s option is a valid number. It scans the filesize argument string one char-
acter at a time, converting it into an integer while checking for the presence
of characters that are not numerical. It also figures out whether the file size
reduction is specified in kilobytes, megabytes, or gigabytes. It terminates ab-
normally if the argument string contains any characters outside the accept-
able range.

open listed files and shrink to specified size

After processing the options, cfsize moves on to reading the files listed on
the command line. A while loop is used to open, read, and “chop off” the
files from the “head.” It has a built-in safety net to terminate execution of
cfsize if a user mistakenly enters a file size that is greater than the current
size. The size of the file being processed currently is obtained by calling the
stat() library function with the filename as its argument. If the new file size
is more than the current file size, cfsize terminates abnormally. This safety
net prevents the file from being “inflated” instead of being “shrunk.” An

52	 ; LO G I N : VO L . 33, N O. 5

error is raised if a file cannot be opened, and the program moves on to the
next file in the list until the list of files is exhausted:

void fsplit(long fsz, char *fnam, FILE *fin)
{
	 int c;
	 FILE *fout;
	 long neg = -fsz;

	 /* end abnormally if the temp file cannot be created */
	 if (!(fout = tmpfile()))
		 catcherr(“tmpfile()”);

	 /* set file pointer to “neg” bytes from end of current file */
	 if (fseek(fin, neg, SEEK_END))
		 catcherr(“fseek()”);

	 /* go to end of the line to avoid inline file breakage */
	 while ((c = getc(fin)) != ‘ \n’)
		 ;

	 /* move the data that needs to be retained to the temp file */
	 while ((c = getc(fin)) != EOF)
		 putc(c, fout);

	 /* truncate and prepare the current file for writing */
	 if (!(fin = fopen(fnam, “w”)))
		 catcherr(“Cannot open %s”, fnam);

	 /* set file pointer to the beginning of the temp file */
	 if (fseek(fout, 0L, SEEK_SET))
		 catcherr(“fseek()”);

	 /* move the contents of the temp file to the current file */
	 while ((c = getc(fout)) != EOF)
		 putc(c, fin);

	 /* flush buffered writes to the current file by closing it */
	 if (fclose(fin))
		 catcherr(“Cannot close %s”, fnam);
}

F i g u r e 2

Figure 2 shows fsplit (), the function that is at the heart of cfsize and which
is responsible for shrinking files. It starts by creating a temporary file, using
the tmpfile () function, for storing the data that needs to be retained. Next
it moves the file offset backward from the end of the file, stopping after ex-
actly filesize bytes. The file offset is then advanced to the end of the line
it currently rests in order to prevent in-line file breakage. This implies that
the new size may be the same or less than the file size specified on the com-
mand line. With the file offset poised at the beginning of the line, the data
to be retained is moved to a temporary file. After the data migration is com-
plete, the temporary file replaces the input file. If any one of the system calls
or library functions invoked by fsplit () fails, the program ends abnormally.

; LO G I N : O c to b e r 20 0 8	 reclaim d i sk space by sh rin k ing fil es	 53

Examples of Usage

A good way to get familiar with any tool quickly is to understand how it is
used in common scenarios, and that’s the focus of this section. For example,
the command to “chop off” a file ~25 MB in size from the “head” down to 10
kB would be:

cfsize -s 10240 file.txt

Alternatively, one can use the k (kilobytes) suffix for the file size instead of
bytes:

cfsize -s 10k file.txt

Not just one but many files can be specified on the command line as long as
you do not exceed the maximum allowable number of command-line argu-
ments for the shell. The following command reduces all logfiles in the cur-
rent directory to 2 MB:

cfsize -s 2m *.log

The cfsize utility works on files only. Standard input (STDIN) has no mean-
ing to cfsize and commands like the following should not be used because
the program abends:

cat file.txt | cfsize -s 10k
cfsize -s 10k < file.txt

Standard output (STDOUT) also has no meaning to cfsize, since the input
files provided on the command line are modified in situ. Here’s an example
of what not to do:

cfsize -s 50k input.txt > output.txt

This command would reduce input.txt from 250 MB to 50 kB and create a
zero-length output.txt file, which is not what is intended.

Let’s wrap up this section by going over the application of the “end-of-op-
tions” switch. The command to reduce -file from 2 GB to 1 MB would be:

cfsize -s 1m -file
cfsize: illegal option -- f
usage: cfsize -s filesize[k|m|g] file ...

However, cfsize thinks that it is being passed option -f and it terminates ab-
normally, as it recognizes -s as the only valid option. This ambiguity is the
reason why the end-of-options switch - - has been built into cfsize. To cor-
rect this pernicious situation, insert the end-of-options switch into the com-
mand line right before the processing of any files:

cfsize -s 1m -- -file

Bugs and Shortcomings

Chopping a file from the “head” needs one important caveat, because of the
way file truncation works. The data that needs to be kept is moved to a tem-
porary file and when the desired file size is reached the original file is re-
placed with the temporary one. This means that the target directory, that is,
the one containing the temporary file, should have enough space to hold the
intermediate data; otherwise the whole operation will fail. Note that permis-
sions on the target directory come into play when cfsize is executed without
superuser privileges. Another point to keep in mind about cfsize is the fact
that it does not support large files, that is, files that are greater than 2 GB. If
it were used on a file bigger than 2 GB, cfsize would terminate.

54	 ; LO G I N : VO L . 33, N O. 5

Cfsize has been tried and tested on many UNIX and Linux platforms. It is
designed almost exclusively with sysadmins in mind, so while using cfsize,
if anyone comes across a bug or feels that redesigning the algorithm, imple-
menting coding shortcuts, or efficiently using system resources can improve
the program, please contact me via email. Please do the same if any one of
you comes across a tool, besides those mentioned here, that can rival the
claims of cfsize.

Conclusions

Cfsize was designed for doing a simple task, that is, reducing the sizes of the
files given on the command line. It provides a much-needed respite from
storage space woes to sysadmins who up to now had to either compress files
or remove them. A third option in the form of a C program named cfsize is
now readily available to all system admins. Future plans for cfsize may in-
clude revising it to support large files.

