
74	 ; LO G I N : VO L . 33, N O. 5

D a v e J o s e p h s e n

iVoyeur: you
should write an
NEB module.
David Josephsen is the author of Building a Monitor-
ing Infrastructure with Nagios (Prentice Hall PTR,
2007) and Senior Systems Engineer at DBG, Inc.,
where he maintains a gaggle of geographically
dispersed server farms. He won LISA ’04’s Best Paper
award for his co-authored work on spam mitigation,
and he donates his spare time to the SourceMage
GNU Linux Project.

dave-usenix@skeptech.org

The Nagios source code can be downloaded
from http://www.usenix.org/publications/
login/2008-10/nagfs.c.

F o u r y e a r s a g o , I at t e n d e d t h e
Nagios BoF at LISA ’04 in San Diego. It was
being thrown by a few employees from
Groundwork, including Taylor Donditch,
the author of fruity. Despite the fact that
the BoF was a day before the tech sessions
started and therefore not on the official
BoF schedule, it was standing room only.
For me this was an amazing contrast from
2001, where I mentioned Nagios in a net-
work monitoring BoF and was met by blank
stares.

In 2004, Nagios 2 was a fairly new beast, and Tay-
lor was excitedly waxing prolific about the Event
Broker interface. That night, all questions to Tay-
lor led back to the Nagios Event Broker. Improved
passive checks? NEB. Scalability problems? NEB.
Goldfish dead? NEB. This was for good reason: The
NEB put a lot of power in the hands of the sysad-
min and promised to eliminate or at least reduce
the myriad influx of Nagios-related Perl kludges on
Nagios Exchange. If you had a problem with Nag-
ios, there was now a correct way to fix it, and that
was to write an NEB module. There was no doubt
in my mind that everyone in that room would
hurry off straightaway and create all sorts of in-
teresting and useful event broker modules. I knew
that by morning a wiki would have appeared some-
where, with 30 or so of them a template for making
your own and a Web comic making fun of people
who used them. For my own part, inspired, I im-
mediately dove into the NEB headers (well, three or
so days later, once I sobered up).

Four years later, the Perl kludges have only grown
in number, whereas the NEB modules are nowhere
to be found. I find this surprising and unfortunate,
because the NEB is an elegant solution, and it has
the potential to help far more sysadmins per line
of code than any script you’ll likely find on Nag-
ios Exchange today. For once, the folks who wrote
the application recognized our need to customize
their program and actually engineered their app
in such a way that it can be fairly easily modified
to suit our needs. Further, the mechanism they’ve
created is as portable as the app itself, and it could
easily do for Nagios what the distros did for Linux.
Today, I can internally modify Nagios to customize
for a particular problem domain and distribute my
customized Nagios in the form of a small piece of
shared-object code that can be switched on or off
by anyone who uses Nagios. That’s cool.

; LO G I N : O c to b e r 20 0 8	 you sho u ld write an N EB mo du le	 75

So since Rik tells me this issue will be available at LISA, I’d like to honor the
2004 Nagios BoF by taking some time to explain how the NEB works and
hopefully inspiring some of you to sober up and scratch some of your Nag-
ios itches by writing NEB modules. First, I’ll give a short description of the
architecture, and then we’ll walk through a working NEB module I wrote
called nagfs, which implements a filesystem interface to Nagios. Since I’ll
be using my own code as an example, I’ll be stuck talking about Nagios 2.x
in this article. That’s a bit of a bummer because several very empowering
changes have been made to the architecture in 3.x; perhaps I’ll cover those
in a follow-up next time.

The Event Broker itself is a software layer between Nagios and small, user-
written shared object files called event broker modules. The Event Bro-
ker initializes all of the modules when Nagios first starts, so it knows what
events the modules are interested in. Then it sits around waiting for interest-
ing events to occur, passing out memory handles for each interesting event
to the module that is interested.

NEB modules are shared libraries written in either C or C++. The NEB mod-
ule registers for the types of events it is interested in and provides function
pointers to functions that presumably do things with the events they re-
ceive. Each NEB module is required to have an entry and exit function and,
beyond that, can do pretty much anything it wants. The interesting thing
about this architecture is that Nagios globally scopes just about everything
(by design), so from the perspective of the NEB module, the sky is the limit.

That is to say, because pretty much all the interesting functions and structs
are globally scoped, as long as Nagios’s execution pointer is in the module’s
address space the module has the power to change anything it wants. It can,
for example, insert and remove events from the scheduling queue or turn on
or off notifications or do things such as preempt given check commands or
postprocess returned data from service checks. In a nutshell, anything that
can be changed at runtime can be changed by the module. Strictly speak-
ing, the module need not even register to receive events; upon initialization
the module could schedule its own call-back routines in a timed fashion and
do its job using nothing other than Nagios’s scheduling engine. It could, for
example, wake up every morning and change the value of the day-pager’s
email address, or wake up every 5 seconds and provide state information to
a visualization front-end.

So what sorts of events can a module subscribe to? In Nagios 2.3.1, the ver-
sion of Nagios I’m using as I write this, there are 31 total call-back types,
although some of them are reserved for future use. These constants are de-
fined in nebcallbacks.h, in the “includes” directory of the tarball. Listing 1,
on the next page, contains some of the call-back type constants.

The available callbacks cover every type of event that can happen in Nagios.
An NEB module may register to receive information about any or all of these
event types. Once it initializes all the modules, the Event Broker waits for
events matching the type subscribed to by the module and, upon receiving
one, gives the module information about the event, as well as a handle to the
relevant data structures.

For example, if the module registered for EXTERNAL_COMMAND_DATA,
the Event Broker would notify it every time an external command was in-
serted into the command file. A handle to a struct that defined the com-
mand would accompany the notification. The module could inspect and
optionally change any of the information in the command struct or even
delete it altogether. But enough talk about the architecture; the best way to
learn about the NEB is to see how these modules work in practice.

76	 ; LO G I N : VO L . 33, N O. 5

NEBCALLBACK_FLAPPING_DATA
NEBCALLBACK_PROGRAM_STATUS_DATA
NEBCALLBACK_HOST_STATUS_DATA
NEBCALLBACK_PROCESS_DATA	
NEBCALLBACK_TIMED_EVENT_DATA	
NEBCALLBACK_LOG_DATA	
NEBCALLBACK_SYSTEM_COMMAND_DATA	
NEBCALLBACK_EVENT_HANDLER_DATA	
NEBCALLBACK_NOTIFICATION_DATA	
NEBCALLBACK_SERVICE_CHECK_DATA	
NEBCALLBACK_HOST_CHECK_DATA	
NEBCALLBACK_COMMENT_DATA	
NEBCALLBACK_SERVICE_STATUS_DATA
NEBCALLBACK_ADAPTIVE_PROGRAM_DATA
NEBCALLBACK_ADAPTIVE_HOST_DATA
NEBCALLBACK_ADAPTIVE_SERVICE_DATA
NEBCALLBACK_EXTERNAL_COMMAND_DATA
NEBCALLBACK_CONTACT_NOTIFICATION_DATA
NEBCALLBACK_ACKNOWLEDGEMENT_DATA
NEBCALLBACK_STATE_CHANGE_DATA

L i s t i n g 1 : So m e NEB C a ll b a c k T y p e s

Nagfs is a filesystem interface that represents the state of a running Nag-
ios daemon. Each host monitored by Nagios has a directory in the filesys-
tem, and each service on that host has a file. The contents of the file match
the Nagios service state for that service. For example, if the httpd service on
box1 was down, then /usr/share/nagios/status/local/box1/httpd would con-
tain a ‘2’. Most people scrape HTML from the Web interface to get this kind
of info, so you can imagine how handy it is to just be able to do grep -rl 2 /
usr/share /nagios /status / local to find all the services in a critical state in-
stead. Nagfs keeps the filesystem up to date by subscribing to state change
events. Every time a service changes state, the event broker tells nagfs, and
nagfs updates the filesystem immediately. No waiting for an external event_
handler to fire; if Nagios knows about it, so does nagfs.

The complete source code for nagfs is a bit long to print here. If you’d like
to compile it yourself, grab a copy of the source off my blog (www.skeptech.
org/?p=35), from http://www.usenix.org/publications/login/2008-10/nagfs.c,
or from NagiosExchange along with the Nagios source code from nagios.org,
and follow the instructions therein. What we can do is examine some key
portions of the source. Let’s start with the function declarations:

/* Nagfs Functions */
void nagfs_reminder_message(char *);
int nagfs_handle_data(int,void *);
int nagfs_write_service_status(char *, char *, int, int);
int nagfs_write_host_status(char *, int, int);
int nagfs_check_for_softfiles(char *);

An event broker module is only required to have two functions, nebmod-
ule_init and nebmodule_deinit. The function init gets called when our
module is first initialized, and deinit gets called when Nagios quits and
we get unloaded. The functions I’ve declared above are all optional, and I
mostly declare them up front so that the program follows a more linear pro-
gression and is therefore easier to write about. The basic strategy is that our
init function will register for event callbacks and will call nagfs_handle_
data to handle the data we receive from the broker; nagfs_handle_data
will in turn call the other functions as needed to update the filesystem. For

; LO G I N : O c to b e r 20 0 8	 you sho u ld write an N EB mo du le	 77

example, it will call write_service_status when a service status change
has occurred and it needs to update the file that corresponds to the service
in the filesystem.

Next is our init function line:

int nebmodule_init(int flags, char *args, nebmodule *handle){

It takes three arguments. The first argument is meant to give you some con-
text about how the module is currently being initialized. I don’t use it in
nagfs. The second argument is a string pointer called args. You may pass ar-
guments to the module using ones found after the module name in the bro-
ker_module directive in your nagios.cfg. If you do so, they will be available
in this args string. The third argument is a handle to the struct that defines
our module. We can use this to refer to ourselves, if, for example, we call a
function that requires a pointer back to us. Actually, this happens right off
the bat when we register with the broker to get some data:

neb_register_callback(NEBCALLBACK_SERVICE_STATUS_DATA,nagfs
_module_handle,0,nagfs_handle_data);
neb_register_callback(NEBCALLBACK_HOST_STATUS_DATA,nagfs
_module_handle,0,nagfs_handle_data);

Ask the broker for events with the neb_register_callback function, which
takes four arguments. The first is a constant that defines what type of events
we’re interested in. These are the same constants as in Listing 1. The second
is our handle, so that the broker can find out what it needs to find out about
us. The third is a priority number. In general, when more than one module
registers for the same type of event, they are executed in the order they are
loaded by the broker on startup. You can override this behavior by specify-
ing a priority number. The last argument is a function pointer to our data
handler function. Our data handler will be the function that actually gets
the event struct and does stuff with it.

There’s not much more interesting here, so let’s skip down to the declaration
line for the handler function:

int nagfs_handle_data(int event_type, void *data){

The data handler must return an exit code in the form of an int and accept
two arguments. The first of these is a constant specifying the event type:
yes, once again, one of the constants specified in Listing 1. The second is a
void pointer, which I’ll get to in a moment.

So why would our event handler need to be passed the event type? The
event handler function should be able to infer the event type, by virtue of
the fact that we specified it when we defined the handler. But notice that we
actually use the same handler function for both event types we are register-
ing for. Thus, when the broker spawns the data handler, it passes the event
type along, just in case the handler has more than one job (as ours does).

The void pointer is a data struct that is passed from the event broker. It’s our
magic smoke—the instantiation of the data we’re actually looking for. It will
be a different type of struct depending on the type of event data the broker
passes us. It’s up to you to typedef the struct into the correct type. You can
find the various types in the broker.c file in the Nagios tarball. Our event
handler uses a switch-case on the value of the constant to decide what kind
of event we’re dealing with. Then it typedefs the data struct accordingly, as
you can see here:

78	 ; LO G I N : VO L . 33, N O. 5

switch(event_type){

	 case NEBCALLBACK_SERVICE_STATUS_DATA:
	 ssdata=(nebstruct_service_status_data *)data;

In this case, we’ve gotten service status data, so we’ve typedef’d the struct
into type service_status_data. Now I can dereference information about
the service from the struct. The broker.c file is also handy for finding out
what sorts of data we can dereference from the structs we get from the bro-
ker: stuff like svc->host_name, which I pass to the write functions I found
out about by reading the structs in broker.c.

The rest of the program is pretty self-explanatory. If we get service data, we
pass it to the nagfs_write_service_status function. Host state data goes
to the nagfs_write_host_status function. These functions primarily deal
with directory and file access and error detection (the “boring stuff”).

There are a slew of changes in 3.0 that make the Event Broker even more
powerful. My personal favorite is the addition of custom external com-
mands. Basically, these are commands that you make up and pass in to the
external command file. They are not processed by Nagios (obviously, since
Nagios won’t know what you’re talking about), but they can be detected and
parsed by an event broker module that knows about them, so they’re a great
way to get external (non-Nagios) data to your module.

The moral of the story is that you should totally write an event broker mod-
ule. They’re fun to write (more fun than writing event handlers in Perl
anyway, heh), they’ll help other people out (real people, who haven’t made
exactly the same architectural assumptions you have), and they’re a great ex-
cuse to dig around in the Nagios source, which I promise you, is some of the
most elegant, well-engineered C that you’ll come across in a project of this
size.

Take it easy.

