
; LO G I N : O c to b e r 20 0 8	 con fe re n ce re p o rt s	 113

enough alone” and only react when basic objectives are not
met (Guillaume Pierre, VU Amsterdam).

Autonomic systems must also enforce human objectives
(Jeffrey Kephart, IBM). Human goals can conflict and re-
quire competitive—and not simply cooperative—strategies
(Ivana Dusparic, TCD). Human trust of autonomic systems
remains a key problem (John Wilkes, HP).

At the end of the morning’s discussion, the group voted to
study three issues in detail:

Single self-adaptive system challenges: monitoring ■■

and modeling
Multiple self-adaptive system challenges: ■■

composition and openness
Goals, objectives, and trust: the human side of ■■

autonomics
A working group was convened to study each problem. Each
working group met in the afternoon and presented a report;
these are briefly summarized next.

single self -adap tive systems

Single self-adaptive systems can now be built, but system
atic methods should be developed for building these systems.
Systematic methods require good models for prediction,
control, error detection/fault diagnosis, and optimization.
Models must describe behavior at different time and detail
scales, for different tasks (e.g., energy, error detection) and
for different degrees of accuracy. Models can be self-learned
or provided by expert human engineers. Models should
describe both the system and its environment. Objectives
need to be clearly defined for accountability, performance,
and reliability of self-adaptive systems.

multiple self -adap tive systems

Multiple self-adaptive systems might include systems com-
posed of equipment and software from several vendors, with
limited knowledge of one another, and different adminis-
trative domains and management objectives. These objec-
tives can potentially conflict with regard to performance,
availability, energy efficiency, security, reliability, resource
usage, and resilience. Potential problems include indepen-
dent control systems trying to control the same actuator,
indirect coupling through resource shortages, conflicting
policies for interacting controllers, and invalidated models
resulting from unforeseen interaction. Fully understanding
the problem space is in itself a research issue.

goals, objectives, and trust

At the root of the trust issue for autonomic systems is that
users do not know what they want, nor can they write it
down. Requirements come from users with differing roles,
information needs, and objectives. One potential mecha-
nism for specifying needs is for users to say what they do

not like and incrementally refine policy based upon inter-
actions. Even so, requirements are expected to be incom-
plete and inconsistent. Possible techniques for coping with
this situation include discovering and reporting conflicts
(“asking for help”) and exploring “what if” scenarios with
the user. To ensure trust, systems can be constrained, can
actively reassure users, and can explain their actions.

For more details on the discussions and outcomes of the
workshop, please see http://www.aqualab.cs.northwestern.
edu/HotACIII/program.html.

Findings from the First Annual Storage and File
Systems Benchmarking Workshop

University of California, Santa Cruz
May 19, 2008

Summarized by Avishay Traeger and Erez Zadok, Stony Brook
University; Ethan L. Miller and Darrell D.E. Long, University
of California, Santa Cruz

A growing consensus in the community of file and storage
system researchers and practitioners is that the quality of
benchmarking must be improved significantly. We have
found that there is often too little scientific methodology
or statistical rigor behind current benchmarking, which is
largely done ad hoc. In response, with the goal of improving
the quality of performance evaluation in the field, we held
the Storage and File Systems Benchmarking Workshop on
May 19, 2008, at the University of California, Santa Cruz.
It was sponsored by the Storage Systems Research Center
(SSRC, www.ssrc.ucsc.edu).

This workshop brought together top researchers and
practitioners from industry and academia, representing all
levels of the storage stack, along with statisticians and other
interested parties. The main goals of the workshop were to
educate everyone on the problems at hand and to discuss
possible solutions. Participants presented relevant topics,
and there was much interaction and discussion.

The goal of this effort is improving the scientific and statis-
tical methodologies used. This goal requires little research
in the field, but it does require educating both those who
conduct performance evaluations and those who analyze
results. It also requires program committees and reviewers
to raise the bar on the quality of performance evaluations
in accepted papers. A longer-term goal is to have computer
scientists embrace the rigor of the other sciences. It is essen-
tial to be able to validate the results of others. Without it, it
is meaningless to compare the performance of two systems.
All presentations and slides are available at www.ssrc.ucsc.
edu/wikis/ssrc/BenchmarkingWorkshop08/.

114	 ; LO G I N : VO L . 33, N O. 5

why file and stor age system benchm arking
is difficult

Erez Zadok, the workshop’s chair, began with an overview
of the storage stack, highlighting some complexities that
make benchmarking these systems a difficult task and
providing some examples of poor benchmarking practices.
Some of the factors contributing to the complexity are:

Storage variety: Storage does not consist only of a ■■

single local hard drive. Other types include Logical
Volume Managers (LVMs), RAID, Network-Attached
Storage (NAS), Storage Area Networks (SANs), flash,
object storage, and virtualization.
File system variety: Many types of file systems exist. ■■

Those operating on a local disk can use different
data structures, logging infrastructures, and other
features such as encryption or compression.
Network file systems behave differently from local
ones because of cache effects and network latencies.
They are very common today, and distributed file
systems are becoming even more prevalent.
Operating system variety: Several operating systems ■■

exist, each with different behaviors. In addition,
running OSes in virtual machines is becoming more
common. Finally, even the same OS will behave very
differently depending on the configuration.
The workload: User activity and access patterns are ■■

difficult to accurately characterize and recreate.
Asynchronous activity: Other processes and kernel ■■

threads may also interact with the storage stack and
change the system’s behavior.
Caches: Operating system caches at various levels, ■■

as well as disk caches, can contain recently accessed
data and metadata, which can change the behavior
of the workload.

the current state of file and stor age
system benchm arking

The next presentation was from Avishay Traeger (Stony
Brook University), summarizing his recent article [6]. The
article surveys the benchmarks and methodologies that
were used in file and storage system papers from SOSP,
OSDI, FAST, and USENIX between 1999 and 2007 and
included 415 benchmarks from 106 papers. He also looks
at how testbeds and results were presented and suggests
better benchmarking practices. Some of the findings were
that approximately 47% of the papers did not specify how
many runs were performed, and more than 28% of the
benchmarks ran for less than one minute. In addition, only
about 45% of the papers had some indication of variance
(standard deviation or confidence intervals).

Current Benchmarks
The benchmarks presented at the workshop were IOzone [2]
and SPECsfs [5] (both presented by Don Capps of NetApp)

and FileBench [3] (developed by VMware and Sun Micro-
systems, presented by Spencer Shepler of Sun). In contrast
to benchmarks that are generally used, these benchmarks
provide important improvements. SPECsfs presents new
techniques for scalable workload generation. IOzone and
FileBench can create a variety of user-specified workloads,
which may help to reduce the number of ad hoc bench-
marks that are created and used. Ad hoc benchmarks are
generally small programs that are written for in-house use.
Using popular tools in favor of ad hoc micro-benchmarks
can aid in reproducing and comparing results, as now only
the workload specifications need to be reported, rather than
the source for the entire benchmark. In addition, we would
expect that the more popular tools will have fewer bugs and
operate more correctly.

IOzone is a portable open-source file system benchmark-
ing tool that can produce a wide variety of I/O and, more
recently, metadata workloads. It can produce single or
multiple execution threads and can even run on multiple
nodes. An interesting feature of IOzone is its use of teleme-
try files. IOzone can replicate I/O operations based on a file
containing byte offset, size of transfer, compute delay triplets,
so that it can provide benchmark results from system call
traces. IOzone has been downloaded millions of times,
and it is the first result on Google when searching for “file
system benchmark.” Surprisingly, IOzone was not used in
any of the conference papers surveyed by Traeger et al. In
fact, many researchers publishing in the surveyed confer-
ences have written their own benchmarks which produce
workloads that IOzone can easily produce. We can only
speculate about the reason for this phenomenon at this
point, as we have no hard data, but we believe that this may
be another indication of poor benchmarking practices in the
file and storage system community.

SPECsfs is a file server benchmark that measures both
throughput and response time. SPECsfs was originally cre-
ated to test NFS servers. The latest version, SPECsfs2008,
supports CIFS in addition to NFS. The major changes to
the NFS portion of the benchmark since version 3.0 are
updated I/O size distributions, a new operation mix, and
the dropping of UDP and NFSv2 support. The CIFS portion
is rather different, using a Hidden Markov Model driven by
traces to generate the workload, rather than a predefined
operation mix. The workloads for both NFS and CIFS are
now based on data from many real customers. It is impor-
tant to note that SPECsfs2008 cannot be used to compare
NFS and CIFS servers.

An interesting point that was brought up is that the NFSv4
protocol depends much more on the client’s behavior than
previous versions. To benchmark a complete NFSv4 system,
the client’s behavior should be taken into account. This
means that the method that SPECsfs uses for benchmark-
ing NFSv3 systems would not be applicable to NFSv4 (since
the benchmark crafts its own RPC packets). Any current
benchmark that uses the POSIX interface can send requests

; LO G I N : O c to b e r 20 0 8	 con fe re n ce re p o rt s	 115

to an NFSv4 server via a real client, thereby taking the
client’s behavior into account. However, it is up to users to
define what constitutes an appropriate file server workload
for their system; for that, configurable workload generators
such as IOzone and FileBench can be used. In the future,
we hope the community will define one or more standard
fileserver workloads that are generally applicable and revise
them periodically. Of course, additional benchmarks may
be used as well to provide a clear picture of the system’s
performance characteristics.

At times benchmarking applications can be a very difficult
task. For example, properly running up a TPC-C database
benchmark is very expensive and may require several
months of time to set up and run. In addition, we do not
currently know how to extrapolate micro-benchmark re-
sults to reflect the performance of real applications. There-
fore, we need to use macro-benchmarks, which more closely
represent the applications themselves, and build a portfolio
of workload-specific benchmarks. FileBench was developed
as a method of accurately representing more complex file-
based applications, so that the performance impact of a file
system or storage layer can be properly characterized for
specific workload types. It uses a synthetic workload model
to accurately represent the workload and application stack,
including the process model, the I/O types, synchronous
I/Os, and, most importantly, the interlocking between I/Os.
It also provides the framework for operating on statistical
hierarchies of file system trees and high-level file system
objects, including create/delete, traverse directory, and
read/write.

Short-term Goals for Benchmarks
We realize that creating a perfect solution will involve much
research and community involvement. However, there are
steps that we can take now to make benchmarks more accu-
rate and help facilitate comparable and reproducible results.
In terms of accuracy, the benchmark should use accurate
timing in measuring metrics. Eric Anderson (HP Labs) also
pointed out the importance of accurate timing in issuing file
system and I/O requests. It should also be a simple, easy-to-
understand workload. This helps ensure accuracy and also
assists in understanding the results and their implications.
The benchmark should also accurately depict a real-world
scenario if its goal is to do so. How to measure this ac-
curacy, however, is an open problem. Finally, open-source
benchmarks promote openness and allow more people to
inspect the code for correctness. Of course, the code should
not be modified, so that results remain comparable.

In terms of comparable and reproducible results, the
benchmarks should have three main qualities. First, they
should be scalable. Benchmarks may properly exercise the
system at one point in time, but as systems become faster,
the benchmark may no longer be appropriate. For example,
a common benchmark is measuring the time required to
compile some source code (as in the Andrew benchmark).

However, source code that was used for benchmarks several
years ago would fit in a modern system’s cache and there-
fore would not adequately exercise the storage subsystem.
Second, benchmarks should have few dependencies on
libraries and the OS. For example, the Bonnie benchmark
creates a random read pattern by utilizing the system’s
pseudo-random number generator. This causes the read
pattern to change from system to system, which can lead
to different results owing to caching, read-ahead, and disk
locality. Third, it should be cheap, easy to set up, and por-
table, so that it can be used by a large number of people to
benchmark on many systems.

tr aces

Traces are logs of operations that are collected and later
replayed to generate the same workload (if done correctly).
Two problems associated with traces are availability and
replay method.

The availability issue is being addressed by the Storage
Networking Industry Association’s Input/Output Traces,
Tools, and Analysis Technical Work Group (SNIA IOTTA
TWG). Geoff Kuenning of Harvey Mudd College presented
an overview of this working group. They have set up a
repository at http://iotta.snia.org which seeks to archive
traces in a single place using a uniform format with tools to
process them. It also helps to clear up licensing issues for
the traces. The preferred trace format is DataSeries, which
was presented by Eric Anderson of HP Labs. DataSeries is
designed for long-term storage (built-in checksums), is self-
describing, and provides substantial analysis speedups and
moderate space improvements. There are tools available to
convert several other formats to DataSeries, as well as tools
to analyze the trace files.

The problem of replaying traces is partly addressed by But-
tress [1], a high-fidelity I/O benchmark system, which was
also presented by Eric Anderson. This project demonstrates
the importance of accurate issue time for I/O requests and
provides a method for issuing them much more accurately
than before. However, the system is very fragile, and it is
easy to specify open (trace) workloads that are unachiev-
able and get poor results. This is a difficult and important
problem that will require more research.

industry experiences

Several attendees presented their benchmarking experiences
from the industry perspective. First, VMware’s Richard
McDougal, Devaki Kulkarni, and Irfan Ahmad presented
their experiences in benchmarking Virtual Machine (VM)
environments. When benchmarking inside of a virtual
machines, it is important to note that time measurements
and the CPU’s clock cycle counter may be distorted (gener-
ally by around 100 microseconds). This is especially true
when the CPU is fully utilized; it can be mitigated by using

116	 ; LO G I N : VO L . 33, N O. 5

ESX-TOP, which gathers CPU utilization information from
the host, by using the hardware’s clock cycle counter rather
than the virtualized one, or by timing from the host rather
than from inside the VM. For benchmarking ESX servers,
they noted that simple workloads will not suffice, as servers
see different I/O patterns to the same volume, or I/O from
a single application being split among multiple volumes. In
addition, virtual file systems are often specially optimized,
and so standard benchmarks are not always sufficient.

Next, Daniel Ellard from NetApp presented their experi-
ences in benchmarking flash SSDs. Their goal is to perform
measurements on a single device and to extrapolate to
estimate the performance of a large array of devices. These
new devices have characteristics that differ from disks. For
example, flash SSDs implement quasi-file systems, have a
strange layout that is striped across several devices, have
nondeterministic writes, and have drastic aging effects.
NetApp uses what they call micro-workload benchmarks;
these lie somewhere between micro-benchmarks and
macro-benchmarks in terms of complexity. They have
developed a workload generator called Biscuit. The user
defines tasks and these are generated by Biscuit. Biscuit
also supports random variables, as well as telemetry and
trace files.

The next presentation was by Jeff Fuller from Microsoft,
who discussed some of the benchmarking methodologies
used for Windows clients and servers. Fuller’s group per-
forms client application characterization to measure metrics
that end users care about, such as high-level response time.
Their application-level benchmarking allows them to use
the same benchmarks on different platforms and compare
user experiences across platforms. In addition, application-
level workloads are more portable and realistic than lower-
level ones. They also take client idle time (during which
much asynchronous activity happens), as well as bursts of
activity.

Finally, Eric Kustarz from Sun Microsystems discussed ZFS
benchmarking experiences. As ZFS is a rather complex file
system, the Sun group uses a large number of workloads
to obtain a clear picture of its performance. Although they
mainly use FileBench, they also use an assortment of other
benchmarks, including IOzone, Bonnie, SPECsfs, and many
others. They utilize various OpenSolaris tools to locate per-
formance problems, such as Dtrace, Lockstat, fsstat, kstat,
and vmstat.

benchm arking guidelines

The workshop included much discussion about proper
benchmarking and statistical methodologies, and we com-
piled a set of guidelines to consider when evaluating the
performance of a file or storage system.

A performance evaluation should have clear goals. We
recommend posing questions that should be answered by

the evaluation, and then choosing the systems, configura-
tions, and benchmarks to answer them. The benchmarking
process consists of four steps: selecting appropriate bench-
marks, running the benchmarks, analyzing the results, and
reporting the results.

First, hypothesize on what the results should look like,
decide on the appropriate initial state of the system (con-
tents of caches, partition locations, file system aging, etc.),
and create it accurately. When choosing a benchmark, you
should use it for its intended scope. For example, the An-
drew benchmark should not be used as an I/O benchmark,
and Postmark produces an NFS mail server workload. In
addition, create new benchmarks only if existing ones do
not provide the needed features or workload characteristics.
Prefer to extend existing benchmark tools rather than writ-
ing new ones.

When running the benchmarks, we recommend using an
automated system [4, 7] to reduce the possibility of human
error and to ensure that all runs are identical. As many data
points as possible should be collected so that proper statisti-
cal analysis can be performed on the results. For bench-
marks with nonuniform workloads (e.g., a compile bench-
mark), this can be done by running the benchmark multiple
times. For benchmarks with uniform workloads, such as
those that perform a certain number of read operations, it
may be possible to take measurements at regular intervals
during a single run to increase the number of data points
collected. In addition, we recommend measuring the system
only when it is in steady state, by discarding any start-up
and cool-down effects.

For quantities that are additive (e.g., time or bytes sent), the
same estimate of the mean and standard deviation should
be obtained whether many short runs or just a few long
runs are conducted. If a stable workload is measured by
dividing it into many smaller intervals, then the central
limit theorem will typically apply, and thus the distribution
of the mean will be approximately normal; therefore, a con-
fidence interval for the mean can be easily constructed from
estimated standard deviations, even if the distributions of
the individual runs are not themselves normally distributed.
When a run cannot be broken down into multiple subunits
from identical distributions, there is no guarantee about the
distribution of the mean.

The results can now be analyzed. As a first check, ensure
that the distribution of the results is reasonable, and see
whether the results match your expectations. If not, investi-
gate and explain why. It can be useful to examine graphical
summaries, such as histograms or cumulative distribution
functions.

When reporting results, be sure to describe precisely what
was done, to help others to understand the experiments and
allow them to reproduce your results. This includes a com-
plete description of the platform, the benchmark and any
parameters, the source code for the system being tested, and

; LO G I N : O c to b e r 20 0 8	 con fe re n ce re p o rt s	 117

the raw benchmark results. Of course, licensing issues may
restrict the distribution of some of this information, but
as much as possible should be provided. In addition, most
publications limit the number of pages available, so we rec-
ommend publishing the information in an online appendix.
We hope that repositories will be created for the long-term
storage of such information. In addition to describing what
was done, explain why the evaluation was done that way.
This helps others to interpret the results.

Report the number of runs performed and include statistical
measurements, such as standard deviations or confidence
intervals, so that others can determine the accuracy of your
results. If you get high standard deviations, it could be an
indication that your distribution is multi-modal (which may
suggest an unstable storage system); in that case, you might
plot your data as a histogram and explain the modality.
Quartiles may also be helpful in describing non-normal
distributions, but you should have at least 30 data points
before using quartiles. In some cases box-plots may be more
suitable than histograms (generally when the number of
data points is large). Note that standard confidence intervals
(based on a normal approximation) are not appropriate for
non-normal distributions.

summ ary

Many interesting and important issues were discussed at
this workshop, and we hope to discuss more topics next
year. These include simulators, tracing technology, aging
effects, and measuring power consumption. In addition, we
would like to discuss how to benchmark distributed and
petabyte-scale systems, as well as virtual machine technolo-
gies. We also discovered that many are not familiar with the
advanced statistical methods required to properly analyze
benchmark results. We hope to discuss some of these meth-
ods as well.

Longer-term research goals were also discussed. One chal-
lenge is how to accurately scale traces so that they stay rel-
evant for longer periods of time. This is important because
a trace is collected once and used for many years. However,
hardware, software, and usage patterns change rapidly,
making the traces outdated almost as soon as they are cap-
tured. Other challenges include how to model an applica-
tion’s behavior as a workload model and how to measure
the accuracy of a given model. Finally, there is a question
of how to compare the results from two benchmarks where
the platforms were different. The answer may lie in virtual
machine technology, but how to do this accurately is an
open question.

This first workshop was an important step in improving
the overall quality of performance evaluations in the file
and storage system community. Participants raised im-
portant issues and discussed potential solutions. We hope
that researchers and practitioners will educate themselves
and improve the quality of their performance evaluations.

Finally, we hope that reviewers will raise the standards for
performance evaluations in conference and journal publica-
tions.

We have been continuing our discussions on our mailing
list, and we plan to publish a more detailed set of bench-
marking guidelines in the future. We have also created a file
and storage system benchmarking portal at http://fsbench.
filesystems.org/. It links to a Wiki containing the agenda
(including slides from the talks) and a list of attendees, sub-
scription information for the mailing list, a Web version of
the benchmarking guidelines, and other resources.

acknowledgments

We would first like to thank all of the attendees of this first
workshop, whose valuable input and enthusiasm helped
make it a success, especially Eric Anderson, Andrew Leung,
and Tim Moore for supplying us with workshop minutes
and Eric Anderson, Don Capps, and Richard McDougall for
their reviews. Thanks are owed to Herbie Lee for his help
with the statistical aspects of this article. Thanks also go
to the Storage Systems Research Center at the University
of California, Santa Cruz, for hosting and sponsoring this
workshop. Some workshop organizers were sponsored in
part by NSF award CCF-0621463 (HECURA).

references

[1] E. Anderson, M. Kallahalla, M. Uysal, and R. Swamina-
than, “Buttress: A Toolkit for Flexible and High Fidelity I/O
Benchmarking,” in Proceedings of the Third USENIX Confer-
ence on File and Storage Technologies (FAST ’04), San Fran-
cisco, CA, March 31–April 2, 2004, pp. 45–58.

[2] Don Capps, IOzone filesystem benchmark, July 2008:
http://www.iozone.org/.

[3] FileBench, July 2008: http://www.solarisinternals.com/
wiki/index.php/FileBench.

[4] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam,
and S. Babu, “Cutting Corners: Workbench Automation for
Server Benchmarking,” in Proceedings of the 2008 USENIX
Annual Technical Conference, Boston, MA, pp. 241–254.

[5] SPEC, SPECsfs2008, July 2008: http://www.spec.org/
sfs2008.

[6] A. Traeger, N. Joukov, C.P. Wright, and E. Zadok, “A
Nine Year Study of File System and Storage Benchmarking,
ACM Transactions on Storage (TOS), 4(2):25-80, (2008).

[7] C.P. Wright, N. Joukov, D. Kulkarni, Y. Miretskiy, and E.
Zadok, “Auto-pilot: A Platform for System Software Bench-
marking,” in Proceedings of the 2005 USENIX Annual Technical
Conference, FREENIX Track, Anaheim, CA, pp. 175-187.

