
14	 ; LO G I N :  VO L .  33,  N O.  4

C h r i s  Gr  i er  ,  S h u o  Ta n g ,  a n d  
S a m u e l  T .  K i n g

building a more 
secure Web browser
Chris Grier is a PhD student in the Electrical 
and Computer Engineering Department at the 
University of Illinois at Urbana-Champaign. He is 
interested in building secure software systems.

grier@uiuc.edu

Shuo Tang is a PhD student in the Computer Science 
Department at the University of Illinois at Urbana-
Champaign. His research focuses on operating 
systems and system security.

stang6@uiuc.edu

Sam King is an Assistant Professor in the Computer 
Science Department at the University of Illinois at 
Urbana-Champaign. His primary research interests 
are in operating systems and security.

kingst@uiuc.edu

T h e  m o d e r n  W e b  b r o w s e r  h a s 
evolved from a relatively simple client ap-
plication designed to display static data 
into a complex networked operating sys-
tem tasked with managing many facets 
of online experience. Support for dynamic 
content, multimedia data, and third-party 
plug-ins greatly enriches the browsing expe-
rience at the cost of increased complexity 
of the browser itself, resulting in a plague of 
security vulnerabilities that provide hack-
ers with easy access to systems. To address 
the root of this problem, we designed and 
implemented the OP Web browser. We have 
partitioned the browser into smaller sub-
systems, isolated each subsystem, and made 
all communication between subsystems 
simple and explicit. Finally, we have used 
formal methods to prove the correctness of 
the communications between subsystems 
and the ability to limit the effects of com-
promised subsystems. 

According to a recent report by Symantec [15], dur-
ing the first half of 2007 Internet Explorer had 93 
security vulnerabilities, Mozilla browsers had 74 
vulnerabilities, Safari had 29 vulnerabilities, and 
Opera had 9 vulnerabilities. In addition to these 
browser bugs, there were also 301 reported vulner-
abilities in browser plug-ins over the same period 
of time, including high-profile bugs in the Java vir-
tual machine [3], the Adobe PDF reader [10], the 
Adobe Flash Player [2], and Apple’s QuickTime 
[11]. Unfortunately, according to several recent re-
ports [9, 12, 15, 16], attackers actively exploit these 
bugs. 

The flawed design and architecture of current Web 
browsers make this trend of exploitation likely to 
continue. Modern Web browser design still has 
roots in the original model of browser usage in 
which users viewed static pages and the browser 
itself was the application. However, recent Web 
browsers have evolved into a platform for host-
ing Web-based applications, where each distinct 
page (or set of pages) represents a logically differ-
ent application, such as an email client, a calendar 
program, an office application, a video client, or a 
news aggregate. The single-application model pro-
vides little isolation or security between these dis-
tinct applications hosted within the same browser 



; LO G I N :  Au gust 20 0 8	 Bu il d ing   a More  SEcu re Web  B rowser	  15

or between different applications aggregated on the same Web page. A com-
promise occurring within any part of the browser, including plug-ins, re-
sults in a total compromise of all Web-based applications running within 
the browser. This compromise may include all parts of the system that the 
user running the browser has access to, up to and including the operating 
system itself. 

Efforts to provide security in this evolved model of Web browsing have had 
limited success. The same-origin policy, where the origin is defined as the 
domain, port, and protocol of a request, states that scripts and objects from 
one domain should only be able to access other scripts and objects from 
the same domain. This is the one security policy most browsers try to im-
plement. However, modern browsers have different interpretations of the 
same-origin policy [6], and the implementation of this principle tends to be 
error-prone because of the complexity of modern browsers [4]. The same-or-
igin policy is also too restrictive for use with browser plug-ins, and as a re-
sult browser plug-in writers have been forced to implement their own ad hoc 
security policies [1, 8, 14]. Plug-in security policies can contradict a brows-
er’s overall security policy and create a configuration nightmare for users, 
since they have to manage each plug-in’s security settings independently. 

Given the importance of Web browsers and the lack of security in current 
approaches, our goal is to design and implement a secure Web browser. 
More precisely, we want to prevent as many attacks as we can with rea-
sonable cost, limit the damage that the remaining attacks can do, recover 
swiftly from successful attacks, and learn how to prevent them in the future. 

This article describes the design and implementation of the OP Web 
browser, which attempts to address the shortcomings of current Web brows-
ers to enable secure Web browsing. OP comes from Opus Palladianum, 
which is a technique used in mosaic construction where pieces are cut into 
irregular fitting shapes. In our design we break the browser into several dis-
tinct and isolated components, and we make all interactions between these 
components explicit. At the heart of our design is a browser kernel that 
manages each of our components and interposes on communications be-
tween them. This model provides a clean separation between the implemen-
tation of the browser components and the security of the browser, and it 
allows us to provide strong isolation guarantees and to implement novel se-
curity features. 

Building the OP Browser

In our current design [5] we break the browser into several distinct and 
isolated components, and we make all interactions between these compo-
nents explicit. At the heart of our design is a browser kernel that manages 
each of our components and interposes on communications between them. 
This model provides a clean separation between the implementation of the 
browser components and the security of the browser, and it allows us to 
provide strong isolation guarantees and to implement novel security fea-
tures. This architecture stands in stark contrast to current browser designs, 
which place all components in a single process and contain multiple paths 
for making security-critical decisions [4], making it difficult to reason about 
security. 

design principles

Overall we embrace both operating system design principles and formal 
methods techniques in our design. By drawing on the expertise from both 



16	 ; LO G I N :  VO L .  33,  N O.  4

communities we hope to converge on a better and more secure design. Four 
key principles guide the design for our Web browser: 

Have simple and explicit communication between components. Clean ■■

separation between functionality and security, with explicit interfaces 
between components, reduces the number of paths that can be taken 
to carry out an action. This makes reasoning about correctness, both 
manually and automatically, much easier. 
Have strong isolation between distinct browser-level components and ■■

defense in depth. Providing isolation between browser-level components 
reduces the likelihood of unanticipated and unaudited interactions and 
allows us to make stronger claims about general security and the specific 
policies we implement. 
Design components to do the proper thing, but monitor them to ensure ■■

they adhere to the design. Delegating some of the security logic to 
individual components makes the browser kernel simpler while still 
providing enough information to verify that the components faithfully 
execute their design. 
Maintain compatibility with current technologies. We do our best to ■■

avoid imposing additional burdens on users or Web application de-
velopers—our goal is to make the current browsing experience more 
secure. 

F i g u r e  1 :  O v e r all    a r c h i t e c t u r e  of   o u r  O P  W e b  b r ow  s e r

F i g u r e  2 :  B r e a k d ow  n  of   a n  i n d i v i d u al   W e b  pa  g e  i n s t a n c e

op browser architecture

Figure 1 shows the overall architecture of OP. Our browser consists of five 
main subsystems: the Web page subsystem, a network component, a stor-
age component, a user-interface (UI) component, and a browser kernel. 
Each of these subsystems runs within a separate OS-level process, and the 
Web page subsystem is broken into several different processes. The browser 
kernel manages the communication between the subsystems and between 
processes, and it also manages interactions with the underlying operating 
system. 

We use a message-passing interface to support communications between 
all processes and subsystems. (See our recent paper [5] for a full listing of 
our message-passing interface.) These messages have a semantic meaning 
(e.g., fetch an HTML document) and are the sole means of communication 



; LO G I N :  Au gust 20 0 8	 Bu il d ing   a More  SEcu re Web  B rowser	  17

between different subsystems within our browser. They must pass through 
the browser kernel, and the browser kernel implements our access control 
mechanism, which can deny any messages that violate our access control 
policy. 

We also use OS-level sandboxing techniques to limit the interactions of 
each subsystem with the underlying operating system. Each subsystem has 
a unique set of sandboxing rules specifically tailored to the individual com-
ponent. For example, the Web page subsystem is denied access to the file 
system and the network, and the network subsystem is allowed to access the 
network, but not the file system. In our current design we use SELinux [7] 
to sandbox our subsystems, but other techniques would have been suitable 
for our purposes. 

the browser kernel

The browser kernel is the base of our OP browser and it has three main 
responsibilities: manage subsystems, manage messages between subsys-
tems, and maintain a detailed security audit log. To manage subsystems, the 
browser kernel is responsible for creating and deleting all processes and sub-
systems. The browser kernel creates most processes when the browser first 
launches, but it creates Web page instances on demand whenever a user vis-
its a new Web page. Also, the browser kernel multiplexes existing Web page 
instances to allow the user to navigate to previous Web pages (e.g., the user 
presses the “back” button). 

The browser kernel maintains a full audit log of all browser interactions. It 
records all messages between subsystems, which enables detailed forensic 
analysis of our browser if an attacker is able to compromise our system. 

the web page subsystem

When a user clicks on a link or is redirected to a new page, the browser ker-
nel creates a new Web page instance. For each Web page instance we cre-
ate a new set of processes to build the Web page. Each Web page instance 
consists of an HTML parsing and rendering engine, a JavaScript interpreter, 
plug-ins, and an X server for rendering all visual elements included within 
the page (Figure 2). The HTML engine represents the root HTML docu-
ment for the Web page instance. The HTML engine delegates all JavaScript 
interpretation to the JavaScript component, which communicates back with 
the HTML engine to access any document object model (DOM) elements. 
We run each plug-in object in an OS-level process and plug-in objects also 
access DOM elements through the HTML engine. All visual elements are 
rendered in an Xvnc server, which streams the rendered content to the UI 
component where it is displayed. 

the user interface, network, and storage subsystems

Our UI subsystem is designed to isolate content that comes from Web page 
instances. The UI is a Java application and implements most typical browser 
widgets, but it does not render any Web page content directly. Instead the 
Web page instance renders its own content and streams the rendered con-
tent to the UI component using the VNC protocol [13]. By using Java and 
having the Web page instance render its own content we enforce isolation 
and add an extra layer of indirection between the potentially malicious con-
tent from the network and the content being displayed on the screen. This 
isolation and indirection allow us to have stronger guarantees that poten-



18	 ; LO G I N :  VO L .  33,  N O.  4

tially malicious content will not affect the UI in unanticipated ways. The UI 
includes navigation buttons, an address bar, a status bar, menus, and normal 
window decorations. 

The UI is the only component in our system that has unrestricted access to 
the underlying file system. Anytime the Web browser needs to store or re-
trieve a file, it is done through the UI to make sure the user has an oppor-
tunity to validate the action using traditional browser UI mechanisms. This 
decision is justified since users need the flexibility to access the file system 
to download or upload files, but our design reduces the likelihood of a UI 
subsystem compromise. 

Since other components cannot access the file system or the network, we 
provide components to handle these actions. The storage component stores 
persistent data, such as cookies, in an sqlite database. Sqlite stores all data 
in a single file and handles many small objects efficiently, making it a good 
choice for our design since it is nimble and easy to sandbox. The network 
subsystem implements the HTTP protocol and downloads content on behalf 
of other components in the system. 

Security in the OP Browser

We drew on the expertise of the operating systems community to make 
our browser architecture well suited for security. Subsystems within the 
browser are first-class principals, and communication between subsystems 
is explicit and exposed, thus providing mechanisms suitable for implement-
ing browser-based security. Next, we explore two areas: security policies for 
browser extensibility and formal methods for proving invariants about our 
browser. 

browser extensibility

Modern Web browsers support extensibility through two main mechanisms: 
browser plug-ins and browser extensions. Plug-ins are a browser mechanism 
for hosting additional applications within a Web page, usually to render 
non-HTML content such as multimedia files. For example, browsers render 
“application/x-shockwave-flash” content using a flash-capable movie player 
such as Adobe Flash Player. 

Extensions are a browser mechanism for extending browser functionality. 
Extensions interpose on and interact with browser-level events and data 
and provide developers with the ability to add user-interface widgets to the 
browser itself. Three popular extensions are the Yahoo! toolbar, which pro-
vides easy access to the Yahoo! search engine, the Greasemonkey extension, 
which allows users to script common tasks such as filling in form data auto-
matically, and the NoScript extension, which provides fine-grained control 
over which pages can run JavaScript, thus preventing untrusted pages from 
running potentially malicious scripts. 

These mechanisms for browser extensibility introduce unique challenges 
from a security perspective. Common uses of plug-ins often contradict a 
browser’s overall security policy, so plug-ins operate outside of current 
browser security policies. Extensions need flexibility to integrate tightly 
within the browser itself and often run with full privileges. For a browser to 
be secure one must support these rich features securely without compromis-
ing the flexibility of commonly used plug-ins and extensions. Two current 
browsers that support extensions, Firefox and Internet Explorer, opt to pro-



; LO G I N :  Au gust 20 0 8	 Bu il d ing   a More  SEcu re Web  B rowser	  19

vide flexibility at the expense of security and have no mechanisms or poli-
cies for running extensions securely. 

As a first step toward our greater goal of securing browser extensibility, we 
have integrated plug-in security policies within the OP Web browser. In ad-
dition to supporting the ubiquitous same-origin policy, we developed two 
novel plug-in policies designed to provide security for the browser even if 
an attacker successfully exploits a plug-in vulnerability. You can learn about 
these policies by reading pages five and six of our paper [5]. 

formal methods

Large software artifacts are typically built and maintained by groups of de-
velopers who contribute thousands of lines of code over a period of several 
years. This process is error-prone despite the best intentions of the devel-
opers. Moreover, for the software to be useful over an extended period of 
time, it must adapt to changes in user requirements. These extensions may 
be made by the original developers, but they are more typically made by a 
different group of people who may work for a different company. Ideally, 
formal verification that the code is correct with respect to the security re-
quirements of the system would be an essential part of initial software de-
velopment as well as the subsequent revision process. For many reasons, 
however, formal verification is usually not a central component in software 
development. We address this problem for the OP Web browser by making 
formal methods a fundamental part of our overall design process. 

In our work to date on verifying security properties of the OP browser we 
use formal methods as a useful and practical tool in our overall design pro-
cess. We develop an abstract model of the browser components and ex-
haustively search through the execution state space using a model-checking 
framework to look for states that violate our specified security invariants. 
We verified our implementation of the same-origin policy and we verified an 
“address-bar visual invariant” that states the URL displayed in the address 
bar should always be the same as the URL of the displayed page. 

There is often a gap between the formal model used to verify properties 
and the system implementation. Although we recognize that this gap ex-
ists between our model and our system, we feel that for our uses of formal 
methods the difference is small enough that we are able to use the results of 
model checking to iterate on design and development. Since we implement 
each of the browser components separately and use a compact API for mes-
sage passing, the model that we use to formally verify parts of our browser 
is very similar to the actual implementation. The model we create is focused 
on message-passing between components. We do not verify, for example, 
that the HTML parsing engine is bug-free; instead, we verify that even if the 
HTML parsing engine had a bug, the messages that a code execution attack 
could generate (potentially any message) would not force the browser as a 
whole into a bad state. To do this, we model each component, and aspects 
of every component’s internal state are included. Messages are the means for 
the browser’s internal state to change. 

Our application of formal methods helped us find bugs in our initial imple-
mentation. By model-checking our address bar model we revealed a state 
that violated our specification of the address-bar visual invariant. The re-
sulting state was actually due to a bug in our implementation, as we had not 
properly considered the impact of attackers dropping messages or a com-
promised component choosing not to send a particular message. Our model 
gives an attacker complete control over the compromised component, in-



20	 ; LO G I N :  VO L .  33,  N O.  4

cluding the ability to selectively send some types of messages and not others. 
We used the result to fix our access control implementation and we updated 
our model accordingly. 

This preliminary work on formal verification of our browser represents a 
first step toward our larger goal of full formal verification of the OP Web 
browser. 

Conclusions

In this new era of Web-based applications and software as a service, the 
Web browser has become the new operating system. Unfortunately, current 
Web browsers are unable to cope with the complexity that accompanies this 
new role and have fallen subject to attack. In this article we showed how, by 
treating Web browsers like operating systems and by building them using 
operating system principles, we can make a first step toward a more secure 
Web browser. 

We plan to have a version of the OP browser ready for download by the end 
of the summer.

acknowledgments

We would like to thank Jose Meseguer and Ralf Sasse for their valuable feed-
back on our use of formal methods. We would also like to thank Joe Tucek 
and Anthony Cozzie for discussions about the design of our browser, and 
Frank Stratton, Paul Dabrowski, Adam Lee, and Marianne Winslett for feed-
back on an early draft of our paper. This research was funded in part by a 
grant from the Internet Services Research Center (ISRC) of Microsoft Re-
search. 

references

[1] Adobe Flash Player settings manager: http://www.macromedia.com/ 
support/documentation/en/flashplayer/help/settings_manager.html. 

[2] Adobe, Flash Player update available to address security vulnerabilities: 
http://www.adobe.com/support/security/bulletins/apsb07-12.html. 

[3] AusCERT, Sun Java runtime environment vulnerability allows remote 
compromise: http://www.auscert.org.au/render.html?it=7664. 

[4] S. Chen, D. Ross, and Y.-M. Wang, “An Analysis of Browser Domain- 
Isolation Bugs and a Light-weight Transparent Defense Mechanism,” Pro-
ceedings of the 14th ACM Conference on Computer and Communications Security 
(CCS), 2007. 

[5] C. Grier, S. Tang, and S.T. King, “Secure Web Browsing with the OP Web 
Browser,” Proceedings of the 2008 IEEE Symposium on Security and Privacy, May 
2008. 

[6] C. Jackson, A. Bortz, D. Boneh, and J.C. Mitchell, “Protecting Browser 
State from Web Privacy Attacks,” Proceedings of the 15th International Confer-
ence on World Wide Web (New York: ACM Press, 2006). 

[7] P. Loscocco and S. Smalley, “Integrating Flexible Support for Security 
Policies into the Linux Operating System,” Proceedings of the 2001 USENIX 
Annual Technical Conference FREENIX Track, June 2001. 

[8] Microsoft, “ActiveX Security: Improvements and Best Practices”:  
http://msdn2.microsoft.com/en-us/library/bb250471.aspx. 



; LO G I N :  Au gust 20 0 8	 Bu il d ing   a More  SEcu re Web  B rowser	  21

[9] A. Moshchuk, T. Bragin, S.D. Gribble, and H.M. Levy, “A Crawler-based 
Study of Spyware on the Web,” Proceedings of the 2006 Network and Distrib-
uted System Security Symposium (NDSS), February 2006. 

[10] P.D. Petrkov, Oday: PDF pwns Windows: http://www.gnucitizen.org/
blog/0day-pdf-pwns-windows. 

[11] P.D. Petrkov, Oday: QuickTime pwns Firefox: http://www.gnucitizen.
org/blog/0day-quicktime-pwns-firefox. 

[12] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu, 
“The Ghost in the Browser Analysis of Web-based Malware,” Proceedings 
of the 2007 Workshop on Hot Topics in Understanding Botnets (HotBots), April 
2007. 

[13] T. Richardson, Q. Stafford-Fraser, K.R. Wood, and A. Hopper, “Virtual 
Network Computing,” IEEE Internet Computing, 2(1):33–38, January 1998. 

[14] Sun, Java Security Architecture: http://java.sun.com/j2se/1.4.2/docs/
guide/security/spec/security-spec.doc1.html. 

[15] D. Turner, Symantec Internet Security Threat Report: Trends for Janu-
ary–June 07, Technical Report, Symantec Inc., 2007. 

[16] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and 
S. King, “Automated Web Patrol with Strider Honeymonkeys: Finding Web 
Sites That Exploit Browser Vulnerabilities,” Proceedings of the 2006 Network 
and Distributed System Security Symposium (NDSS), February 2006.

Thanks to USENIX and SAGE Corporate Supporters
USENIX Patrons
Google

Microsoft Research

NetApp

USENIX Benefactors
Hewlett-Packard

IBM

Linux Pro Magazine

VMware 

USENIX & SAGE 
Partners
Ajava Systems, Inc.

DigiCert® SSL 
Certification

FOTO SEARCH Stock 
Footage and Stock 
Photography

Raytheon

Splunk

Zenoss

USENIX Partners
Cambridge Computer 
Services, Inc.

GroundWork Open 
Source Solutions

Hyperic

Infosys

Intel

Oracle

Ripe NCC

Sendmail, Inc.

Sun Microsystems, Inc.

SAGE Partner
MSB Associates




