
22	 ; LO G I N : VO L . 33, N O. 4

C o l i n D i x o n , T h o m a s A n d ers o n , a n d
Arv i n d Kr i s h n a m u r t h y

withstanding
multimillion-node
botnets
Colin Dixon is a graduate student at the University
of Washington. While an undergraduate at the
University of Maryland he worked on approxima-
tion algorithms and anonymous communication.
His current research interests include computer
security, network architecture, and distributed
systems with a focus on deployable solutions for
real-world problems.

ckd@cs.washington.edu

Tom Anderson is a Professor in the Department of
Computer Science and Engineering at the University
of Washington. He is an ACM Fellow and a winner
of the ACM SIGOPS Mark Weiser Award, but he is
perhaps best known as the author of the Nachos
operating system.

tom@cs.washington.edu

Arvind Krishnamurthy is an Assistant Research
Professor at the University of Washington, Seattle.
His research interests are primarily at the boundary
between the theory and practice of distributed sys-
tems. He has worked on automated mechanisms for
managing overlay networks and distributed hash
tables, network measurements, parallel comput-
ing, techniques to make low-latency RAID devices,
and distributed storage systems that integrate the
numerous ad hoc devices around the home.

arvind@cs.washington.edu

L a r g e - s c a l e d i s t r i b u t e d d e n i a l o f
service (DoS) attacks are an unfortunate
everyday reality on the Internet. They are
simple to execute and, with the growing
size of botnets, more effective than ever.
Although much progress has been made
in developing techniques to address DoS
attacks, no existing solution handles non-
cacheable content, is unilaterally deploy-
able, works with the Internet model of open
access and dynamic routes, and copes with
the large numbers of attackers typical of
today’s botnets. We believe we have created
a practical solution.

Setting the Stage

The current Internet is often compared to the Wild
West and not without merit. A combination of the
lack of accountability, the complexities of multiple
legal jurisdictions, and an ever-changing techno-
logical battlefield has created a situation where
cyber-criminals can operate lucrative businesses
with little risk of being caught or punished.

The most brazen example of this is the growth of
botnets. Attackers write viruses that compromise
end hosts and tie them into a command and con-
trol system that enables the attacker to issue com-
mands, install software, and otherwise control
compromised machines. These networks are the
basis for a whole underground economy in stolen
financial information, stolen identities, spam email,
and DoS attacks.

The size of these botnets is large and growing. A
variety of recent estimates put the total number
of bots on the Internet well into the millions and
some estimates go upward of hundreds of mil-
lions [3, 5]. Recent examples including the Storm
and Kraken botnets have made headlines in main-
stream media. To make matters worse, the number
of critical operating system vulnerabilities discov-
ered is increasing steadily every year [2], giving
botnets an ample supply of new recruits, so the
problem is unlikely to get better on its own.

DoS attacks launched from botnets number in the
hundreds each day and threaten large swaths of
the Internet. If compromised nodes are typical of
end hosts participating in other large peer-to-peer
systems [10], a multimillion-node botnet would be
able to generate terabits of attack traffic per second,
sourced from virtually every routable IP prefix on

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 23

the planet. This scale of attack could, at least temporarily, overwhelm any
current core link or router. It is also capable of indefinitely disrupting ser-
vice to all but the best provisioned services on the Internet today.

In May 2006, a sustained attack against the anti-spam company Blue Se-
curity forced the company to close down its services [12]. The LiveJournal
community was even knocked offline when it was caught in the crossfire.
Further, attacks are not just limited to security companies. In April 2007,
a sustained attack on government and business Web sites in Estonia effec-
tively knocked the country off the Web [9]. Even nations are not safe. More
disturbing is that, despite the attacks going on for weeks, no effective coun-
termeasures were deployed and service was restored only after the attacks
petered out.

DoS Attacks

Although DoS attacks come in many flavors, we focus on resource ex-
haustion attacks. These attacks flood some bottleneck resource with more
requests than can be handled, ensuring that only a small fraction of the le-
gitimate requests are serviced.

In the past, syn floods and other techniques aimed to exhaust end-host re-
sources such as memory and process table space, but as these vulnerabili-
ties have been fixed, increasingly the trend is simply to exhaust the target’s
bandwidth. Attack packets can emulate normal user behavior, making them
difficult to detect and drop. Attack traffic often crowds out legitimate traf-
fic upstream from where the victim has power to filter traffic even if it could
distinguish good packets from bad. Further, with the increasing size of bot-
nets attackers can simply send normal traffic and make the attack indistin-
guishable from a flash crowd, forcing defenses to drop packets at random.

Without information about which requests are legitimate and with limited
buffer space, the only strategy for a victim is to serve requests at random. If
there are G legitimate requests and B spurious requests, on average, O([G/
(B+G)]) of the available resources go to legitimate requests. But B is often
much larger than G, since, with a massive botnet, attackers can pick their
target and focus their fire. Addressing this asymmetry is a main goal of our
work.

State of the Art

There are two sets of deployed solutions today. The first involves heuristic-
based filters deployed in special-purpose boxes in the network with the goal
of finding and dropping the bad traffic. The second set makes use of large-
scale content distribution networks (CDNs), which aim to solve the problem
by sheer over-provisioning.

Heuristic-based filtering relies on an arms race between attackers and de-
fenders—one that we are unlikely to win. Attackers are faster on their feet
and, in the end, have an easier goal. They only have to make their traffic
indistinguishable from the legitimate clients, whereas the filters have to de-
tect—in real time and at high data rates—the ever-shrinking differences be-
tween the attack traffic and legitimate traffic.

Additionally, because heuristics can cause collateral damage, they are only
activated in response to an attack. This requires both detecting the attack
and communicating that fact to the upstream filters. This communication it-
self can be interrupted by the attacker.

24	 ; LO G I N : VO L . 33, N O. 4

Large-scale content distribution networks, however, work remarkably well
for read-only Web sites, by replicating data everywhere. Massive replication
not only increases performance and resilience to flash crowds but also pro-
vides extra capacity to deal with a DoS attack. This approach is even avail-
able as a commercial anti-DoS service [1]. However, CDNs do not work for
nonreplicable services, such as read/write back-end databases for e-com-
merce, modern AJAX applications, e-government, and multiplayer games,
or for point-to-point communication services such as VoIP or IM—in other
words, much of the Internet as we know it today. How can we ensure com-
munication with a fixed endpoint when that endpoint is being flooded?

We address this problem with the key insight that we need a system as pow-
erful as a botnet to defend against a botnet.

Phalanx Architecture

Intuitively, Phalanx aims to use a large swarm of nodes (like those of a
large-scale CDN) as points of presence for a protected server. Provided that
the nodes’ resources exceed those of attackers, legitimate clients will have
some functioning channels for communication despite a widespread attack.
In practice, the implementation of this, which allows for a reasonable de-
ployment path, good performance, and an open model of communication, is
somewhat more complicated than simply using nodes as proxies.

There are two key problems with simply using CDN nodes as proxies. First,
these nodes cannot simply forward all traffic onto the server; instead, they
have to do some kind of filtering at the behest of the server. Second, it is
only in aggregate that the CDN nodes are resistant to attack, so any given
connection must leverage a large set of these nodes to be resilient.

To solve the first problem we use the nodes as packet mailboxes rather than
simple forwarding proxies. A mailbox in Phalanx is a best-effort packet store
and pick-up point. The protected server must explicitly request each packet
it wishes to receive and therefore is fail-safe: If a server doesn’t request a
packet, the packet is not delivered. These mailboxes are further explained
below.

To solve the second problem, we send each packet through a different ran-
domly chosen mailbox, thus drawing in a large number of mailboxes to pro-
tect each connection. If any given mailbox fails or is attacked, only a small
fraction (often only one packet) of the connection will be lost. Because the
mailbox used by a given packet is chosen randomly according to a seed
known only to the two endpoints, the attacker must attack widely to have
any impact. The exact mechanisms for this can be found below, in the sec-
tion “Swarms and Iterated Hash Sequences.”

The observant reader will note two remaining problems. First, there is noth-
ing to stop an attacker from ignoring the mailboxes and attacking the server
directly. To deal with this, we capitalize upon the request-response frame-
work and install filters at the edge of the server’s upstream ISP. These filters
(whose functionality is described later as the filtering ring) simply drop all
unrequested packets.

Second, now that we have blocked all unrequested packets, how can we ini-
tiate connections? For this, we extend the request-response framework and
additionally send requests for new connections rather than explicit packets.
These requests are a valuable scarce resource and so we protect access to
them via authentication and fair queuing (as laid out under “Connection Es-
tablishment”).

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 25

an example

Before launching into each mechanism in detail we will narrate an example
of how Phalanx would be used to protect a standard Web server with dy-
namic content, such as an e-commerce site. The example can also be fol-
lowed in Figure 1, where the numbered steps will be mentioned.

First, the client looks up the address of the server and subsequently requests
the static, cacheable content of the page via any current CDN-style system
with high availability, such as Akamai, CoDeeN, or Coral (1). As part of
fetching this content, the client receives a static and cacheable Java applet,
which then serves as a zero-installation client to allow for interaction with
Phalanx mailboxes. At this point, the Java applet is responsible for rendering
the dynamic, noncacheable portions of the page and speaking the Phalanx
protocols.

F i g u r e 1 : A d i a g r a m i ll u s t r a t i n g a s i m pl e HTT P - s t y l e r e q u e s t
d o n e w i t h P h ala n x . T h e n u m b e r s c o r r e s po n d t o t h e
a c c o m pa n y i n g d e s c r i p t i o n .

The applet begins by making a name request for the dynamic content server
to the distributed name service (1). Again, because the naming information
is static and cacheable, this service can be provided by any highly available
name service, such as CoDoNs or Akamai’s DNS service. The name service
returns a list of “first-contact” mailboxes. These first-contact mailboxes hold
the first packet requests that the server has issued to allow new connections
to be made.

The applet requests a challenge from one of these first-contact mailboxes
and replies with either a puzzle solution or an authentication token (2). In
either case, the applet will resend the request, possibly with a more complex
puzzle solution and/or a different mailbox if the connection is not estab-
lished in a reasonable period of time.

At the mailbox, a steady stream of first packet requests has been arriving
from the dynamic content server (3). One of these first packet requests is
eventually assigned to the client’s connection request (4), at which point the
applet’s request is forwarded to the server (5) to cross back through the fil-
tering rings (8) without being dropped. This ensures that the rate of connec-
tion requests reaching the server is under the server’s control.

Eventually, a response will come back from the server (6) containing a list
of mailboxes to use for the remainder of the connection along with a shared
secret allowing standard Phalanx communication to commence. At the same
time, the server will send packet fetch requests to the first several mailboxes
to be used in preparation for receiving further packets from the client.

The client uses the shared secret to determine the sequence of mailboxes
to use and begins to send packets to these mailboxes. These data packets
are paired with their corresponding requests and forwarded onto the server
passing through the filtering ring (8) by virtue of the holes opened by the re-
quests. This constitutes the normal behavior of the Phalanx connection (7).

Applet

Large CDN

Dynamic
Server

Mailboxes

6

5
2 3

4
7

7

7

1

8

26	 ; LO G I N : VO L . 33, N O. 4

If at any point in time the server decides that the connection is no longer
desirable or it simply starts running low on resources, it can either decrease
the rate at which it requests new data packets or simply stop requesting
packets altogether.

mailboxes

We now proceed to describe each of these components in a bit more detail.
The basic architecture of an established Phalanx connection is shown in Fig-
ure 2. A more complete description is available on the USENIX Web site in
the proceedings of NSDI ’08 [8].

F i g u r e 2 : T h e b a s i c a r c h i t e c t u r e of a n e s t a b l i s h e d P h ala n x
c o n n e c t i o n . Ea c h pa c k e t i s s e n t t h r o u g h a o n e - h op d e t o u r
v i a a r a n d o m ly c h o s e n m a i l b o x .

The basic building block in Phalanx is the packet mailbox. Mailboxes pro-
vide a simple abstraction that gives control to the destination instead of the
source. Rather than packets being delivered directly to the specified destina-
tion as in previous anti-DoS overlays [4, 11, 17], traffic is first delivered to
a mailbox, where it can either be “picked up” or ignored by the destination.
Traffic that is ignored is eventually dropped from the buffers at packet mail-
boxes.

Mailboxes export two basic operations: put and get. A put inserts a packet
into the mailbox’s buffer, possibly evicting an old entry, and returns. A get
installs a best-effort interrupt at the mailbox. If a matching packet is found
before the request is bumped from the buffer, the packet is returned.

The mailbox abstraction puts the destination in complete control of which
packets it receives. Flow policies can remain at the destination where the
most information is available to make such decisions. These policies are
implemented in the network via requests and the lack thereof. If no re-
quests are sent, then no packets will come through. This behavior ensures
that most errors are recoverable locally, rather than requiring cooperation
and communication with the network control plane. This is in contrast to
accidentally installing an overly permissive filter in the network and then
being unable to correct the problem because the control channel can now be
flooded.

Swarms and Iterated Hash Sequences

Individual flows are multiplexed over many mailboxes. Each packet in a
flow is sent to a cryptographically random mailbox. Since each mailbox is
secretly selected by the endpoints, an attacker cannot “follow” a flow by at-
tacking each mailbox just before it is used.

We construct a pseudo-random sequence of mailboxes during connection
setup by exchanging the set of mailboxes M and a shared secret x. The se-

ServerClient

Good Swarm

Chosen

Mailboxes

data
request

data

M[i]

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 27

quence of mailboxes is built by iterating a cryptographic hash function,
such as SHA-1 or MD5, on the shared secret. Equipped with this shared se-
quence, both endpoints know in advance the precise mailbox to use for each
packet in the connection.

To construct a sequence of mailboxes, we first define a sequence of nonces xi
based on the shared secret x and the cryptographic hash function h, as fol-
lows:

x0=h(x||x)

xi=h(xi-1||x)

Including x in every iteration prevents an attacker who sniffs one nonce
from being able to calculate all future nonces by iterating the hash func-
tion themselves. Our current implementation uses MD5 [15] as the imple-
mentation of h and thus uses 16-byte nonces for simplicity. This sequence
of nonces then determines a corresponding sequence of mailboxes M[xi] by
modulo reducing the nonces, as follows:

M[xi]=Mxi mod |M|

Note that M need not be all mailboxes in the Phalanx deployment, as each
flow can use a subset of the mailboxes. Indeed, a different set of mailboxes
can be used for each half of the flow (client-to-server and server-to-client);
both sets can be dynamically renegotiated within a flow.

Each nonce serves as a unique identifier for a packet and is included in the
header to facilitate pairing each incoming packet with its corresponding re-
quest. Thus the receiver can know precisely which source sent which packet.
Further, including a nonce in each packet simplifies the logic needed to drop
unrequested packets. Lastly, nonces provide a limited form of authentication
to requests; to subvert the system the attacker must snoop the nonce off the
wire and then deliver a replacement packet to a mailbox before the correct
packet arrives.

filtering ring

With Phalanx, a protected destination only receives those packets it explic-
itly requests from a mailbox. To enforce this, we drop all other packets for
the destination at the edge of its upstream ISP.

Each request packet carries a unique nonce that allows a single data packet
to return. In the simple case of symmetric routes, the border router records
the nonce on the outgoing packet and matches each incoming packet to a re-
cently stored nonce, discarding the packet if there is no match. Each nonce
is single use, so once an incoming packet has matched a nonce, we remove
that nonce.

To be effective, the filtering ring must be comprehensive enough to examine
every packet destined for a protected destination, regardless of the source of
the traffic. To prevent this an attacker might try to flood the border router
(or, more precisely, the link immediately upstream from the border router).
As we observed earlier, a massive botnet may be able to flood any single link
or router in the network. However, this would disconnect only those mail-
boxes that used that specific router to access the destination; other mail-
boxes would continue to deliver packets unaffected.

Even a multimillion-node botnet would be unable to sustain enough traf-
fic to completely disconnect a tier-1 ISP from the Internet. To have an effec-
tive defense against such a large-scale attack, a destination must either be a
direct customer of a tier-1 that provides a filtering ring or be protected in-

28	 ; LO G I N : VO L . 33, N O. 4

directly, as a customer of an ISP that is a customer of that tier-1. Since each
connection can spread its packets across a diverse set of mailboxes, connec-
tions might experience a higher packet loss rate during an attack, but other-
wise would continue to make progress.

Deploying the filtering ring at a tier-1 has risks, though. Bots are every-
where—even inside corporate networks—and, as a result, it seems likely
that filtering rings would be deployed in depth. Inner layers would pro-
vide protection against the limited number of potential attackers close to a
server, while outer layers would provide the powerful filtering to deal with
the brunt of larger attacks. Initially, small-scale ISPs close to the destination
could offer a limited DoS protection service, capable of withstanding mod-
erate-sized botnets. Moving outward, the cost of deploying the filtering ring
would increase (as more border routers would need to be upgraded), but the
value would also increase as the system would be able to withstand larger-
scale botnets.

Our implementation of the filtering logic uses two lists of nonces, efficiently
encoded using Bloom filters [7]. A whitelist contains a list of requested non
ces, whereas a blacklist contains a list of nonces that have already entered
the filtering ring. The whitelist ensures that only requested packets get
through, and the blacklist ensures that at most one packet gets through per
request. As request packets leave the ring, the router adds their nonces to
the local whitelist. When data packets enter the ring, their nonces are veri-
fied by checking the whitelist and then are added to a blacklist. Bloom filters
must be periodically flushed to work properly; to minimize the impact of
these flushes, two copies of each list are maintained and they are alternately
flushed.

We believe that the Phalanx filtering ring is efficient enough to be imple-
mented even for high-speed links inside the core of the Internet, provided
there is an incentive for ISPs to deploy the hardware, that is, provided that
ISPs can charge their customers for DoS protection. (Note that ISPs that pro-
vide transit need to modify only their ingress routers and not all routers.) A
100-gigabit router line card would need about 50 MB of hash table space.
For each delivered packet, six Bloom filter operations are required: The re-
quest packet places a nonce in the current copy of the whitelist, then when
the actual packet is received it is checked against all four tables (the cur-
rent and previous whitelist and the current and previous blacklist) and then
added to the current blacklist. Both the storage and computation demands
are small relative to those needed for core Internet routing tables and packet
buffering.

Although the filtering ring will require either deploying new hardware in
the network or upgrading the software running on existing routers, it does
not require pervasive deployment. Upgrades need only be made at the bor-
der of ISPs looking to offer DoS protection. At first, filtering could be done
by pairing a commodity server with each border router in an ISP and later
moving the functionality into the routers if higher performance was needed
and when appropriate software updates have been released.

Our discussion to this point has assumed routing symmetry. Of course,
the real Internet has a substantial amount of routing asymmetry. A request
packet sent to a mailbox may not leave the filtering ring at the same point
as the corresponding data packet returns; if so, the Bloom filter at the return
point will drop the packet. This problem becomes more likely as the nesting
level increases.

To address this problem, we modify filtering ring nodes to stamp request
packets as they pass through and allow mailboxes to loosely source route

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 29

data packets via IP-in-IP tunneling back through the filter ring nodes that
are known to have been primed. This solves the problem of route asymme-
try while only requiring cooperation from the nodes that are already being
changed to do filtering.

connection establishment

Thus far, we have described how to protect established connections but have
yet to properly describe the details of connection establishment.

We allow for connection establishment by issuing periodic requests that
ask for connection establishment packets rather than specific data packets.
These general-purpose nonces are described above. Simply allowing for such
first packets doesn’t solve the problem, as they immediately become a scarce
resource and this capability acquisition channel can be attacked [6]. To solve
this problem, we require clients to meet some burden before giving them ac-
cess to a general-purpose nonce. Clients can either present an authentication
token signed by the server or present a cryptographic puzzle solution.

Passing Through the Filtering Ring

Rather than invent new mechanisms to deal with allowing first packets
through the filtering ring, we reuse the existing request packet framework
to punch nonspecific holes in the filtering ring. Destinations send each
mailbox a certain rate of general-purpose requests. Each request contains a
nonce to be placed in such first packets. When a mailbox wishes to send a
first packet, it places one of these general-purpose nonces into the packet,
allowing it to pass through the filtering ring.

These general-purpose requests implement a form of admission control.
Each general-purpose nonce announces the destination’s willingness to
admit another flow. This further increases the destination’s control over the
traffic it receives, allowing it to directly control the rate of new connections.

For the general-purpose nonce mechanism to be resilient to DoS attack, it is
necessary to spread the nonces across a wide set of well-provisioned mail-
boxes; a particular client only needs to access one. Refreshing these general-
purpose nonces can pose an unreasonable overhead for destinations that
receive few connection requests; as a result, our prototype supports nonces
issued for aggregates of IP addresses. Thus, an ISP can manage general-pur-
pose nonces on behalf of an aggregate of users, at some loss in control over
the rate of new connections being made to each address. Of course, the ISP
must carefully assign aggregates based on their capacity to handle new con-
nection requests; for example, Google should not be placed in the same ag-
gregate as a small Web site, or else the attacker could use general-purpose
nonces to flood the small site.

When a client wishes to contact some server, it first contacts a mailbox and
asks that mailbox to insert a general-purpose nonce into its first packet and
forward it to the destination. Because general-purpose nonces are a scarce
resource, the mailbox needs rules governing which connections to give these
nonces and in what order. The next two sections deal with those mecha-
nisms.

Authentication Tokens

Each packet requesting to initiate a connection must either carry an authen-
tication token or a solution to a cryptographic puzzle. These provide the

30	 ; LO G I N : VO L . 33, N O. 4

burden of proof necessary for a mailbox to allow access to general-purpose
nonces. Authentication tokens provide support for pre-authenticated connec-
tions, allowing them to begin with no delay. For example, a popular e-com-
merce site such as Amazon might provide a cookie to allow quicker access to
its Web site to its registered users or even just to users who had spent more
than $1000. Cryptographic puzzles provide resource proofs to approximate
fair queueing of requests, when no prior relationship exists between source
and destination.

Authentication tokens are simply tokens signed by the server stating that
the given client is allowed to contact that server. An additional message ex-
change is required to prove that the client is in fact the valid token holder.

Crypto-puzzles

The crypto-puzzle is designed to be a resource proof allowing hosts that
spend more time solving the puzzle to get higher priority for the limited
number of general-purpose nonces each mailbox possesses. Although there
are many kinds of resource proofs, we opt for a computational resource
proof rather than a bandwidth resource proof [18] because computation
tends to be much cheaper and less disruptive when heavily used.

We borrow a solution from prior work [14, 16] where the crypto-puzzle is to
find a partial second pre-image of a given random challenge string such that,
when hashed, both strings match in the lower b bits. The goal for each client
is then to find some string a given a challenge nonce N such that:

h(a||N) ° h(N) mod 2b

The random nonce is included in both strings to prevent attackers from
building up tables of strings that cover all 2b possible values of the lower b
bits in advance. In effect, they need to cover 2b + | N | possible values to
find matches for all values of the lower b bits and for all possible nonces,
whereas solving the puzzle online only requires searching 2b - 1 strings on
average. Because the length of the nonces is under the control of the mail-
boxes, it is possible to make the precomputing attack arbitrarily harder than
waiting and solving puzzles online.

First packets are granted general-purpose nonces, with priority given first
to those with valid authentication tokens and then in decreasing order of
matching bits in the crypto-puzzle solution. This allows any source to get a
first packet through against an attacker using only finite resources per first
packet, albeit at an increase in latency.

Evaluation

Evaluating systems such as Phalanx at scale has always posed a problem be-
cause they are fundamentally intended to operate at scales well beyond what
can be evaluated on a testbed. To address this issue, we built a simulator
that captures the large-scale dynamics of Phalanx and allows us to simulate
millions of hosts simultaneously.

The simulator uses a router-level topology gathered by having iPlane [13]
probe a list of approximately 7200 known Akamai nodes from PlanetLab
nodes. These Akamai nodes serve as stand-ins for appropriately located
mailboxes. Each PlanetLab node serves as a stand-in for a server that is
under attack.

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 31

We assume that attackers target the mailboxes, the server, and the links near
the server. Traffic is assumed to flow from clients to mailboxes unmolested.
We assign link capacities by assuming mailbox access links are 10 Mbps,
the server access link is 200 Mbps, and link capacity increases to the next
category of {10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 40 Gbps} as the links
move from the edge to the core.

We assign attackers with attack rates according to end-host upload capacity
information gathered in our previous work [10, 13] and assume that good
clients communicate at a fixed rate of 160 kbps.

F i g u r e 3 : T h e c u m u la t i v e f r a c t i o n of m a i l b o x e s s e e i n g a t
m o s t a g i v e n f r a c t i o n of g oo d p u t w h e n c o m m u n i c a t i n g
w i t h t h e s e r v e r

By using IP to AS mappings, we are able to simulate the behavior of the sys-
tem under varying levels of deployment of the Phalanx filtering rings. Figure
3 shows the effect of increasing deployment of filtering rings for a server lo-
cated at planetlab-01.kyushu.jgn2.jp. (The results are similar when we use
other PlanetLab nodes as servers.) In this simulation, there are 100,000 at-
tacking nodes and 1000 good clients all trying to reach the victim server.
We simulate varying degrees of deployment by iteratively adding the largest
adjacent AS to the current area of deployment.

As one might expect, even a little deployment helps quite a bit. Only deploy-
ing filters at the victim AS provides significant relief and allows some mail-
boxes to see lossless communication. Deploying in just four ASes (including
the tier-1 AS NTT) results in the vast majority of mailboxes seeing lossless
communication, effectively stopping the attack in its tracks if we assume
that connections use any degree of redundancy to handle losses.

We next look at the scalability of Phalanx in handling attacks involving mil-
lions of bots. For this experiment we consider a somewhat stronger deploy-
ment: upgrading the mailboxes to 100 Mbps access links. Figure 4 examines
the effect on mailbox loss rate as we increase the number of attackers. Most
connections easily withstand the brunt of an attack involving one million
nodes, and Phalanx still allows some (though severely degraded) communi-
cation through when facing 4 million nodes.

However, as the graph shows, increasing the capacity of the mailboxes by
a factor of 5 to 500 Mbps is able to once again bring the attack into check.
Thus, while any given deployment will have a breaking point, an increased
deployment can bring increased protection to deal with even larger attacks.

32	 ; LO G I N : VO L . 33, N O. 4

F i g u r e 4 : T h e c u m u la t i v e f r a c t i o n of m a i l b o x e s s e e i n g a t
m o s t a g i v e n lo s s r a t e fo r a va r y i n g n u m b e r of a t t a c k e r s

Conclusion

In this article, we presented Phalanx, a system for addressing the emerging
denial-of-service threat posed by multimillion-node botnets. Phalanx asks
only for two primitives from the network. The first is a network of overlay
nodes, each implementing a simple, but carefully engineered, packet for-
warding mechanism; this network must be as massive as the botnet that it is
defending against. Second, we require a filtering ring at the border routers of
the destination’s upstream tier-1 ISP; this filtering ring is designed to be sim-
ple enough to operate at the very high data rates typical of tier-1 border rout-
ers. We have implemented an initial prototype of Phalanx on PlanetLab and
have used it to demonstrate its performance. We have further demonstrated
Phalanx’s ability to scale to million-node botnets through simulation.

acknowledgments

We would like to thank Arun Venkataramani for a set of conversations
which helped us realize the need for more scalable DoS protection. We
would also like to thank our NSDI shepherd, Sylvia Ratnasamy, as well as
our anonymous reviewers, for help and valuable comments. This work was
supported in part by National Science Foundation Grant No. CNS-0430304.

references

[1] Akamai: http://www.akamai.com/.

[2] Microsoft’s unabated patch flow: http://www.avertlabs.com/research/
blog/index.php/category/security-bulletins/ (May 9, 2007).

[3] “Surge” in Hijacked PC Networks: http://news.bbc.co.uk/2/hi/technology/
6465833.stm (March 2007).

[4] D.G. Andersen, “Mayday: Distributed Filtering for Internet Services.” In
USITS, 2003: http://www.usenix.org/events/usits03/tech/andersen.html.

[5] N. Anderson and Vint Cerf: One Quarter of All Computers Part of a Bot-
net: http://arstechnica.com/news.ars/post/20070125-8707.html (January 25,
2007).

[6] K. Argyraki and D. Cheriton, “Network Capabilities: The Good, the Bad
and the Ugly.” In HotNets IV, 2005.

; LO G I N : Au gust 20 0 8	Wi th stan d ing Mu lti m illion - no d e bo tne t s	 33

[7] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, 13(7): 422–426 (1970).

[8] C. Dixon, T. Anderson, and A. Krishnamurthy, “Phalanx: Withstanding
Multi-million Node Botnets.” In NSDI, 2008: http://www.usenix.org/events/
nsdi08/tech/dixon.html.

[9] P. Finn, “Cyber Assaults on Estonia Typify a New Battle Tactic,” Washing-
ton Post, May 19, 2007: http://www.washingtonpost.com/wp-dyn/content/
article/2007/05/18/AR2007051802122.html.

[10] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Leveraging
Bittorrent for End Host Measurements.” In PAM, 2007.

[11] A.D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Overlay
Services.” In SIGCOMM, 2002.

[12] B. Krebs, “Blue Security Kicked While It’s Down,” Washington Post,
May, 2006: http://blog.washingtonpost.com/securityfix/2006/05/
blue_security_surrenders_but_s.html.

[13] H.V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krish-
namurthy, and A. Venkataramani, “iPlane: An Information Plane for Distrib-
uted Services.” In OSDI, 2006: http://www.usenix.org/events/osdi06/tech/
madhyastha.html.

[14] B. Parno, D. Wendlant, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu, “Port-
cullis: Protecting Connection Setup from Denial-of-Capability Attacks.” In
SIGCOMM, 2007.

[15] R. Rivest, The MD5 Message-Digest Algorithm, RFC 1321 (Informational),
April 1992.

[16] E. Shi, I. Stoica, D. Andersen, and A. Perrig, OverDoSe: A Generic
DDoS Protection Service Using an Overlay Network, Technical report,
Carnegie Mellon University, 2006: http://www.cs.cmu.edu/~dga/papers/
CMU-CS-06-114.pdf.

[17] A. Stavrou and A.D. Keromytis, “Countering DoS Attacks with Stateless
Multipath Overlays.” In CCS, 2005.

[18] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker,
“DDoS Defense by Offense.” In SIGCOMM, 2006.

