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L a r g e - s c a l e  d i s t r i b u t e d  d e n i a l  o f 
service (DoS) attacks are an unfortunate 
everyday reality on the Internet. They are 
simple to execute and, with the growing 
size of botnets, more effective than ever. 
Although much progress has been made 
in developing techniques to address DoS 
attacks, no existing solution handles non-
cacheable content, is unilaterally deploy-
able, works with the Internet model of open 
access and dynamic routes, and copes with 
the large numbers of attackers typical of 
today’s botnets. We believe we have created 
a practical solution.

Setting the Stage

The current Internet is often compared to the Wild 
West and not without merit. A combination of the 
lack of accountability, the complexities of multiple 
legal jurisdictions, and an ever-changing techno-
logical battlefield has created a situation where 
cyber-criminals can operate lucrative businesses 
with little risk of being caught or punished.

The most brazen example of this is the growth of 
botnets. Attackers write viruses that compromise 
end hosts and tie them into a command and con-
trol system that enables the attacker to issue com-
mands, install software, and otherwise control 
compromised machines. These networks are the 
basis for a whole underground economy in stolen 
financial information, stolen identities, spam email, 
and DoS attacks.

The size of these botnets is large and growing. A 
variety of recent estimates put the total number 
of bots on the Internet well into the millions and 
some estimates go upward of hundreds of mil-
lions [3, 5]. Recent examples including the Storm 
and Kraken botnets have made headlines in main-
stream media. To make matters worse, the number 
of critical operating system vulnerabilities discov-
ered is increasing steadily every year [2], giving 
botnets an ample supply of new recruits, so the 
problem is unlikely to get better on its own.

DoS attacks launched from botnets number in the 
hundreds each day and threaten large swaths of 
the Internet. If compromised nodes are typical of 
end hosts participating in other large peer-to-peer 
systems [10], a multimillion-node botnet would be 
able to generate terabits of attack traffic per second, 
sourced from virtually every routable IP prefix on 
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the planet. This scale of attack could, at least temporarily, overwhelm any 
current core link or router. It is also capable of indefinitely disrupting ser-
vice to all but the best provisioned services on the Internet today.

In May 2006, a sustained attack against the anti-spam company Blue Se-
curity forced the company to close down its services [12]. The LiveJournal 
community was even knocked offline when it was caught in the crossfire. 
Further, attacks are not just limited to security companies. In April 2007, 
a sustained attack on government and business Web sites in Estonia effec-
tively knocked the country off the Web [9]. Even nations are not safe. More 
disturbing is that, despite the attacks going on for weeks, no effective coun-
termeasures were deployed and service was restored only after the attacks 
petered out.

DoS Attacks

Although DoS attacks come in many flavors, we focus on resource ex-
haustion attacks. These attacks flood some bottleneck resource with more 
requests than can be handled, ensuring that only a small fraction of the le-
gitimate requests are serviced.

In the past, syn floods and other techniques aimed to exhaust end-host re-
sources such as memory and process table space, but as these vulnerabili-
ties have been fixed, increasingly the trend is simply to exhaust the target’s 
bandwidth. Attack packets can emulate normal user behavior, making them 
difficult to detect and drop. Attack traffic often crowds out legitimate traf-
fic upstream from where the victim has power to filter traffic even if it could 
distinguish good packets from bad. Further, with the increasing size of bot-
nets attackers can simply send normal traffic and make the attack indistin-
guishable from a flash crowd, forcing defenses to drop packets at random.

Without information about which requests are legitimate and with limited 
buffer space, the only strategy for a victim is to serve requests at random. If 
there are G legitimate requests and B spurious requests, on average, O([G/
(B+G)]) of the available resources go to legitimate requests. But B is often 
much larger than G, since, with a massive botnet, attackers can pick their 
target and focus their fire. Addressing this asymmetry is a main goal of our 
work.

State of the Art

There are two sets of deployed solutions today. The first involves heuristic-
based filters deployed in special-purpose boxes in the network with the goal 
of finding and dropping the bad traffic. The second set makes use of large-
scale content distribution networks (CDNs), which aim to solve the problem 
by sheer over-provisioning.

Heuristic-based filtering relies on an arms race between attackers and de-
fenders—one that we are unlikely to win. Attackers are faster on their feet 
and, in the end, have an easier goal. They only have to make their traffic 
indistinguishable from the legitimate clients, whereas the filters have to de-
tect—in real time and at high data rates—the ever-shrinking differences be-
tween the attack traffic and legitimate traffic.

Additionally, because heuristics can cause collateral damage, they are only 
activated in response to an attack. This requires both detecting the attack 
and communicating that fact to the upstream filters. This communication it-
self can be interrupted by the attacker.
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Large-scale content distribution networks, however, work remarkably well 
for read-only Web sites, by replicating data everywhere. Massive replication 
not only increases performance and resilience to flash crowds but also pro-
vides extra capacity to deal with a DoS attack. This approach is even avail-
able as a commercial anti-DoS service [1]. However, CDNs do not work for 
nonreplicable services, such as read/write back-end databases for e-com-
merce, modern AJAX applications, e-government, and multiplayer games, 
or for point-to-point communication services such as VoIP or IM—in other 
words, much of the Internet as we know it today. How can we ensure com-
munication with a fixed endpoint when that endpoint is being flooded?

We address this problem with the key insight that we need a system as pow-
erful as a botnet to defend against a botnet.

Phalanx Architecture

Intuitively, Phalanx aims to use a large swarm of nodes (like those of a 
large-scale CDN) as points of presence for a protected server. Provided that 
the nodes’ resources exceed those of attackers, legitimate clients will have 
some functioning channels for communication despite a widespread attack. 
In practice, the implementation of this, which allows for a reasonable de-
ployment path, good performance, and an open model of communication, is 
somewhat more complicated than simply using nodes as proxies.

There are two key problems with simply using CDN nodes as proxies. First, 
these nodes cannot simply forward all traffic onto the server; instead, they 
have to do some kind of filtering at the behest of the server. Second, it is 
only in aggregate that the CDN nodes are resistant to attack, so any given 
connection must leverage a large set of these nodes to be resilient.

To solve the first problem we use the nodes as packet mailboxes rather than 
simple forwarding proxies. A mailbox in Phalanx is a best-effort packet store 
and pick-up point. The protected server must explicitly request each packet 
it wishes to receive and therefore is fail-safe: If a server doesn’t request a 
packet, the packet is not delivered. These mailboxes are further explained 
below.

To solve the second problem, we send each packet through a different ran-
domly chosen mailbox, thus drawing in a large number of mailboxes to pro-
tect each connection. If any given mailbox fails or is attacked, only a small 
fraction (often only one packet) of the connection will be lost. Because the 
mailbox used by a given packet is chosen randomly according to a seed 
known only to the two endpoints, the attacker must attack widely to have 
any impact. The exact mechanisms for this can be found below, in the sec-
tion “Swarms and Iterated Hash Sequences.”

The observant reader will note two remaining problems. First, there is noth-
ing to stop an attacker from ignoring the mailboxes and attacking the server 
directly. To deal with this, we capitalize upon the request-response frame-
work and install filters at the edge of the server’s upstream ISP. These filters 
(whose functionality is described later as the filtering ring) simply drop all 
unrequested packets.

Second, now that we have blocked all unrequested packets, how can we ini-
tiate connections? For this, we extend the request-response framework and 
additionally send requests for new connections rather than explicit packets. 
These requests are a valuable scarce resource and so we protect access to 
them via authentication and fair queuing (as laid out under “Connection Es-
tablishment”).



; LO G I N :  Au gust 20 0 8	Wi th stan  d ing   Mu lti m illion     - no  d e bo tne  t s	 25

an example

Before launching into each mechanism in detail we will narrate an example 
of how Phalanx would be used to protect a standard Web server with dy-
namic content, such as an e-commerce site. The example can also be fol-
lowed in Figure 1, where the numbered steps will be mentioned.

First, the client looks up the address of the server and subsequently requests 
the static, cacheable content of the page via any current CDN-style system 
with high availability, such as Akamai, CoDeeN, or Coral (1). As part of 
fetching this content, the client receives a static and cacheable Java applet, 
which then serves as a zero-installation client to allow for interaction with 
Phalanx mailboxes. At this point, the Java applet is responsible for rendering 
the dynamic, noncacheable portions of the page and speaking the Phalanx 
protocols.

F i g u r e  1 :  A  d i a g r a m  i ll  u s t r a t i n g  a  s i m pl  e  HTT   P - s t y l e  r e q u e s t 
d o n e  w i t h  P h ala   n x .  T h e  n u m b e r s  c o r r e s po  n d  t o  t h e 
a c c o m pa  n y i n g  d e s c r i p t i o n .

The applet begins by making a name request for the dynamic content server 
to the distributed name service (1). Again, because the naming information 
is static and cacheable, this service can be provided by any highly available 
name service, such as CoDoNs or Akamai’s DNS service. The name service 
returns a list of “first-contact” mailboxes. These first-contact mailboxes hold 
the first packet requests that the server has issued to allow new connections 
to be made.

The applet requests a challenge from one of these first-contact mailboxes 
and replies with either a puzzle solution or an authentication token (2). In 
either case, the applet will resend the request, possibly with a more complex 
puzzle solution and/or a different mailbox if the connection is not estab-
lished in a reasonable period of time.

At the mailbox, a steady stream of first packet requests has been arriving 
from the dynamic content server (3). One of these first packet requests is 
eventually assigned to the client’s connection request (4), at which point the 
applet’s request is forwarded to the server (5) to cross back through the fil-
tering rings (8) without being dropped. This ensures that the rate of connec-
tion requests reaching the server is under the server’s control.

Eventually, a response will come back from the server (6) containing a list 
of mailboxes to use for the remainder of the connection along with a shared 
secret allowing standard Phalanx communication to commence. At the same 
time, the server will send packet fetch requests to the first several mailboxes 
to be used in preparation for receiving further packets from the client.

The client uses the shared secret to determine the sequence of mailboxes 
to use and begins to send packets to these mailboxes. These data packets 
are paired with their corresponding requests and forwarded onto the server 
passing through the filtering ring (8) by virtue of the holes opened by the re-
quests. This constitutes the normal behavior of the Phalanx connection (7).
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If at any point in time the server decides that the connection is no longer 
desirable or it simply starts running low on resources, it can either decrease 
the rate at which it requests new data packets or simply stop requesting 
packets altogether.

mailboxes

We now proceed to describe each of these components in a bit more detail. 
The basic architecture of an established Phalanx connection is shown in Fig-
ure 2. A more complete description is available on the USENIX Web site in 
the proceedings of NSDI ’08 [8].

F i g u r e  2 :  T h e  b a s i c  a r c h i t e c t u r e  of   a n  e s t a b l i s h e d  P h ala   n x 
c o n n e c t i o n .  Ea  c h  pa  c k e t  i s  s e n t  t h r o u g h  a  o n e - h op   d e t o u r 
v i a  a  r a n d o m ly  c h o s e n  m a i l b o x .

The basic building block in Phalanx is the packet mailbox. Mailboxes pro-
vide a simple abstraction that gives control to the destination instead of the 
source. Rather than packets being delivered directly to the specified destina-
tion as in previous anti-DoS overlays [4, 11, 17], traffic is first delivered to 
a mailbox, where it can either be “picked up” or ignored by the destination. 
Traffic that is ignored is eventually dropped from the buffers at packet mail-
boxes.

Mailboxes export two basic operations: put and get. A put inserts a packet 
into the mailbox’s buffer, possibly evicting an old entry, and returns. A get 
installs a best-effort interrupt at the mailbox. If a matching packet is found 
before the request is bumped from the buffer, the packet is returned.

The mailbox abstraction puts the destination in complete control of which 
packets it receives. Flow policies can remain at the destination where the 
most information is available to make such decisions. These policies are 
implemented in the network via requests and the lack thereof. If no re-
quests are sent, then no packets will come through. This behavior ensures 
that most errors are recoverable locally, rather than requiring cooperation 
and communication with the network control plane. This is in contrast to 
accidentally installing an overly permissive filter in the network and then 
being unable to correct the problem because the control channel can now be 
flooded.

Swarms and Iterated Hash Sequences

Individual flows are multiplexed over many mailboxes. Each packet in a 
flow is sent to a cryptographically random mailbox. Since each mailbox is 
secretly selected by the endpoints, an attacker cannot “follow” a flow by at-
tacking each mailbox just before it is used.

We construct a pseudo-random sequence of mailboxes during connection 
setup by exchanging the set of mailboxes M and a shared secret x. The se-
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quence of mailboxes is built by iterating a cryptographic hash function, 
such as SHA-1 or MD5, on the shared secret. Equipped with this shared se-
quence, both endpoints know in advance the precise mailbox to use for each 
packet in the connection.

To construct a sequence of mailboxes, we first define a sequence of nonces xi 
based on the shared secret x and the cryptographic hash function h, as fol-
lows:

x0=h(x||x)

xi=h(xi-1||x)

Including x in every iteration prevents an attacker who sniffs one nonce 
from being able to calculate all future nonces by iterating the hash func-
tion themselves. Our current implementation uses MD5 [15] as the imple-
mentation of h and thus uses 16-byte nonces for simplicity. This sequence 
of nonces then determines a corresponding sequence of mailboxes M[xi] by 
modulo reducing the nonces, as follows:

M[xi]=Mxi mod |M|

Note that M need not be all mailboxes in the Phalanx deployment, as each 
flow can use a subset of the mailboxes. Indeed, a different set of mailboxes 
can be used for each half of the flow (client-to-server and server-to-client); 
both sets can be dynamically renegotiated within a flow.

Each nonce serves as a unique identifier for a packet and is included in the 
header to facilitate pairing each incoming packet with its corresponding re-
quest. Thus the receiver can know precisely which source sent which packet. 
Further, including a nonce in each packet simplifies the logic needed to drop 
unrequested packets. Lastly, nonces provide a limited form of authentication 
to requests; to subvert the system the attacker must snoop the nonce off the 
wire and then deliver a replacement packet to a mailbox before the correct 
packet arrives.

filtering ring

With Phalanx, a protected destination only receives those packets it explic-
itly requests from a mailbox. To enforce this, we drop all other packets for 
the destination at the edge of its upstream ISP.

Each request packet carries a unique nonce that allows a single data packet 
to return. In the simple case of symmetric routes, the border router records 
the nonce on the outgoing packet and matches each incoming packet to a re-
cently stored nonce, discarding the packet if there is no match. Each nonce 
is single use, so once an incoming packet has matched a nonce, we remove 
that nonce.

To be effective, the filtering ring must be comprehensive enough to examine 
every packet destined for a protected destination, regardless of the source of 
the traffic. To prevent this an attacker might try to flood the border router 
(or, more precisely, the link immediately upstream from the border router). 
As we observed earlier, a massive botnet may be able to flood any single link 
or router in the network. However, this would disconnect only those mail-
boxes that used that specific router to access the destination; other mail-
boxes would continue to deliver packets unaffected.

Even a multimillion-node botnet would be unable to sustain enough traf-
fic to completely disconnect a tier-1 ISP from the Internet. To have an effec-
tive defense against such a large-scale attack, a destination must either be a 
direct customer of a tier-1 that provides a filtering ring or be protected in-
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directly, as a customer of an ISP that is a customer of that tier-1. Since each 
connection can spread its packets across a diverse set of mailboxes, connec-
tions might experience a higher packet loss rate during an attack, but other-
wise would continue to make progress.

Deploying the filtering ring at a tier-1 has risks, though. Bots are every-
where—even inside corporate networks—and, as a result, it seems likely 
that filtering rings would be deployed in depth. Inner layers would pro-
vide protection against the limited number of potential attackers close to a 
server, while outer layers would provide the powerful filtering to deal with 
the brunt of larger attacks. Initially, small-scale ISPs close to the destination 
could offer a limited DoS protection service, capable of withstanding mod-
erate-sized botnets. Moving outward, the cost of deploying the filtering ring 
would increase (as more border routers would need to be upgraded), but the 
value would also increase as the system would be able to withstand larger-
scale botnets.

Our implementation of the filtering logic uses two lists of nonces, efficiently 
encoded using Bloom filters [7]. A whitelist contains a list of requested non
ces, whereas a blacklist contains a list of nonces that have already entered 
the filtering ring. The whitelist ensures that only requested packets get 
through, and the blacklist ensures that at most one packet gets through per 
request. As request packets leave the ring, the router adds their nonces to 
the local whitelist. When data packets enter the ring, their nonces are veri-
fied by checking the whitelist and then are added to a blacklist. Bloom filters 
must be periodically flushed to work properly; to minimize the impact of 
these flushes, two copies of each list are maintained and they are alternately 
flushed.

We believe that the Phalanx filtering ring is efficient enough to be imple-
mented even for high-speed links inside the core of the Internet, provided 
there is an incentive for ISPs to deploy the hardware, that is, provided that 
ISPs can charge their customers for DoS protection. (Note that ISPs that pro-
vide transit need to modify only their ingress routers and not all routers.) A 
100-gigabit router line card would need about 50 MB of hash table space. 
For each delivered packet, six Bloom filter operations are required: The re-
quest packet places a nonce in the current copy of the whitelist, then when 
the actual packet is received it is checked against all four tables (the cur-
rent and previous whitelist and the current and previous blacklist) and then 
added to the current blacklist. Both the storage and computation demands 
are small relative to those needed for core Internet routing tables and packet 
buffering.

Although the filtering ring will require either deploying new hardware in 
the network or upgrading the software running on existing routers, it does 
not require pervasive deployment. Upgrades need only be made at the bor-
der of ISPs looking to offer DoS protection. At first, filtering could be done 
by pairing a commodity server with each border router in an ISP and later 
moving the functionality into the routers if higher performance was needed 
and when appropriate software updates have been released.

Our discussion to this point has assumed routing symmetry. Of course, 
the real Internet has a substantial amount of routing asymmetry. A request 
packet sent to a mailbox may not leave the filtering ring at the same point 
as the corresponding data packet returns; if so, the Bloom filter at the return 
point will drop the packet. This problem becomes more likely as the nesting 
level increases.

To address this problem, we modify filtering ring nodes to stamp request 
packets as they pass through and allow mailboxes to loosely source route 
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data packets via IP-in-IP tunneling back through the filter ring nodes that 
are known to have been primed. This solves the problem of route asymme-
try while only requiring cooperation from the nodes that are already being 
changed to do filtering.

connection establishment

Thus far, we have described how to protect established connections but have 
yet to properly describe the details of connection establishment.

We allow for connection establishment by issuing periodic requests that 
ask for connection establishment packets rather than specific data packets. 
These general-purpose nonces are described above. Simply allowing for such 
first packets doesn’t solve the problem, as they immediately become a scarce 
resource and this capability acquisition channel can be attacked [6]. To solve 
this problem, we require clients to meet some burden before giving them ac-
cess to a general-purpose nonce. Clients can either present an authentication 
token signed by the server or present a cryptographic puzzle solution.

Passing Through the Filtering Ring

Rather than invent new mechanisms to deal with allowing first packets 
through the filtering ring, we reuse the existing request packet framework 
to punch nonspecific holes in the filtering ring. Destinations send each 
mailbox a certain rate of general-purpose requests. Each request contains a 
nonce to be placed in such first packets. When a mailbox wishes to send a 
first packet, it places one of these general-purpose nonces into the packet, 
allowing it to pass through the filtering ring.

These general-purpose requests implement a form of admission control. 
Each general-purpose nonce announces the destination’s willingness to 
admit another flow. This further increases the destination’s control over the 
traffic it receives, allowing it to directly control the rate of new connections.

For the general-purpose nonce mechanism to be resilient to DoS attack, it is 
necessary to spread the nonces across a wide set of well-provisioned mail-
boxes; a particular client only needs to access one. Refreshing these general-
purpose nonces can pose an unreasonable overhead for destinations that 
receive few connection requests; as a result, our prototype supports nonces 
issued for aggregates of IP addresses. Thus, an ISP can manage general-pur-
pose nonces on behalf of an aggregate of users, at some loss in control over 
the rate of new connections being made to each address. Of course, the ISP 
must carefully assign aggregates based on their capacity to handle new con-
nection requests; for example, Google should not be placed in the same ag-
gregate as a small Web site, or else the attacker could use general-purpose 
nonces to flood the small site.

When a client wishes to contact some server, it first contacts a mailbox and 
asks that mailbox to insert a general-purpose nonce into its first packet and 
forward it to the destination. Because general-purpose nonces are a scarce 
resource, the mailbox needs rules governing which connections to give these 
nonces and in what order. The next two sections deal with those mecha-
nisms.

Authentication Tokens

Each packet requesting to initiate a connection must either carry an authen-
tication token or a solution to a cryptographic puzzle. These provide the 



30	 ; LO G I N :  VO L .  33,  N O.  4

burden of proof necessary for a mailbox to allow access to general-purpose 
nonces. Authentication tokens provide support for pre-authenticated connec-
tions, allowing them to begin with no delay. For example, a popular e-com-
merce site such as Amazon might provide a cookie to allow quicker access to 
its Web site to its registered users or even just to users who had spent more 
than $1000. Cryptographic puzzles provide resource proofs to approximate 
fair queueing of requests, when no prior relationship exists between source 
and destination.

Authentication tokens are simply tokens signed by the server stating that 
the given client is allowed to contact that server. An additional message ex-
change is required to prove that the client is in fact the valid token holder.

Crypto-puzzles

The crypto-puzzle is designed to be a resource proof allowing hosts that 
spend more time solving the puzzle to get higher priority for the limited 
number of general-purpose nonces each mailbox possesses. Although there 
are many kinds of resource proofs, we opt for a computational resource 
proof rather than a bandwidth resource proof [18] because computation 
tends to be much cheaper and less disruptive when heavily used.

We borrow a solution from prior work [14, 16] where the crypto-puzzle is to 
find a partial second pre-image of a given random challenge string such that, 
when hashed, both strings match in the lower b bits. The goal for each client 
is then to find some string a given a challenge nonce N such that:

h(a||N) ° h(N) mod 2b

The random nonce is included in both strings to prevent attackers from 
building up tables of strings that cover all 2b possible values of the lower b 
bits in advance. In effect, they need to cover 2b + | N | possible values to 
find matches for all values of the lower b bits and for all possible nonces, 
whereas solving the puzzle online only requires searching 2b - 1 strings on 
average. Because the length of the nonces is under the control of the mail-
boxes, it is possible to make the precomputing attack arbitrarily harder than 
waiting and solving puzzles online.

First packets are granted general-purpose nonces, with priority given first 
to those with valid authentication tokens and then in decreasing order of 
matching bits in the crypto-puzzle solution. This allows any source to get a 
first packet through against an attacker using only finite resources per first 
packet, albeit at an increase in latency.

Evaluation

Evaluating systems such as Phalanx at scale has always posed a problem be-
cause they are fundamentally intended to operate at scales well beyond what 
can be evaluated on a testbed. To address this issue, we built a simulator 
that captures the large-scale dynamics of Phalanx and allows us to simulate 
millions of hosts simultaneously.

The simulator uses a router-level topology gathered by having iPlane [13] 
probe a list of approximately 7200 known Akamai nodes from PlanetLab 
nodes. These Akamai nodes serve as stand-ins for appropriately located 
mailboxes. Each PlanetLab node serves as a stand-in for a server that is 
under attack.
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We assume that attackers target the mailboxes, the server, and the links near 
the server. Traffic is assumed to flow from clients to mailboxes unmolested. 
We assign link capacities by assuming mailbox access links are 10 Mbps, 
the server access link is 200 Mbps, and link capacity increases to the next 
category of {10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps, 40 Gbps} as the links 
move from the edge to the core.

We assign attackers with attack rates according to end-host upload capacity 
information gathered in our previous work [10, 13] and assume that good 
clients communicate at a fixed rate of 160 kbps.

F i g u r e  3 :  T h e  c u m u la  t i v e  f r a c t i o n  of   m a i l b o x e s  s e e i n g  a t 
m o s t  a  g i v e n  f r a c t i o n  of   g oo  d p u t  w h e n  c o m m u n i c a t i n g 
w i t h  t h e  s e r v e r

By using IP to AS mappings, we are able to simulate the behavior of the sys-
tem under varying levels of deployment of the Phalanx filtering rings. Figure 
3 shows the effect of increasing deployment of filtering rings for a server lo-
cated at planetlab-01.kyushu.jgn2.jp. (The results are similar when we use 
other PlanetLab nodes as servers.) In this simulation, there are 100,000 at-
tacking nodes and 1000 good clients all trying to reach the victim server. 
We simulate varying degrees of deployment by iteratively adding the largest 
adjacent AS to the current area of deployment.

As one might expect, even a little deployment helps quite a bit. Only deploy-
ing filters at the victim AS provides significant relief and allows some mail-
boxes to see lossless communication. Deploying in just four ASes (including 
the tier-1 AS NTT) results in the vast majority of mailboxes seeing lossless 
communication, effectively stopping the attack in its tracks if we assume 
that connections use any degree of redundancy to handle losses.

We next look at the scalability of Phalanx in handling attacks involving mil-
lions of bots. For this experiment we consider a somewhat stronger deploy-
ment: upgrading the mailboxes to 100 Mbps access links. Figure 4 examines 
the effect on mailbox loss rate as we increase the number of attackers. Most 
connections easily withstand the brunt of an attack involving one million 
nodes, and Phalanx still allows some (though severely degraded) communi-
cation through when facing 4 million nodes.

However, as the graph shows, increasing the capacity of the mailboxes by 
a factor of 5 to 500 Mbps is able to once again bring the attack into check. 
Thus, while any given deployment will have a breaking point, an increased 
deployment can bring increased protection to deal with even larger attacks.
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Conclusion

In this article, we presented Phalanx, a system for addressing the emerging 
denial-of-service threat posed by multimillion-node botnets. Phalanx asks 
only for two primitives from the network. The first is a network of overlay 
nodes, each implementing a simple, but carefully engineered, packet for-
warding mechanism; this network must be as massive as the botnet that it is 
defending against. Second, we require a filtering ring at the border routers of 
the destination’s upstream tier-1 ISP; this filtering ring is designed to be sim-
ple enough to operate at the very high data rates typical of tier-1 border rout-
ers. We have implemented an initial prototype of Phalanx on PlanetLab and 
have used it to demonstrate its performance. We have further demonstrated 
Phalanx’s ability to scale to million-node botnets through simulation.
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