
; LO G I N : Au gust 20 0 8	 Pe te’s A ll Th ing s Su n : Solari s System A nal ysi s 1 01 	 65

P e t er B a er G a lv i n

Pete’s all things
Sun: Solaris System
Analysis 101
Peter Baer Galvin is the Chief Technologist for Cor-
porate Technologies, a premier systems integrator
and VAR (www.cptech.com). Before that, Peter was
the systems manager for Brown University’s Com-
puter Science Department. He has written articles
and columns for many publications and is coauthor
of the Operating Systems Concepts and Applied Op-
erating Systems Concepts textbooks. As a consultant
and trainer, Peter teaches tutorials and gives talks
on security and system administration worldwide.

pbg@cptech.com

Ai r p l a n e pi l o t s m u s t e x e c u t e a
pre-flight checklist before taking off. This
list ensures that no steps are missed as the
pilot prepares for flight. Over time, these
checklists have been standardized and
edited by many pilots and aircraft design-
ers to the point that they are complete,
logical, useful, and indispensable. Systems
administrators are lacking such consensus
documents, for the most part. Rather, some
sysadmins have no useful checklists, doing
all work ad hoc. Others have their own lists
or work with groups that have documented
methodologies that they follow. Frequently
these lists have limited scope or assume
site-specific details.

This month I’m unveiling one of my lists, “System
Analysis 101.” This list has been built over time via
experience and trial-and-error. It is constantly ex-
panding as new problems are encountered and so-
lutions determined. Hopefully this list will grow
into a consensus set of steps that both new and ex-
perienced sysadmins can use to save time and to
avoid missing important aspects of a system that
could be causing a problem. Input is welcome, and
USENIX has set up a wiki to allow collaboration
on this living, expanding checklist. Please visit it at
http://wiki.sage.org/pbg and contribute.

This is the list that I used to diagnose “it’s slow”
or “it’s not working right” kinds of problems. For
more specific problems the list can be abbrevi-
ated, but carefully. Each of the entries comes from
personal experience (or second-hand examples) in
which that step wasn’t taken and time was wasted.
When a system or facility is not working right,
time to resolution of the problem is of the essence,
and counter-intuitively, this long list of steps can
quickly lead to the diagnosis of the problem, the
first step in getting it resolved.

This list may seem long and in some steps overly
basic. When I approach a broken system I try to
step through the list religiously, just as pilots exe-
cute their pre-flight checklist. Usually, lives are not
at risk, but certainly time, and frequently money,
gets lost when problems occur, and a systematic
approach is the best way to resolving the issue.
When I have been tempted into skipping steps,
frequently I’ve regretted it as the steps skipped
sometimes would have been useful in solving the
problem.

66	 ; LO G I N : VO L . 33, N O. 4

Many of the steps here are general system-administration tasks that could
be used on any system. Some of them are UNIX-specific, some are Solaris-
specific, and some are Solaris 10–specific. If the problem is not occurring on
a Solaris 10 system then other, equivalent (where possible) steps should be
substituted.

Finally, the order of the steps need not be exactly as listed here, but the
overall flow should be preserved, going from general to specific and from
data gathering through making system changes.

Phase 0: Prepare for Problems

The time to learn how to use tools, to understand your facility architecture
and performance, and to learn administration and debugging techniques is
not when in the midst of a production problem. Rather, these things need to
be part of your DNA, ready for when they are needed. To prepare for the in-
evitable problem, consider doing the following:

Join helpful organizations, especially local user groups, to both learn ■■

and build your network.
Take classes and tutorials (from organizations such as USENIX, of ■■

course).
Read books on system administration and practice what they preach. ■■

My personal favorites include UNIX System Administration Handbook
(latest version) by Nemeth et al., The TCP/IP Guide by Kozierok, Solaris
Performance and Tools by McDougall et al., and Solaris Internals, 2nd ed.,
by McDougall and Mauro.
Execute phase 4 when the facility is running normally (assuming there ■■

is such a thing) or at least at steady state. One of the easiest ways to
determine problem details is to compare the state of the broken facility
against the state when it was working better.
Practice all of the other steps in this document to ensure that tools and ■■

documents are in place for when they are needed, that they work in
your environment, and that you understand how to use them, what they
do, and what their results mean.

Phase 1: Capture the Problem Definition as Succinctly as Possible

Capturing the problem definition as succinctly as possible helps keep focus
on the problem and helps communicate the problem as needed. It also helps
avoid the “death spiral‚” in which while exploring one problem other (poten-
tial) problems, or red herrings, are found.

Areas to capture include:

When did the problem start?■■

What invokes the problem?■■

What avoids the problem?■■

What is the problem, exactly?■■

What changes were made before the problem started? (This is usually ■■

the key question!)
What debugging/analyzing/testing changes have been done since the ■■

problem started? (Answering this can avoid wasting time and following
those red herrings.)
What existing diagnostics are available? These can include performance ■■

trends, performance monitoring tools, errors in log files, core dumps,
angry users, and so on.

; LO G I N : Au gust 20 0 8	 Pe te’s A ll Th ing s Su n : Solari s System A nal ysi s 1 01 	 67

Phase 2: Phone a Friend

The timing of this phase is variable and generally occurs throughout the
other phases. If more than one person is working on the problem, this phase
can be delegated—it can be time-consuming.

Place service calls on the problem components, including, for example, ■■

the application that is having a problem, the operating system software,
and any hardware it is running on. Perform this early in the project if
support contracts are in place and so the service calls are at no cost.
Get in touch with whoever sold you the facility that is having the prob-■■

lem (for example, a reseller).
Get in touch with anyone (if other than you) who was active in the ■■

implementation of the facility.
Search for similar problems that other people have written about (even ■■

better, solved). General, technical, and product search engines are use-
ful. For example, for a Solaris 10 on Sun hardware problem you could
search at http://www.opensolaris.org/os/discussions/ and at http://
sunsolve.sun.com/show.do?target=home. Looking for and exploring
resources is a great thing to have done before the problem occurred, in
all your “spare time.”
Get in touch with experienced and helpful sysadmins to whom you have ■■

been helpful in the past. (This is one of the many reasons to be helpful
to other sysadmins.)

Phase 3: Determine Available Testing/Resolution Resources

Are there any similar development, Q/A, or business continuance sys-■■

tems available? (Watch out that “similar” might be different enough that
the problem cannot be reproduced there.)
Can the problem be reproduced? If so, capture the steps to re-creation.■■

Can we make changes in production? If so, capture the details (e.g., ■■

downtime windows, change limits such as validated system and produc-
tion lockdown times and low-impact times).
If the problem only occurs under load, do we have the ability to test ■■

under load and to generate a sufficient load to cause the problem? The
worst problems are those that only occur under load and when the load
cannot be generated artificially.
What is the change deployment method and cycle in case changes need ■■

to be made to resolve the problem?
Is testing in production possible? ■■

Is having an impact on performance in production acceptable?■■

Is the use of unsupported tools in the production environment ■■

allowable?

Phase 4: Capture the State of the Problem Environment

For each component in the problem environment (certainly computers, but
this could also extend to storage, networking, and security components), do
the following:

Capture the state and configuration details with the “best” tools avail-■■

able. For Solaris, that means running explorer (if possible), which is
now part of the Services Tools Bundle and is available for free from
http://www.sun.com/download/products.xml?id=47c7250a.
Capture state with GUDS, which is a tool similar to explorer but more ■■

complete; unfortunately, apparently it is only available from Sun Sup-
port on an as-needed basis.

68	 ; LO G I N : VO L . 33, N O. 4

If using Solaris 10, use dexplorer while the problem is occurring, if ■■

possible and allowed. dexplorer is part of the indispensable DTrace
Toolkit available from http://opensolaris.org/os/community/dtrace/
dtracetoolkit/. Note that it is free and that the tools it uses are support-
ed, but the toolkit and its scripts themselves are not supported.

Some additional things to capture if not already recorded by these actions
include the following:

What are the operating system, firmware, and hardware versions and ■■

patch levels?
What are the pertinent application release and patch level levels?■■

Are the versions of the applications supported on the versions of the ■■

hardware and operating systems? If not an upgrade cycle is probably
going to be necessary to bring all of the components into compliance
before support organizations will help resolve the problem.

Note that support organizations are likely to push for changes even in sup-
ported configurations before escalating a problem. For example, a very
common scenario is that technical support will encourage or try to require
installation of the latest patches, upgrading to the latest firmware, or even
upgrading operating system or application versions. This eliminates variables
for them, but it’s also how they try to get you off the phone. Such work can
take hours or days and frequently is not necessary—the problem frequently
still exists after the work. Push back on support, depending on the level of
effort and time their recommendations would take and your level of support.
Ask support if they have any evidence that the problem will be solved by
the changes recommended. If they have no proof, try to force them to con-
tinue working on the problem without first making their suggested changes.
Note that politeness, firmness, and mention of how much you pay them for
support is much more effective than poor behavior. If satisfaction is not re-
ceived, then (politely) try to get to the next level of support management.
Also, whoever sold you the facility has a vested interest in having you as
a happy customer, so have them help increase the priority of the problem
within the support organizations.

Phase 5: Track Down the Problem

Tracking the problem down is, of course, the meat of the project and the
most difficult part. But with the preparation done as outlined here, many
variables have been eliminated and plenty of information is now readily
available to help diagnose the problem. This phase can vary immensely de-
pending on the kind of problem being worked on, the scale of the problem,
and all of the details determined in the previous phases. Some first steps for
Solaris 10 systems are listed here, but other lists for other operating systems
and devices should be compiled for your site (or be found to have already
been published).

Generally, compare the results attained during the problem against the same
information from when the system was healthy (see Phase 0).

Scan through log files such as /var/adm/messages and via dmesg. Don’t ■■

ignore anything odd—it could be the canary indicating the problem.
Run ■■ svcs -a to check for services that have failed or are disabled.
Check for full disks or changed mount information via ■■ df and mount.
Run ■■ ifconfig -a and look for any errors; run kstat and grep through
the output for the network interface names (such as e1000g0) to check
network parameters such as duplex and speed.

; LO G I N : Au gust 20 0 8	 Pe te’s A ll Th ing s Su n : Solari s System A nal ysi s 1 01 	 69

Read through /etc/system and look for settings copied from other systems or
left behind during an upgrade. Note that /etc/system should never be copied
or left intact between operating system or application upgrades; such events
should cause an audit of the file for entries to remove or update. Check the
Solaris Tunable Parameters Reference Manual at http://docs.sun.com/app/docs/
doc/817-0404. This document is updated for every Solaris release.

Check /etc/projects for any resource management settings that could be ■■

affecting system or application performance.
Check the ■■ stat commands and look for anomalies:

iostat -x 10■■ —are there large response times?
mpstat 10■■ —how many threads are in which states?
vmstat 10■■ —do the thread counts and scan rate indicate memory
shortage?
vmstat -p 10■■ —look for systemwide memory operations.
prstat■■ —are there any resource hogs?
prstat -Lmp <pid>■■ —look at detailed state information about a
specific process.
pmap -x <pid>■■ —explore the memory map of a problem process.
DTraceToolKit and DTrace scripts—look at specific suspect aspects of ■■

the system.

Some general areas to consider, especially on Solaris:

Are you running the most appropriate scheduler for each system in your ■■

environment?
Are you using the best-fit page sizes?■■

Is your I/O well balanced and spread across enough devices (disks, ■■

network ports, etc.)?
Are you using the best CPU for the workload? (Are there few fast ■■

threads or many slower threads?)
If processes are contending with each other, implement resource man-■■

agement (e.g., containers, project sets, and dynamic resource pools).
Since rebooting the system can reset the state to a known starting point ■■

and remove variables, consider it as appropriate after current state infor-
mation is captured.
Finally, if the code is your own, did you use the best current compiler to ■■

generate the machine code?

Next Time

My list might be a bit controversial. Don’t like it? Have a better one? Have a
checklist for some other sysadmin activity? System administration is a diffi-
cult activity because not much of it can be learned in school or from books.
It’s a journeyman’s trade. Help your fellow sysadmins and help make the
world a better place by documenting your accomplishments and making
them available. Contribute to the SAGE Web site, create your own blog, con-
tribute to the wiki of this column at http://wiki.sage.org/pbg, join (and at-
tend!) a user group, and get sharing!

Next month, in Solaris Systems Analysis 102, I’ll dive deeper into Phase 5,
showing DTrace and system command examples and how to tune areas such
as the scheduler class and resource management. Until then, there should be
plenty here to add to the sysadmin to-do list.

